2.2.179 Problems 17801 to 17900

Table 2.359: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

17801

\[ {}\sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

38.925

17802

\[ {}y-x^{3}+\left (x +y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

1.223

17803

\[ {}y+y \cos \left (x y\right )+\left (x +x \cos \left (x y\right )\right ) y^{\prime } = 0 \]

[_separable]

1.688

17804

\[ {}\cos \left (x \right ) \cos \left (y\right )^{2}+2 \sin \left (x \right ) \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

2.794

17805

\[ {}\left (\sin \left (x \right ) \sin \left (y\right )-x \,{\mathrm e}^{y}\right ) y^{\prime } = {\mathrm e}^{y}+\cos \left (x \right ) \cos \left (y\right ) \]

[_exact]

32.514

17806

\[ {}-\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0 \]

[_separable]

1.524

17807

\[ {}1+y+\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

1.457

17808

\[ {}2 x y^{3}+y \cos \left (x \right )+\left (3 x^{2} y^{2}+\sin \left (x \right )\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

40.713

17809

\[ {}1 = \frac {y}{1-x^{2} y^{2}}+\frac {x y^{\prime }}{1-x^{2} y^{2}} \]

[_exact, _rational, _Riccati]

1.443

17810

\[ {}2 x y^{4}+\sin \left (y\right )+\left (4 y^{3} x^{2}+x \cos \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

2.712

17811

\[ {}\frac {x y^{\prime }+y}{1-x^{2} y^{2}}+x = 0 \]

[_exact, _rational, _Riccati]

2.770

17812

\[ {}2 x \left (1+\sqrt {x^{2}-y}\right ) = \sqrt {x^{2}-y}\, y^{\prime } \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

4.976

17813

\[ {}x \ln \left (y\right )+x y+\left (y \ln \left (x \right )+x y\right ) y^{\prime } = 0 \]

[_separable]

1.968

17814

\[ {}{\mathrm e}^{y^{2}}-\csc \left (y\right ) \csc \left (x \right )^{2}+\left (2 x y \,{\mathrm e}^{y^{2}}-\csc \left (y\right ) \cot \left (y\right ) \cot \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

51.435

17815

\[ {}1+y^{2} \sin \left (2 x \right )-2 y \cos \left (x \right )^{2} y^{\prime } = 0 \]

[_exact, _Bernoulli]

6.120

17816

\[ {}\frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

4.555

17817

\[ {}3 x^{2} \left (1+\ln \left (y\right )\right )+\left (\frac {x^{3}}{y}-2 y\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.644

17818

\[ {}\frac {y-x y^{\prime }}{\left (x +y\right )^{2}}+y^{\prime } = 1 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

2.970

17819

\[ {}\frac {4 y^{2}-2 x^{2}}{4 x y^{2}-x^{3}}+\frac {\left (8 y^{2}-x^{2}\right ) y^{\prime }}{4 y^{3}-x^{2} y} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

106.984

17820

\[ {}\left (3 x^{2}-y^{2}\right ) y^{\prime }-2 x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.975

17821

\[ {}x y-1+\left (x^{2}-x y\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

1.160

17822

\[ {}x y^{\prime }+y+3 x^{3} y^{4} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

6.376

17823

\[ {}{\mathrm e}^{x}+\left ({\mathrm e}^{x} \cot \left (y\right )+2 y \csc \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

3.456

17824

\[ {}\left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

2.071

17825

\[ {}y+\left (x -2 y^{3} x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.792

17826

\[ {}x +3 y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.041

17827

\[ {}y+\left (2 x -y \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.204

17828

\[ {}y \ln \left (y\right )-2 x y+\left (x +y\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

1.441

17829

\[ {}y^{2}+x y+1+\left (x^{2}+x y+1\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.385

17830

\[ {}x^{3}+x y^{3}+3 y^{2} y^{\prime } = 0 \]

[_rational, _Bernoulli]

1.920

17831

\[ {}-y+x y^{\prime } = \left (1+y^{2}\right ) y^{\prime } \]

[[_1st_order, _with_linear_symmetries], _rational]

1.372

17832

\[ {}y-x y^{\prime } = x y^{3} y^{\prime } \]

[_separable]

2.296

17833

\[ {}x y^{\prime } = x^{5}+x^{3} y^{2}+y \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

3.008

17834

\[ {}\left (x +y\right ) y^{\prime } = y-x \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.694

17835

\[ {}x y^{\prime } = y+x^{2}+9 y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

1.309

17836

\[ {}y^{2}-y+x y^{\prime } = 0 \]

[_separable]

1.855

17837

\[ {}-y+x y^{\prime } = 2 x^{2}-3 \]

[_linear]

1.019

17838

\[ {}x y^{\prime }+y = \sqrt {x y}\, y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

65.708

17839

\[ {}y-x y^{2}+\left (x +x^{2} y^{2}\right ) y^{\prime } = 0 \]

[_rational]

1.217

17840

\[ {}-y+x y^{\prime } = x^{2} y^{4} \left (x y^{\prime }+y\right ) \]

[[_homogeneous, ‘class G‘], _rational]

3.521

17841

\[ {}x y^{\prime }+y+x^{2} y^{5} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.095

17842

\[ {}2 x y^{2}-y+x y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

1.697

17843

\[ {}y^{\prime }+\frac {y}{x} = \sin \left (x \right ) \]

[_linear]

1.212

17844

\[ {}y^{\prime } = \frac {2 y}{x}+\frac {x^{3}}{y}+x \tan \left (\frac {y}{x^{2}}\right ) \]

[[_homogeneous, ‘class G‘]]

5.091

17845

\[ {}x y^{\prime }-3 y = x^{4} \]

[_linear]

1.307

17846

\[ {}y^{\prime }+y = \frac {1}{1+{\mathrm e}^{2 x}} \]

[_linear]

1.523

17847

\[ {}\left (x^{2}+1\right ) y^{\prime }+2 x y = \cot \left (x \right ) \]

[_linear]

1.540

17848

\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x}+x^{2} \]

[[_linear, ‘class A‘]]

2.470

17849

\[ {}y^{\prime }+y \cot \left (x \right ) = 2 x \csc \left (x \right ) \]

[_linear]

1.560

17850

\[ {}2 y-x^{3} = x y^{\prime } \]

[_linear]

1.334

17851

\[ {}y-x +x y \cot \left (x \right )+x y^{\prime } = 0 \]

[_linear]

1.607

17852

\[ {}y^{\prime }-2 x y = 6 x \,{\mathrm e}^{x^{2}} \]

[_linear]

2.261

17853

\[ {}x \ln \left (x \right ) y^{\prime }+y = 3 x^{3} \]

[_linear]

1.310

17854

\[ {}y-2 x y-x^{2}+x^{2} y^{\prime } = 0 \]

[_linear]

1.482

17855

\[ {}x y^{\prime }+y = x^{4} y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.342

17856

\[ {}x y^{2} y^{\prime }+y^{3} = x \cos \left (x \right ) \]

[_Bernoulli]

54.619

17857

\[ {}x y^{\prime }+y = x y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.294

17858

\[ {}\left ({\mathrm e}^{y}-2 x y\right ) y^{\prime } = y^{2} \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.158

17859

\[ {}y-x y^{\prime } = y^{\prime } y^{2} {\mathrm e}^{y} \]

[[_1st_order, _with_linear_symmetries]]

1.183

17860

\[ {}x y^{\prime }+2 = x^{3} \left (y-1\right ) y^{\prime } \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

2.339

17861

\[ {}x y^{\prime } = 2 x^{2} y+y \ln \left (y\right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.603

17862

\[ {}y^{\prime } \sin \left (2 x \right ) = 2 y+2 \cos \left (x \right ) \]

[_linear]

2.860

17863

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.531

17864

\[ {}x y^{\prime \prime } = y^{\prime }+{y^{\prime }}^{3} \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.631

17865

\[ {}y^{\prime \prime }-k y = 0 \]

[[_2nd_order, _missing_x]]

3.805

17866

\[ {}x^{2} y^{\prime \prime } = 2 x y^{\prime }+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_y]]

0.502

17867

\[ {}2 y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.434

17868

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.248

17869

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

[[_2nd_order, _missing_y]]

0.898

17870

\[ {}\left (x^{2}+2 y^{\prime }\right ) y^{\prime \prime }+2 x y^{\prime } = 0 \]
i.c.

0.057

17871

\[ {}y y^{\prime \prime } = y^{2} y^{\prime }+{y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.312

17872

\[ {}y^{\prime \prime } = y^{\prime } {\mathrm e}^{y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

2.043

17873

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

0.385

17874

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

0.261

17875

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.200

17876

\[ {}\left (1-x y\right ) y^{\prime } = y^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.378

17877

\[ {}2 x +3 y+1+\left (2 y-3 x +5\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.875

17878

\[ {}x y^{\prime } = \sqrt {y^{2}+x^{2}} \]

8.279

17879

\[ {}y^{2} = \left (x^{3}-x y\right ) y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.391

17880

\[ {}y^{3} x^{2}+y = \left (x^{3} y^{2}-x \right ) y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational]

2.016

17881

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } y = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.010

17882

\[ {}x y^{\prime }+y = y^{2}+x^{2} y^{\prime } \]

[_separable]

2.120

17883

\[ {}x y y^{\prime } = y^{2}+x^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

37.104

17884

\[ {}\left ({\mathrm e}^{x}-3 x^{2} y^{2}\right ) y^{\prime }+y \,{\mathrm e}^{x} = 2 x y^{3} \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.161

17885

\[ {}y^{\prime \prime }+2 x {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.319

17886

\[ {}y+x^{2} = x y^{\prime } \]

[_linear]

1.032

17887

\[ {}x y^{\prime }+y = x^{2} \cos \left (x \right ) \]

[_linear]

1.265

17888

\[ {}6 x +4 y+3+\left (3 x +2 y+2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.076

17889

\[ {}\cos \left (x +y\right ) = x \sin \left (x +y\right )+x \sin \left (x +y\right ) y^{\prime } \]

[[_1st_order, _with_linear_symmetries], _exact]

3.054

17890

\[ {}x^{2} y^{\prime \prime }+x y^{\prime } = 1 \]

[[_2nd_order, _missing_y]]

1.311

17891

\[ {}y^{2} {\mathrm e}^{x y}+\cos \left (x \right )+\left ({\mathrm e}^{x y}+x y \,{\mathrm e}^{x y}\right ) y^{\prime } = 0 \]

[_exact]

37.586

17892

\[ {}y^{\prime } \ln \left (x -y\right ) = 1+\ln \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

6.525

17893

\[ {}y^{\prime }+2 x y = {\mathrm e}^{-x^{2}} \]

[_linear]

1.503

17894

\[ {}y^{2}-3 x y-2 x^{2} = \left (x^{2}-x y\right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5.986

17895

\[ {}\left (x^{2}+1\right ) y^{\prime }+2 x y = 4 x^{3} \]

[_linear]

1.386

17896

\[ {}{\mathrm e}^{x} \sin \left (y\right )+{\mathrm e}^{x} \cos \left (y\right ) y^{\prime } = y \sin \left (x y\right )+x \sin \left (x y\right ) y^{\prime } \]

[_exact]

40.673

17897

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

1.215

17898

\[ {}\left (x \,{\mathrm e}^{y}+y-x^{2}\right ) y^{\prime \prime } = 2 x y-{\mathrm e}^{y}-x \]

[NONE]

0.247

17899

\[ {}\left (x +1\right ) {\mathrm e}^{x} = \left (x \,{\mathrm e}^{x}-y \,{\mathrm e}^{y}\right ) y^{\prime } \]

[‘y=_G(x,y’)‘]

1.870

17900

\[ {}x^{2} y^{4}+x^{6}-x^{3} y^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5.648