# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}\sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (y\right )^{2} y^{\prime } = 0
\] |
[‘y=_G(x,y’)‘] |
✓ |
38.925 |
|
\[
{}y-x^{3}+\left (x +y^{3}\right ) y^{\prime } = 0
\] |
[_exact, _rational] |
✓ |
1.223 |
|
\[
{}y+y \cos \left (x y\right )+\left (x +x \cos \left (x y\right )\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
1.688 |
|
\[
{}\cos \left (x \right ) \cos \left (y\right )^{2}+2 \sin \left (x \right ) \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
2.794 |
|
\[
{}\left (\sin \left (x \right ) \sin \left (y\right )-x \,{\mathrm e}^{y}\right ) y^{\prime } = {\mathrm e}^{y}+\cos \left (x \right ) \cos \left (y\right )
\] |
[_exact] |
✓ |
32.514 |
|
\[
{}-\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0
\] |
[_separable] |
✓ |
1.524 |
|
\[
{}1+y+\left (1-x \right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
1.457 |
|
\[
{}2 x y^{3}+y \cos \left (x \right )+\left (3 x^{2} y^{2}+\sin \left (x \right )\right ) y^{\prime } = 0
\] |
[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
✓ |
40.713 |
|
\[
{}1 = \frac {y}{1-x^{2} y^{2}}+\frac {x y^{\prime }}{1-x^{2} y^{2}}
\] |
[_exact, _rational, _Riccati] |
✓ |
1.443 |
|
\[
{}2 x y^{4}+\sin \left (y\right )+\left (4 y^{3} x^{2}+x \cos \left (y\right )\right ) y^{\prime } = 0
\] |
[_exact] |
✓ |
2.712 |
|
\[
{}\frac {x y^{\prime }+y}{1-x^{2} y^{2}}+x = 0
\] |
[_exact, _rational, _Riccati] |
✓ |
2.770 |
|
\[
{}2 x \left (1+\sqrt {x^{2}-y}\right ) = \sqrt {x^{2}-y}\, y^{\prime }
\] |
[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]] |
✓ |
4.976 |
|
\[
{}x \ln \left (y\right )+x y+\left (y \ln \left (x \right )+x y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
1.968 |
|
\[
{}{\mathrm e}^{y^{2}}-\csc \left (y\right ) \csc \left (x \right )^{2}+\left (2 x y \,{\mathrm e}^{y^{2}}-\csc \left (y\right ) \cot \left (y\right ) \cot \left (x \right )\right ) y^{\prime } = 0
\] |
[_exact] |
✓ |
51.435 |
|
\[
{}1+y^{2} \sin \left (2 x \right )-2 y \cos \left (x \right )^{2} y^{\prime } = 0
\] |
[_exact, _Bernoulli] |
✓ |
6.120 |
|
\[
{}\frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}} = 0
\] |
[_separable] |
✓ |
4.555 |
|
\[
{}3 x^{2} \left (1+\ln \left (y\right )\right )+\left (\frac {x^{3}}{y}-2 y\right ) y^{\prime } = 0
\] |
[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
1.644 |
|
\[
{}\frac {y-x y^{\prime }}{\left (x +y\right )^{2}}+y^{\prime } = 1
\] |
[[_1st_order, _with_linear_symmetries], _exact, _rational] |
✓ |
2.970 |
|
\[
{}\frac {4 y^{2}-2 x^{2}}{4 x y^{2}-x^{3}}+\frac {\left (8 y^{2}-x^{2}\right ) y^{\prime }}{4 y^{3}-x^{2} y} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
106.984 |
|
\[
{}\left (3 x^{2}-y^{2}\right ) y^{\prime }-2 x y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
3.975 |
|
\[
{}x y-1+\left (x^{2}-x y\right ) y^{\prime } = 0
\] |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
1.160 |
|
\[
{}x y^{\prime }+y+3 x^{3} y^{4} y^{\prime } = 0
\] |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
6.376 |
|
\[
{}{\mathrm e}^{x}+\left ({\mathrm e}^{x} \cot \left (y\right )+2 y \csc \left (y\right )\right ) y^{\prime } = 0
\] |
[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
3.456 |
|
\[
{}\left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
2.071 |
|
\[
{}y+\left (x -2 y^{3} x^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
2.792 |
|
\[
{}x +3 y^{2}+2 x y y^{\prime } = 0
\] |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
2.041 |
|
\[
{}y+\left (2 x -y \,{\mathrm e}^{y}\right ) y^{\prime } = 0
\] |
[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
1.204 |
|
\[
{}y \ln \left (y\right )-2 x y+\left (x +y\right ) y^{\prime } = 0
\] |
[‘y=_G(x,y’)‘] |
✓ |
1.441 |
|
\[
{}y^{2}+x y+1+\left (x^{2}+x y+1\right ) y^{\prime } = 0
\] |
[_rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
1.385 |
|
\[
{}x^{3}+x y^{3}+3 y^{2} y^{\prime } = 0
\] |
[_rational, _Bernoulli] |
✓ |
1.920 |
|
\[
{}-y+x y^{\prime } = \left (1+y^{2}\right ) y^{\prime }
\] |
[[_1st_order, _with_linear_symmetries], _rational] |
✓ |
1.372 |
|
\[
{}y-x y^{\prime } = x y^{3} y^{\prime }
\] |
[_separable] |
✓ |
2.296 |
|
\[
{}x y^{\prime } = x^{5}+x^{3} y^{2}+y
\] |
[[_homogeneous, ‘class D‘], _rational, _Riccati] |
✓ |
3.008 |
|
\[
{}\left (x +y\right ) y^{\prime } = y-x
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
2.694 |
|
\[
{}x y^{\prime } = y+x^{2}+9 y^{2}
\] |
[[_homogeneous, ‘class D‘], _rational, _Riccati] |
✓ |
1.309 |
|
\[
{}y^{2}-y+x y^{\prime } = 0
\] |
[_separable] |
✓ |
1.855 |
|
\[
{}-y+x y^{\prime } = 2 x^{2}-3
\] |
[_linear] |
✓ |
1.019 |
|
\[
{}x y^{\prime }+y = \sqrt {x y}\, y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
65.708 |
|
\[
{}y-x y^{2}+\left (x +x^{2} y^{2}\right ) y^{\prime } = 0
\] |
[_rational] |
✓ |
1.217 |
|
\[
{}-y+x y^{\prime } = x^{2} y^{4} \left (x y^{\prime }+y\right )
\] |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
3.521 |
|
\[
{}x y^{\prime }+y+x^{2} y^{5} y^{\prime } = 0
\] |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
2.095 |
|
\[
{}2 x y^{2}-y+x y^{\prime } = 0
\] |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
1.697 |
|
\[
{}y^{\prime }+\frac {y}{x} = \sin \left (x \right )
\] |
[_linear] |
✓ |
1.212 |
|
\[
{}y^{\prime } = \frac {2 y}{x}+\frac {x^{3}}{y}+x \tan \left (\frac {y}{x^{2}}\right )
\] |
[[_homogeneous, ‘class G‘]] |
✓ |
5.091 |
|
\[
{}x y^{\prime }-3 y = x^{4}
\] |
[_linear] |
✓ |
1.307 |
|
\[
{}y^{\prime }+y = \frac {1}{1+{\mathrm e}^{2 x}}
\] |
[_linear] |
✓ |
1.523 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime }+2 x y = \cot \left (x \right )
\] |
[_linear] |
✓ |
1.540 |
|
\[
{}y^{\prime }+y = 2 x \,{\mathrm e}^{-x}+x^{2}
\] |
[[_linear, ‘class A‘]] |
✓ |
2.470 |
|
\[
{}y^{\prime }+y \cot \left (x \right ) = 2 x \csc \left (x \right )
\] |
[_linear] |
✓ |
1.560 |
|
\[
{}2 y-x^{3} = x y^{\prime }
\] |
[_linear] |
✓ |
1.334 |
|
\[
{}y-x +x y \cot \left (x \right )+x y^{\prime } = 0
\] |
[_linear] |
✓ |
1.607 |
|
\[
{}y^{\prime }-2 x y = 6 x \,{\mathrm e}^{x^{2}}
\] |
[_linear] |
✓ |
2.261 |
|
\[
{}x \ln \left (x \right ) y^{\prime }+y = 3 x^{3}
\] |
[_linear] |
✓ |
1.310 |
|
\[
{}y-2 x y-x^{2}+x^{2} y^{\prime } = 0
\] |
[_linear] |
✓ |
1.482 |
|
\[
{}x y^{\prime }+y = x^{4} y^{3}
\] |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
2.342 |
|
\[
{}x y^{2} y^{\prime }+y^{3} = x \cos \left (x \right )
\] |
[_Bernoulli] |
✓ |
54.619 |
|
\[
{}x y^{\prime }+y = x y^{2}
\] |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
1.294 |
|
\[
{}\left ({\mathrm e}^{y}-2 x y\right ) y^{\prime } = y^{2}
\] |
[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
1.158 |
|
\[
{}y-x y^{\prime } = y^{\prime } y^{2} {\mathrm e}^{y}
\] |
[[_1st_order, _with_linear_symmetries]] |
✓ |
1.183 |
|
\[
{}x y^{\prime }+2 = x^{3} \left (y-1\right ) y^{\prime }
\] |
[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]] |
✓ |
2.339 |
|
\[
{}x y^{\prime } = 2 x^{2} y+y \ln \left (y\right )
\] |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
✓ |
1.603 |
|
\[
{}y^{\prime } \sin \left (2 x \right ) = 2 y+2 \cos \left (x \right )
\] |
[_linear] |
✓ |
2.860 |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
0.531 |
|
\[
{}x y^{\prime \prime } = y^{\prime }+{y^{\prime }}^{3}
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
0.631 |
|
\[
{}y^{\prime \prime }-k y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
3.805 |
|
\[
{}x^{2} y^{\prime \prime } = 2 x y^{\prime }+{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
0.502 |
|
\[
{}2 y y^{\prime \prime } = 1+{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
1.434 |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
0.248 |
|
\[
{}x y^{\prime \prime }+y^{\prime } = 4 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
0.898 |
|
\[
{}\left (x^{2}+2 y^{\prime }\right ) y^{\prime \prime }+2 x y^{\prime } = 0
\] |
|
✗ |
0.057 |
|
\[
{}y y^{\prime \prime } = y^{2} y^{\prime }+{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]] |
✓ |
0.312 |
|
\[
{}y^{\prime \prime } = y^{\prime } {\mathrm e}^{y}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]] |
✓ |
2.043 |
|
\[
{}y^{\prime \prime } = 1+{y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
0.385 |
|
\[
{}y^{\prime \prime }+{y^{\prime }}^{2} = 1
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
0.261 |
|
\[
{}y y^{\prime \prime } = {y^{\prime }}^{2}
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
0.200 |
|
\[
{}\left (1-x y\right ) y^{\prime } = y^{2}
\] |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
1.378 |
|
\[
{}2 x +3 y+1+\left (2 y-3 x +5\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
1.875 |
|
\[
{}x y^{\prime } = \sqrt {y^{2}+x^{2}}
\] |
|
✓ |
8.279 |
|
\[
{}y^{2} = \left (x^{3}-x y\right ) y^{\prime }
\] |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
2.391 |
|
\[
{}y^{3} x^{2}+y = \left (x^{3} y^{2}-x \right ) y^{\prime }
\] |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
2.016 |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } y = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
1.010 |
|
\[
{}x y^{\prime }+y = y^{2}+x^{2} y^{\prime }
\] |
[_separable] |
✓ |
2.120 |
|
\[
{}x y y^{\prime } = y^{2}+x^{2} y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
37.104 |
|
\[
{}\left ({\mathrm e}^{x}-3 x^{2} y^{2}\right ) y^{\prime }+y \,{\mathrm e}^{x} = 2 x y^{3}
\] |
[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
✓ |
2.161 |
|
\[
{}y^{\prime \prime }+2 x {y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
0.319 |
|
\[
{}y+x^{2} = x y^{\prime }
\] |
[_linear] |
✓ |
1.032 |
|
\[
{}x y^{\prime }+y = x^{2} \cos \left (x \right )
\] |
[_linear] |
✓ |
1.265 |
|
\[
{}6 x +4 y+3+\left (3 x +2 y+2\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
1.076 |
|
\[
{}\cos \left (x +y\right ) = x \sin \left (x +y\right )+x \sin \left (x +y\right ) y^{\prime }
\] |
[[_1st_order, _with_linear_symmetries], _exact] |
✓ |
3.054 |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime } = 1
\] |
[[_2nd_order, _missing_y]] |
✓ |
1.311 |
|
\[
{}y^{2} {\mathrm e}^{x y}+\cos \left (x \right )+\left ({\mathrm e}^{x y}+x y \,{\mathrm e}^{x y}\right ) y^{\prime } = 0
\] |
[_exact] |
✓ |
37.586 |
|
\[
{}y^{\prime } \ln \left (x -y\right ) = 1+\ln \left (x -y\right )
\] |
[[_homogeneous, ‘class C‘], _exact, _dAlembert] |
✓ |
6.525 |
|
\[
{}y^{\prime }+2 x y = {\mathrm e}^{-x^{2}}
\] |
[_linear] |
✓ |
1.503 |
|
\[
{}y^{2}-3 x y-2 x^{2} = \left (x^{2}-x y\right ) y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
5.986 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime }+2 x y = 4 x^{3}
\] |
[_linear] |
✓ |
1.386 |
|
\[
{}{\mathrm e}^{x} \sin \left (y\right )+{\mathrm e}^{x} \cos \left (y\right ) y^{\prime } = y \sin \left (x y\right )+x \sin \left (x y\right ) y^{\prime }
\] |
[_exact] |
✓ |
40.673 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
1.215 |
|
\[
{}\left (x \,{\mathrm e}^{y}+y-x^{2}\right ) y^{\prime \prime } = 2 x y-{\mathrm e}^{y}-x
\] |
[NONE] |
✗ |
0.247 |
|
\[
{}\left (x +1\right ) {\mathrm e}^{x} = \left (x \,{\mathrm e}^{x}-y \,{\mathrm e}^{y}\right ) y^{\prime }
\] |
[‘y=_G(x,y’)‘] |
✓ |
1.870 |
|
\[
{}x^{2} y^{4}+x^{6}-x^{3} y^{3} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
5.648 |
|