2.2.179 Problems 17801 to 17900

Table 2.359: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

17801

\[ {}t y^{\prime \prime \prime }+\sin \left (t \right ) y^{\prime \prime }+4 y = \cos \left (t \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.069

17802

\[ {}t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+7 t^{2} y = 0 \]

[[_high_order, _with_linear_symmetries]]

0.067

17803

\[ {}y^{\prime \prime \prime }+t y^{\prime \prime }+5 t^{2} y^{\prime }+2 t^{3} y = \ln \left (t \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.064

17804

\[ {}\left (x -1\right ) y^{\prime \prime \prime \prime }+\left (x +5\right ) y^{\prime \prime }+\tan \left (x \right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

0.068

17805

\[ {}\left (x^{2}-25\right ) y^{\left (6\right )}+x^{2} y^{\prime \prime }+5 y = 0 \]

[[_high_order, _with_linear_symmetries]]

0.065

17806

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{2}+x_{3} \\ x_{2}^{\prime }=x_{1}+x_{3} \\ x_{3}^{\prime }=x_{1}+x_{2} \end {array}\right ] \]

system_of_ODEs

0.342

17807

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}+2 x_{2}+4 x_{3} \\ x_{2}^{\prime }=2 x_{1}+2 x_{3} \\ x_{3}^{\prime }=4 x_{1}+2 x_{2}+3 x_{3} \end {array}\right ] \]

system_of_ODEs

0.433

17808

\[ {}y^{\prime \prime \prime }+y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

0.065

17809

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.069

17810

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }-4 y^{\prime }-16 y = 0 \]

[[_3rd_order, _missing_x]]

0.072

17811

\[ {}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+9 y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.073

17812

\[ {}x y^{\prime \prime \prime }-y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_y]]

0.155

17813

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

0.123

17814

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-4 x_{1}+x_{2} \\ x_{2}^{\prime }=x_{1}-5 x_{2}+x_{3} \\ x_{3}^{\prime }=x_{2}-4 x_{3} \end {array}\right ] \]

system_of_ODEs

0.449

17815

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+4 x_{2}+4 x_{3} \\ x_{2}^{\prime }=3 x_{2}+2 x_{3} \\ x_{3}^{\prime }=2 x_{2}+3 x_{3} \end {array}\right ] \]

system_of_ODEs

0.335

17816

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-4 x_{2}+2 x_{3} \\ x_{2}^{\prime }=-4 x_{1}+2 x_{2}-2 x_{3} \\ x_{3}^{\prime }=2 x_{1}-2 x_{2}-x_{3} \end {array}\right ] \]

system_of_ODEs

0.449

17817

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-2 x_{1}+2 x_{2}-x_{3} \\ x_{2}^{\prime }=-2 x_{1}+3 x_{2}-2 x_{3} \\ x_{3}^{\prime }=-2 x_{1}+4 x_{2}-3 x_{3} \end {array}\right ] \]

system_of_ODEs

0.349

17818

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}+6 x_{3} \\ x_{2}^{\prime }=x_{1}+6 x_{2}+x_{3} \\ x_{3}^{\prime }=6 x_{1}+x_{2}+x_{3} \end {array}\right ] \]

system_of_ODEs

0.472

17819

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}+2 x_{2}+4 x_{3} \\ x_{2}^{\prime }=2 x_{1}+2 x_{3} \\ x_{3}^{\prime }=4 x_{1}+2 x_{2}+3 x_{3} \end {array}\right ] \]

system_of_ODEs

0.431

17820

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime }=2 x_{1}+x_{2}-x_{3} \\ x_{3}^{\prime }=-8 x_{1}-5 x_{2}-3 x_{3} \end {array}\right ] \]

system_of_ODEs

0.520

17821

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-x_{2}+4 x_{3} \\ x_{2}^{\prime }=3 x_{1}+2 x_{2}-x_{3} \\ x_{3}^{\prime }=2 x_{1}+x_{2}-x_{3} \end {array}\right ] \]

system_of_ODEs

0.507

17822

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}+2 x_{3} \\ x_{2}^{\prime }=2 x_{2}+2 x_{3} \\ x_{3}^{\prime }=-x_{1}+x_{2}+3 x_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

0.448

17823

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{3} \\ x_{2}^{\prime }=2 x_{1} \\ x_{3}^{\prime }=-x_{1}+2 x_{2}+4 x_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

0.487

17824

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+3 x_{3} \\ x_{2}^{\prime }=-2 x_{2} \\ x_{3}^{\prime }=3 x_{1}-x_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

0.589

17825

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=\frac {x_{1}}{2}-x_{2}-\frac {3 x_{3}}{2} \\ x_{2}^{\prime }=\frac {3 x_{1}}{2}-2 x_{2}-\frac {3 x_{3}}{2} \\ x_{3}^{\prime }=-2 x_{1}+2 x_{2}+x_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

0.494

17826

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+5 x_{2}+3 x_{3}-5 x_{4} \\ x_{2}^{\prime }=2 x_{1}+3 x_{2}+2 x_{3}-4 x_{4} \\ x_{3}^{\prime }=-x_{2}-2 x_{3}+x_{4} \\ x_{4}^{\prime }=2 x_{1}+4 x_{2}+2 x_{3}-5 x_{4} \end {array}\right ] \]

system_of_ODEs

0.706

17827

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-5 x_{1}+x_{2}-4 x_{3}-x_{4} \\ x_{2}^{\prime }=-3 x_{2} \\ x_{3}^{\prime }=x_{1}-x_{2}+x_{4} \\ x_{4}^{\prime }=2 x_{1}-x_{2}+2 x_{3}-2 x_{4} \end {array}\right ] \]

system_of_ODEs

0.661

17828

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}+2 x_{2}-x_{4} \\ x_{2}^{\prime }=2 x_{1}-x_{2}+2 x_{4} \\ x_{3}^{\prime }=3 x_{3} \\ x_{4}^{\prime }=-x_{1}+2 x_{2}+2 x_{4} \end {array}\right ] \]

system_of_ODEs

0.483

17829

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+8 x_{2}+5 x_{3}+3 x_{4} \\ x_{2}^{\prime }=2 x_{1}+16 x_{2}+10 x_{3}+6 x_{4} \\ x_{3}^{\prime }=5 x_{1}-14 x_{2}-11 x_{3}-3 x_{4} \\ x_{4}^{\prime }=-x_{1}-8 x_{2}-5 x_{3}-3 x_{4} \end {array}\right ] \]

system_of_ODEs

0.831

17830

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-2 x_{1}+2 x_{2}-2 x_{4} \\ x_{2}^{\prime }=-x_{1}+3 x_{2}-x_{3}+x_{4} \\ x_{3}^{\prime }=-2 x_{1}-2 x_{2}-4 x_{3}+2 x_{4} \\ x_{4}^{\prime }=-7 x_{1}+x_{2}-7 x_{3}+3 x_{4} \end {array}\right ] \]

system_of_ODEs

0.750

17831

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-5 x_{1}-2 x_{2}-x_{3}+2 x_{4}+3 x_{5} \\ x_{2}^{\prime }=-3 x_{2} \\ x_{3}^{\prime }=x_{1}-x_{3}-x_{5} \\ x_{4}^{\prime }=2 x_{1}+x_{2}-4 x_{4}-2 x_{5} \\ x_{5}^{\prime }=-3 x_{1}-2 x_{2}-x_{3}+2 x_{4}+x_{5} \end {array}\right ] \]

system_of_ODEs

0.978

17832

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{2}-2 x_{3}+3 x_{4}+2 x_{5} \\ x_{2}^{\prime }=8 x_{1}+6 x_{2}+4 x_{3}-8 x_{4}-16 x_{5} \\ x_{3}^{\prime }=-8 x_{1}-8 x_{2}-6 x_{3}+8 x_{4}-16 x_{5} \\ x_{4}^{\prime }=8 x_{1}+7 x_{2}+4 x_{3}-9 x_{4}-16 x_{5} \\ x_{5}^{\prime }=-3 x_{1}-5 x_{2}-3 x_{3}+5 x_{4}+7 x_{5} \end {array}\right ] \]

system_of_ODEs

3.512

17833

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-2 x_{1}+2 x_{2}+x_{3} \\ x_{2}^{\prime }=-2 x_{1}+2 x_{2}+2 x_{3} \\ x_{3}^{\prime }=2 x_{1}-3 x_{2}-3 x_{3} \end {array}\right ] \]

system_of_ODEs

0.602

17834

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-4 x_{2}-x_{3} \\ x_{2}^{\prime }=x_{1}+x_{2}+3 x_{3} \\ x_{3}^{\prime }=3 x_{1}-4 x_{2}-2 x_{3} \end {array}\right ] \]

system_of_ODEs

0.663

17835

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-2 x_{2}-x_{3} \\ x_{2}^{\prime }=x_{1}-x_{2}+x_{3} \\ x_{3}^{\prime }=x_{1}-2 x_{2}-2 x_{3} \end {array}\right ] \]

system_of_ODEs

0.586

17836

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-4 x_{1}+2 x_{2}-x_{3} \\ x_{2}^{\prime }=-6 x_{1}-3 x_{3} \\ x_{3}^{\prime }=\frac {8 x_{2}}{3}-2 x_{3} \end {array}\right ] \]

system_of_ODEs

0.652

17837

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-7 x_{1}+6 x_{2}-6 x_{3} \\ x_{2}^{\prime }=-9 x_{1}+5 x_{2}-9 x_{3} \\ x_{3}^{\prime }=-x_{2}-x_{3} \end {array}\right ] \]

system_of_ODEs

0.635

17838

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=\frac {4 x_{1}}{3}+\frac {4 x_{2}}{3}-\frac {11 x_{3}}{3} \\ x_{2}^{\prime }=-\frac {16 x_{1}}{3}-\frac {x_{2}}{3}+\frac {14 x_{3}}{3} \\ x_{3}^{\prime }=3 x_{1}-2 x_{2}-2 x_{3} \end {array}\right ] \]

system_of_ODEs

0.649

17839

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime }=2 x_{1}+x_{2}-x_{3} \\ x_{3}^{\prime }=-8 x_{1}-5 x_{2}-3 x_{3} \end {array}\right ] \]

system_of_ODEs

0.523

17840

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-x_{2}+4 x_{3} \\ x_{2}^{\prime }=3 x_{1}+2 x_{2}-x_{3} \\ x_{3}^{\prime }=2 x_{1}+x_{2}-x_{3} \end {array}\right ] \]

system_of_ODEs

0.510

17841

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=\frac {3 x_{1}}{4}+\frac {29 x_{2}}{4}-\frac {11 x_{3}}{2} \\ x_{2}^{\prime }=-\frac {3 x_{1}}{4}+\frac {3 x_{2}}{4}-\frac {5 x_{3}}{2} \\ x_{3}^{\prime }=\frac {5 x_{1}}{4}+\frac {11 x_{2}}{4}-\frac {5 x_{3}}{2} \end {array}\right ] \]

system_of_ODEs

0.645

17842

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-2 x_{1}-x_{2}+4 x_{3}+2 x_{4} \\ x_{2}^{\prime }=-19 x_{1}-6 x_{2}+6 x_{3}+16 x_{4} \\ x_{3}^{\prime }=-9 x_{1}-x_{2}+x_{3}+6 x_{4} \\ x_{4}^{\prime }=-5 x_{1}-3 x_{2}+6 x_{3}+5 x_{4} \end {array}\right ] \]

system_of_ODEs

3.976

17843

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}+6 x_{2}+2 x_{3}-2 x_{4} \\ x_{2}^{\prime }=2 x_{1}-3 x_{2}-6 x_{3}+2 x_{4} \\ x_{3}^{\prime }=-4 x_{1}+8 x_{2}+3 x_{3}-4 x_{4} \\ x_{4}^{\prime }=2 x_{1}-2 x_{2}-6 x_{3}+x_{4} \end {array}\right ] \]

system_of_ODEs

1.092

17844

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}-4 x_{2}+5 x_{3}+9 x_{4} \\ x_{2}^{\prime }=-2 x_{1}-5 x_{2}+4 x_{3}+12 x_{4} \\ x_{3}^{\prime }=-2 x_{1}-x_{3}+2 x_{4} \\ x_{4}^{\prime }=-2 x_{2}+2 x_{3}+3 x_{4} \end {array}\right ] \]

system_of_ODEs

1.438

17845

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}-5 x_{2}+8 x_{3}+14 x_{4} \\ x_{2}^{\prime }=-6 x_{1}-8 x_{2}+11 x_{3}+27 x_{4} \\ x_{3}^{\prime }=-6 x_{1}-4 x_{2}+7 x_{3}+17 x_{4} \\ x_{4}^{\prime }=-2 x_{2}+2 x_{3}+4 x_{4} \end {array}\right ] \]

system_of_ODEs

2.391

17846

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{2}-2 x_{4} \\ x_{2}^{\prime }=-\frac {x_{1}}{2}+x_{2}-3 x_{3}-\frac {5 x_{4}}{2} \\ x_{3}^{\prime }=3 x_{2}-5 x_{3}-3 x_{4} \\ x_{4}^{\prime }=x_{1}+3 x_{2}-3 x_{4} \end {array}\right ] \]

system_of_ODEs

1.108

17847

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-2 x_{2} \\ x_{2}^{\prime }=2 x_{1}-2 x_{2} \end {array}\right ] \]

system_of_ODEs

0.428

17848

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}+2 x_{2} \\ x_{2}^{\prime }=\frac {x_{1}}{2}-3 x_{2} \end {array}\right ] \]

system_of_ODEs

0.411

17849

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-4 x_{2} \\ x_{2}^{\prime }=x_{1}-x_{2} \end {array}\right ] \]

system_of_ODEs

0.392

17850

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=\frac {x_{1}}{2}-\frac {x_{2}}{4} \\ x_{2}^{\prime }=x_{1}-\frac {x_{2}}{2} \end {array}\right ] \]

system_of_ODEs

0.356

17851

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-\frac {5 x_{2}}{2} \\ x_{2}^{\prime }=\frac {x_{1}}{2}-x_{2} \end {array}\right ] \]

system_of_ODEs

0.513

17852

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}-4 x_{2} \\ x_{2}^{\prime }=x_{1}-x_{2} \end {array}\right ] \]

system_of_ODEs

0.480

17853

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=5 x_{1}-x_{2} \\ x_{2}^{\prime }=3 x_{1}+x_{2} \end {array}\right ] \]

system_of_ODEs

0.414

17854

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-x_{2} \\ x_{2}^{\prime }=5 x_{1}-3 x_{2} \end {array}\right ] \]

system_of_ODEs

0.494

17855

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-x_{2} \\ x_{2}^{\prime }=3 x_{1}-2 x_{2} \end {array}\right ] \]

system_of_ODEs

0.404

17856

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=\frac {x_{1}}{2}+\frac {x_{2}}{2} \\ x_{2}^{\prime }=2 x_{1}-x_{2} \end {array}\right ] \]

system_of_ODEs

0.424

17857

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}+4 x_{2} \\ x_{2}^{\prime }=-x_{1}-2 x_{2} \end {array}\right ] \]

system_of_ODEs

0.698

17858

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}+\frac {5 x_{2}}{2} \\ x_{2}^{\prime }=-\frac {5 x_{1}}{2}+2 x_{2} \end {array}\right ] \]

system_of_ODEs

0.396

17859

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime }=2 x_{1}+x_{2}-x_{3} \\ x_{3}^{\prime }=-8 x_{1}-5 x_{2}-3 x_{3} \end {array}\right ] \]

system_of_ODEs

0.522

17860

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-x_{2}+4 x_{3} \\ x_{2}^{\prime }=3 x_{1}+2 x_{2}-x_{3} \\ x_{3}^{\prime }=2 x_{1}+x_{2}-x_{3} \end {array}\right ] \]

system_of_ODEs

0.513

17861

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}-9 x_{2} \\ x_{2}^{\prime }=x_{1}-3 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.531

17862

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-x_{2} \\ x_{2}^{\prime }=3 x_{1}-2 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.518

17863

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-4 x_{1}-x_{2} \\ x_{2}^{\prime }=x_{1}-2 x_{2} \end {array}\right ] \]

system_of_ODEs

0.306

17864

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=5 x_{1}-x_{2} \\ x_{2}^{\prime }=x_{1}+3 x_{2} \end {array}\right ] \]

system_of_ODEs

0.310

17865

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}-5 x_{2} \\ x_{2}^{\prime }=x_{1}+3 x_{2} \end {array}\right ] \]

system_of_ODEs

0.310

17866

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{2}-x_{3} \\ x_{2}^{\prime }=x_{1}+x_{3} \\ x_{3}^{\prime }=x_{1}+x_{2} \end {array}\right ] \]

system_of_ODEs

0.208

17867

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-k_{1} x_{1} \\ x_{2}^{\prime }=k_{1} x_{1}-k_{2} x_{2} \\ x_{3}^{\prime }=k_{2} x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.546

17868

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-x_{2}+{\mathrm e}^{t} \\ x_{2}^{\prime }=3 x_{1}-2 x_{2}+t \end {array}\right ] \]

system_of_ODEs

0.495

17869

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+\sqrt {3}\, x_{2}+{\mathrm e}^{t} \\ x_{2}^{\prime }=\sqrt {3}\, x_{1}-x_{2}+\sqrt {3}\, {\mathrm e}^{-t} \end {array}\right ] \]

system_of_ODEs

0.602

17870

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-5 x_{2}-\cos \left (t \right ) \\ x_{2}^{\prime }=x_{1}-2 x_{2}+\sin \left (t \right ) \end {array}\right ] \]

system_of_ODEs

0.803

17871

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}+{\mathrm e}^{-2 t} \\ x_{2}^{\prime }=4 x_{1}-2 x_{2}-2 \,{\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.523

17872

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=1-x_{2}+x_{3} \\ x_{2}^{\prime }=2 x_{2}+t \\ x_{3}^{\prime }=-2 x_{1}-x_{2}+3 x_{3}+{\mathrm e}^{-t} \end {array}\right ] \]

system_of_ODEs

0.592

17873

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-\frac {x_{1}}{2}+\frac {x_{2}}{2}-\frac {x_{3}}{2}+1 \\ x_{2}^{\prime }=-x_{1}-2 x_{2}+x_{3}+t \\ x_{3}^{\prime }=\frac {x_{1}}{2}+\frac {x_{2}}{2}-\frac {3 x_{3}}{2}+11 \,{\mathrm e}^{-3 t} \end {array}\right ] \]

system_of_ODEs

0.734

17874

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-4 x_{1}+x_{2}+3 x_{3}+3 t \\ x_{2}^{\prime }=-2 x_{2} \\ x_{3}^{\prime }=-2 x_{1}+x_{2}+x_{3}+3 \cos \left (t \right ) \end {array}\right ] \]

system_of_ODEs

0.786

17875

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-\frac {x_{1}}{2}+x_{2}+\frac {x_{3}}{2} \\ x_{2}^{\prime }=x_{1}-x_{2}+x_{3}-\sin \left (t \right ) \\ x_{3}^{\prime }=\frac {x_{1}}{2}+x_{2}-\frac {x_{3}}{2} \end {array}\right ] \]

system_of_ODEs

0.867

17876

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}+x_{2}+1 \\ x_{2}^{\prime }=x_{1}-2 x_{2}+x_{3} \\ x_{3}^{\prime }=x_{2}-x_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

311.664

17877

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=4 x_{1}-9 x_{2} \\ x_{2}^{\prime }=x_{1}-2 x_{2} \end {array}\right ] \]

system_of_ODEs

0.389

17878

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-9 x_{2} \\ x_{2}^{\prime }=x_{1}-3 x_{2} \end {array}\right ] \]

system_of_ODEs

0.358

17879

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime }=2 x_{1}+x_{2}-x_{3} \\ x_{3}^{\prime }=-3 x_{1}+2 x_{2}+4 x_{3} \end {array}\right ] \]

system_of_ODEs

0.425

17880

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=5 x_{1}-3 x_{2}-2 x_{3} \\ x_{2}^{\prime }=8 x_{1}-5 x_{2}-4 x_{3} \\ x_{3}^{\prime }=-4 x_{1}+3 x_{2}+3 x_{3} \end {array}\right ] \]

system_of_ODEs

0.442

17881

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-7 x_{1}+9 x_{2}-6 x_{3} \\ x_{2}^{\prime }=-8 x_{1}+11 x_{2}-7 x_{3} \\ x_{3}^{\prime }=-2 x_{1}+3 x_{2}-x_{3} \end {array}\right ] \]

system_of_ODEs

0.500

17882

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=5 x_{1}+6 x_{2}+2 x_{3} \\ x_{2}^{\prime }=-2 x_{1}-2 x_{2}-x_{3} \\ x_{3}^{\prime }=-2 x_{1}-3 x_{2} \end {array}\right ] \]

system_of_ODEs

0.435

17883

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-8 x_{1}-16 x_{2}-16 x_{3}-17 x_{4} \\ x_{2}^{\prime }=-2 x_{1}-10 x_{2}-8 x_{3}-7 x_{4} \\ x_{3}^{\prime }=-2 x_{1}-2 x_{3}-3 x_{4} \\ x_{4}^{\prime }=6 x_{1}+14 x_{2}+14 x_{3}+14 x_{4} \end {array}\right ] \]

system_of_ODEs

1.243

17884

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-x_{2}-2 x_{3}+3 x_{4} \\ x_{2}^{\prime }=2 x_{1}-\frac {3 x_{2}}{2}-x_{3}+\frac {7 x_{4}}{2} \\ x_{3}^{\prime }=-x_{1}+\frac {x_{2}}{2}-\frac {3 x_{4}}{2} \\ x_{4}^{\prime }=-2 x_{1}+\frac {3 x_{2}}{2}+3 x_{3}-\frac {7 x_{4}}{2} \end {array}\right ] \]

system_of_ODEs

0.601

17885

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-4 x_{2} \\ x_{2}^{\prime }=4 x_{1}-7 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.521

17886

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-4 x_{2} \\ x_{2}^{\prime }=x_{1}-x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.569

17887

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=4 x_{1}+x_{2}+3 x_{3} \\ x_{2}^{\prime }=6 x_{1}+4 x_{2}+6 x_{3} \\ x_{3}^{\prime }=-5 x_{1}-2 x_{2}-4 x_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

0.483

17888

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2} \\ x_{2}^{\prime }=-14 x_{1}-5 x_{2}+x_{3} \\ x_{3}^{\prime }=15 x_{1}+5 x_{2}-2 x_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

0.482

17889

\[ {}\left [\begin {array}{c} x^{\prime }=-2 y+x y \\ y^{\prime }=x+4 x y \end {array}\right ] \]

system_of_ODEs

0.056

17890

\[ {}\left [\begin {array}{c} x^{\prime }=1+5 y \\ y^{\prime }=1-6 x^{2} \end {array}\right ] \]

system_of_ODEs

0.054

17891

\[ {}y^{\prime } = 2 \]

[_quadrature]

0.726

17892

\[ {}y^{\prime } = -x^{3} \]

[_quadrature]

0.444

17893

\[ {}y^{\prime \prime } = \sin \left (x \right ) \]

[[_2nd_order, _quadrature]]

2.039

17894

\[ {}x \sqrt {1+y^{2}}+y \sqrt {x^{2}+1}\, y^{\prime } = 0 \]
i.c.

[_separable]

6.117

17895

\[ {}\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime } = 0 \]

[_separable]

36.569

17896

\[ {}\sqrt {-x^{2}+1}\, y^{\prime }+\sqrt {1-y^{2}} = 0 \]

[_separable]

16.749

17897

\[ {}y^{\prime } = \frac {2 x y}{x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.112

17898

\[ {}y^{\prime } = \frac {y \left (1+\ln \left (y\right )-\ln \left (x \right )\right )}{x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

4.188

17899

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

37.187

17900

\[ {}\left (x +y\right ) y^{\prime } = y-x \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.549