| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime }&=y^{3}+1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.003 |
|
| \begin{align*}
y^{\prime }&=y^{3}-1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
93.198 |
|
| \begin{align*}
y^{\prime }&=y^{3}+y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.444 |
|
| \begin{align*}
y^{\prime }&=y^{3}-y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
10.128 |
|
| \begin{align*}
y^{\prime }&=y^{3}-y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.091 |
|
| \begin{align*}
y^{\prime }&=y^{3}+y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.405 |
|
| \begin{align*}
y^{\prime }&=x^{3} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
15.976 |
|
| \begin{align*}
y^{\prime }&=\cos \left (t \right ) \\
y \left (\frac {\pi }{2}\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.545 |
|
| \begin{align*}
1&=y^{\prime } \cos \left (y\right ) \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
8.121 |
|
| \begin{align*}
\sin \left (y \right )^{2}&=x^{\prime } \\
x \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.537 |
|
| \begin{align*}
y^{\prime }&=\frac {\sqrt {t}}{y} \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
33.841 |
|
| \begin{align*}
y^{\prime }&=\sqrt {\frac {y}{t}} \\
y \left (1\right ) &= 2 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
55.246 |
|
| \begin{align*}
y^{\prime }&=\frac {{\mathrm e}^{t}}{1+y} \\
y \left (0\right ) &= -2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.212 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{t -y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
30.547 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{\ln \left (y\right )} \\
y \left (0\right ) &= {\mathrm e} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
4.932 |
|
| \begin{align*}
y^{\prime }&=t \sin \left (t^{2}\right ) \\
y \left (\sqrt {\pi }\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.555 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{x^{2}+1} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.478 |
|
| \begin{align*}
y^{\prime }&=\frac {\sin \left (x \right )}{\cos \left (y\right )+1} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✗ |
✓ |
4.261 |
|
| \begin{align*}
y^{\prime }&=\frac {3+y}{1+3 x} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.186 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{x -y} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.684 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{2 x -y} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.243 |
|
| \begin{align*}
y^{\prime }&=\frac {3 y+1}{x +3} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.639 |
|
| \begin{align*}
y^{\prime }&=y \cos \left (t \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.149 |
|
| \begin{align*}
y^{\prime }&=y^{2} \cos \left (t \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.336 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y}\, \cos \left (t \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
16.628 |
|
| \begin{align*}
y^{\prime }+y f \left (t \right )&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.890 |
|
| \begin{align*}
y^{\prime }&=-\frac {y-2}{x -2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.181 |
|
| \begin{align*}
y^{\prime }&=\frac {x +y+3}{3 x +3 y+1} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
19.274 |
|
| \begin{align*}
y^{\prime }&=\frac {x -y+2}{2 x -2 y-1} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
19.216 |
|
| \begin{align*}
y^{\prime }&=\left (x +y-4\right )^{2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
✓ |
✓ |
✓ |
7.416 |
|
| \begin{align*}
y^{\prime }&=\left (3 y+1\right )^{4} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.379 |
|
| \begin{align*}
y^{\prime }&=3 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.726 |
|
| \begin{align*}
y^{\prime }&=-y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.414 |
|
| \begin{align*}
y^{\prime }&=y^{2}-y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.997 |
|
| \begin{align*}
y^{\prime }&=16 y-8 y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.768 |
|
| \begin{align*}
y^{\prime }&=12+4 y-y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.073 |
|
| \begin{align*}
y^{\prime }&=y f \left (t \right ) \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.045 |
|
| \begin{align*}
-y+y^{\prime }&=10 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.838 |
|
| \begin{align*}
-y+y^{\prime }&=2 \,{\mathrm e}^{-t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.645 |
|
| \begin{align*}
-y+y^{\prime }&=2 \cos \left (t \right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.571 |
|
| \begin{align*}
-y+y^{\prime }&=t^{2}-2 t \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.422 |
|
| \begin{align*}
-y+y^{\prime }&=4 t \,{\mathrm e}^{-t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.439 |
|
| \begin{align*}
y^{\prime } t +y&=t^{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
4.841 |
|
| \begin{align*}
y^{\prime } t +y&=t \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
14.286 |
|
| \begin{align*}
y^{\prime } x +y&=x \,{\mathrm e}^{x} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.563 |
|
| \begin{align*}
y^{\prime } x +y&={\mathrm e}^{-x} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.183 |
|
| \begin{align*}
y^{\prime }-\frac {2 t y}{t^{2}+1}&=2 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.585 |
|
| \begin{align*}
y^{\prime }-\frac {4 t y}{4 t^{2}+1}&=4 t \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
4.385 |
|
| \begin{align*}
y^{\prime }&=2 x +\frac {x y}{x^{2}-1} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
21.167 |
|
| \begin{align*}
y^{\prime }+\cot \left (t \right ) y&=\cos \left (t \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.158 |
|
| \begin{align*}
y^{\prime }-\frac {3 t y}{t^{2}-4}&=t \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
5.038 |
|
| \begin{align*}
y^{\prime }-\frac {4 t y}{4 t^{2}-9}&=t \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
31.016 |
|
| \begin{align*}
y^{\prime }-\frac {9 x y}{9 x^{2}+49}&=x \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
31.343 |
|
| \begin{align*}
y^{\prime }+2 \cot \left (x \right ) y&=\cos \left (x \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.067 |
|
| \begin{align*}
y^{\prime }+y x&=x^{3} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.835 |
|
| \begin{align*}
y^{\prime }-y x&=x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.172 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{x +y^{2}} \\
\end{align*} |
[[_1st_order, _with_exponential_symmetries]] |
✓ |
✓ |
✓ |
✓ |
3.545 |
|
| \begin{align*}
y^{\prime }-x&=y \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.967 |
|
| \begin{align*}
y-\left (x +3 y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
5.846 |
|
| \begin{align*}
x^{\prime }&=\frac {3 x t^{2}}{-t^{3}+1} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.286 |
|
| \begin{align*}
p^{\prime }&=t^{3}+\frac {p}{t} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
4.325 |
|
| \begin{align*}
v^{\prime }+v&={\mathrm e}^{-s} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.186 |
|
| \begin{align*}
-y+y^{\prime }&=4 \,{\mathrm e}^{t} \\
y \left (0\right ) &= 4 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.369 |
|
| \begin{align*}
y+y^{\prime }&={\mathrm e}^{-t} \\
y \left (0\right ) &= -1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.236 |
|
| \begin{align*}
y^{\prime }+3 t^{2} y&={\mathrm e}^{-t^{3}} \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
4.652 |
|
| \begin{align*}
2 t y+y^{\prime }&=2 t \\
y \left (0\right ) &= -1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.185 |
|
| \begin{align*}
y^{\prime } t +y&=\cos \left (t \right ) \\
y \left (\frac {\pi }{2}\right ) &= \frac {4}{\pi } \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.484 |
|
| \begin{align*}
y^{\prime } t +y&=2 \,{\mathrm e}^{t} t \\
y \left (1\right ) &= -1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.722 |
|
| \begin{align*}
\left (1+{\mathrm e}^{t}\right ) y^{\prime }+{\mathrm e}^{t} y&=t \\
y \left (0\right ) &= -1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.340 |
|
| \begin{align*}
\left (t^{2}+4\right ) y^{\prime }+2 t y&=2 t \\
y \left (0\right ) &= -4 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.647 |
|
| \begin{align*}
x^{\prime }&=x+t +1 \\
x \left (0\right ) &= 2 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.145 |
|
| \begin{align*}
y^{\prime }&=2 y+{\mathrm e}^{2 t} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.273 |
|
| \begin{align*}
y^{\prime }-\frac {y}{t}&=\ln \left (t \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.562 |
|
| \begin{align*}
y^{\prime \prime }-\frac {y^{\prime }}{t}+\frac {y}{t^{2}}&=\frac {1}{t} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
15.711 |
|
| \begin{align*}
y+y^{\prime }&=\left \{\begin {array}{cc} 4 & 0\le t <2 \\ 0 & 2\le t \end {array}\right . \\
y \left (0\right ) &= 0 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
2.755 |
|
| \begin{align*}
y+y^{\prime }&=\left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \\
y \left (0\right ) &= 1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
2.973 |
|
| \begin{align*}
-y+y^{\prime }&=\sin \left (2 t \right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.569 |
|
| \begin{align*}
y+y^{\prime }&=5 \,{\mathrm e}^{2 t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.611 |
|
| \begin{align*}
y+y^{\prime }&={\mathrm e}^{-t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.895 |
|
| \begin{align*}
y+y^{\prime }&=2-{\mathrm e}^{2 t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.116 |
|
| \begin{align*}
y^{\prime }-5 y&=t \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.111 |
|
| \begin{align*}
3 y+y^{\prime }&=27 t^{2}+9 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.933 |
|
| \begin{align*}
-\frac {y}{2}+y^{\prime }&=5 \cos \left (t \right )+2 \,{\mathrm e}^{t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.357 |
|
| \begin{align*}
y^{\prime }+4 y&=8 \cos \left (4 t \right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.645 |
|
| \begin{align*}
y^{\prime }+10 y&=2 \,{\mathrm e}^{t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.572 |
|
| \begin{align*}
y^{\prime }-3 y&=27 t^{2} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.215 |
|
| \begin{align*}
-y+y^{\prime }&=2 \,{\mathrm e}^{t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.028 |
|
| \begin{align*}
y+y^{\prime }&=4+3 \,{\mathrm e}^{t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.612 |
|
| \begin{align*}
y+y^{\prime }&=2 \cos \left (t \right )+t \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.801 |
|
| \begin{align*}
\frac {y}{2}+y^{\prime }&=\sin \left (t \right ) \\
y \left (0\right ) &= a \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.735 |
|
| \begin{align*}
-\frac {y}{2}+y^{\prime }&=\sin \left (t \right ) \\
y \left (0\right ) &= a \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.708 |
|
| \begin{align*}
y^{\prime } t +y&=t \cos \left (t \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.549 |
|
| \begin{align*}
y+y^{\prime }&=t \\
y \left (0\right ) &= 0 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.277 |
|
| \begin{align*}
y+y^{\prime }&=\sin \left (t \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.661 |
|
| \begin{align*}
y+y^{\prime }&=\cos \left (t \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.466 |
|
| \begin{align*}
y+y^{\prime }&={\mathrm e}^{t} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.285 |
|
| \begin{align*}
y^{2}-\frac {y}{2 \sqrt {t}}+\left (2 t y-\sqrt {t}+1\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
1.132 |
|
| \begin{align*}
\frac {t}{\sqrt {t^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {t^{2}+y^{2}}}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
20.022 |
|
| \begin{align*}
y \cos \left (t y\right )+t \cos \left (t y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.109 |
|
| \begin{align*}
\sec \left (t \right )^{2} y+2 t +\tan \left (t \right ) y^{\prime }&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✗ |
12.432 |
|