2.2.172 Problems 17101 to 17200

Table 2.357: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

17101

\begin{align*} y^{\prime }&=y^{3}+1 \\ \end{align*}

[_quadrature]

1.003

17102

\begin{align*} y^{\prime }&=y^{3}-1 \\ \end{align*}

[_quadrature]

93.198

17103

\begin{align*} y^{\prime }&=y^{3}+y \\ \end{align*}

[_quadrature]

3.444

17104

\begin{align*} y^{\prime }&=y^{3}-y^{2} \\ \end{align*}

[_quadrature]

10.128

17105

\begin{align*} y^{\prime }&=y^{3}-y \\ \end{align*}

[_quadrature]

2.091

17106

\begin{align*} y^{\prime }&=y^{3}+y \\ \end{align*}

[_quadrature]

1.405

17107

\begin{align*} y^{\prime }&=x^{3} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

15.976

17108

\begin{align*} y^{\prime }&=\cos \left (t \right ) \\ y \left (\frac {\pi }{2}\right ) &= -1 \\ \end{align*}

[_quadrature]

0.545

17109

\begin{align*} 1&=y^{\prime } \cos \left (y\right ) \\ y \left (0\right ) &= 2 \\ \end{align*}

[_quadrature]

8.121

17110

\begin{align*} \sin \left (y \right )^{2}&=x^{\prime } \\ x \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

0.537

17111

\begin{align*} y^{\prime }&=\frac {\sqrt {t}}{y} \\ y \left (0\right ) &= 2 \\ \end{align*}

[_separable]

33.841

17112

\begin{align*} y^{\prime }&=\sqrt {\frac {y}{t}} \\ y \left (1\right ) &= 2 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

55.246

17113

\begin{align*} y^{\prime }&=\frac {{\mathrm e}^{t}}{1+y} \\ y \left (0\right ) &= -2 \\ \end{align*}

[_separable]

4.212

17114

\begin{align*} y^{\prime }&={\mathrm e}^{t -y} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

30.547

17115

\begin{align*} y^{\prime }&=\frac {y}{\ln \left (y\right )} \\ y \left (0\right ) &= {\mathrm e} \\ \end{align*}

[_quadrature]

4.932

17116

\begin{align*} y^{\prime }&=t \sin \left (t^{2}\right ) \\ y \left (\sqrt {\pi }\right ) &= 0 \\ \end{align*}

[_quadrature]

0.555

17117

\begin{align*} y^{\prime }&=\frac {1}{x^{2}+1} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

0.478

17118

\begin{align*} y^{\prime }&=\frac {\sin \left (x \right )}{\cos \left (y\right )+1} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

4.261

17119

\begin{align*} y^{\prime }&=\frac {3+y}{1+3 x} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

5.186

17120

\begin{align*} y^{\prime }&={\mathrm e}^{x -y} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

5.684

17121

\begin{align*} y^{\prime }&={\mathrm e}^{2 x -y} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

6.243

17122

\begin{align*} y^{\prime }&=\frac {3 y+1}{x +3} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

5.639

17123

\begin{align*} y^{\prime }&=y \cos \left (t \right ) \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

5.149

17124

\begin{align*} y^{\prime }&=y^{2} \cos \left (t \right ) \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

6.336

17125

\begin{align*} y^{\prime }&=\sqrt {y}\, \cos \left (t \right ) \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

16.628

17126

\begin{align*} y^{\prime }+y f \left (t \right )&=0 \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

3.890

17127

\begin{align*} y^{\prime }&=-\frac {y-2}{x -2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

5.181

17128

\begin{align*} y^{\prime }&=\frac {x +y+3}{3 x +3 y+1} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19.274

17129

\begin{align*} y^{\prime }&=\frac {x -y+2}{2 x -2 y-1} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19.216

17130

\begin{align*} y^{\prime }&=\left (x +y-4\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

7.416

17131

\begin{align*} y^{\prime }&=\left (3 y+1\right )^{4} \\ \end{align*}

[_quadrature]

0.379

17132

\begin{align*} y^{\prime }&=3 y \\ \end{align*}

[_quadrature]

1.726

17133

\begin{align*} y^{\prime }&=-y \\ \end{align*}

[_quadrature]

1.414

17134

\begin{align*} y^{\prime }&=y^{2}-y \\ \end{align*}

[_quadrature]

1.997

17135

\begin{align*} y^{\prime }&=16 y-8 y^{2} \\ \end{align*}

[_quadrature]

2.768

17136

\begin{align*} y^{\prime }&=12+4 y-y^{2} \\ \end{align*}

[_quadrature]

2.073

17137

\begin{align*} y^{\prime }&=y f \left (t \right ) \\ y \left (1\right ) &= 1 \\ \end{align*}

[_separable]

5.045

17138

\begin{align*} -y+y^{\prime }&=10 \\ \end{align*}

[_quadrature]

0.838

17139

\begin{align*} -y+y^{\prime }&=2 \,{\mathrm e}^{-t} \\ \end{align*}

[[_linear, ‘class A‘]]

2.645

17140

\begin{align*} -y+y^{\prime }&=2 \cos \left (t \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

2.571

17141

\begin{align*} -y+y^{\prime }&=t^{2}-2 t \\ \end{align*}

[[_linear, ‘class A‘]]

2.422

17142

\begin{align*} -y+y^{\prime }&=4 t \,{\mathrm e}^{-t} \\ \end{align*}

[[_linear, ‘class A‘]]

2.439

17143

\begin{align*} y^{\prime } t +y&=t^{2} \\ \end{align*}

[_linear]

4.841

17144

\begin{align*} y^{\prime } t +y&=t \\ \end{align*}

[_linear]

14.286

17145

\begin{align*} y^{\prime } x +y&=x \,{\mathrm e}^{x} \\ \end{align*}

[_linear]

2.563

17146

\begin{align*} y^{\prime } x +y&={\mathrm e}^{-x} \\ \end{align*}

[_linear]

3.183

17147

\begin{align*} y^{\prime }-\frac {2 t y}{t^{2}+1}&=2 \\ \end{align*}

[_linear]

3.585

17148

\begin{align*} y^{\prime }-\frac {4 t y}{4 t^{2}+1}&=4 t \\ \end{align*}

[_linear]

4.385

17149

\begin{align*} y^{\prime }&=2 x +\frac {x y}{x^{2}-1} \\ \end{align*}

[_linear]

21.167

17150

\begin{align*} y^{\prime }+\cot \left (t \right ) y&=\cos \left (t \right ) \\ \end{align*}

[_linear]

3.158

17151

\begin{align*} y^{\prime }-\frac {3 t y}{t^{2}-4}&=t \\ \end{align*}

[_linear]

5.038

17152

\begin{align*} y^{\prime }-\frac {4 t y}{4 t^{2}-9}&=t \\ \end{align*}

[_linear]

31.016

17153

\begin{align*} y^{\prime }-\frac {9 x y}{9 x^{2}+49}&=x \\ \end{align*}

[_linear]

31.343

17154

\begin{align*} y^{\prime }+2 \cot \left (x \right ) y&=\cos \left (x \right ) \\ \end{align*}

[_linear]

3.067

17155

\begin{align*} y^{\prime }+y x&=x^{3} \\ \end{align*}

[_linear]

3.835

17156

\begin{align*} y^{\prime }-y x&=x \\ \end{align*}

[_separable]

4.172

17157

\begin{align*} y^{\prime }&=\frac {1}{x +y^{2}} \\ \end{align*}

[[_1st_order, _with_exponential_symmetries]]

3.545

17158

\begin{align*} y^{\prime }-x&=y \\ \end{align*}

[[_linear, ‘class A‘]]

1.967

17159

\begin{align*} y-\left (x +3 y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

5.846

17160

\begin{align*} x^{\prime }&=\frac {3 x t^{2}}{-t^{3}+1} \\ \end{align*}

[_separable]

3.286

17161

\begin{align*} p^{\prime }&=t^{3}+\frac {p}{t} \\ \end{align*}

[_linear]

4.325

17162

\begin{align*} v^{\prime }+v&={\mathrm e}^{-s} \\ \end{align*}

[[_linear, ‘class A‘]]

2.186

17163

\begin{align*} -y+y^{\prime }&=4 \,{\mathrm e}^{t} \\ y \left (0\right ) &= 4 \\ \end{align*}

[[_linear, ‘class A‘]]

2.369

17164

\begin{align*} y+y^{\prime }&={\mathrm e}^{-t} \\ y \left (0\right ) &= -1 \\ \end{align*}

[[_linear, ‘class A‘]]

2.236

17165

\begin{align*} y^{\prime }+3 t^{2} y&={\mathrm e}^{-t^{3}} \\ y \left (0\right ) &= 2 \\ \end{align*}

[_linear]

4.652

17166

\begin{align*} 2 t y+y^{\prime }&=2 t \\ y \left (0\right ) &= -1 \\ \end{align*}

[_separable]

4.185

17167

\begin{align*} y^{\prime } t +y&=\cos \left (t \right ) \\ y \left (\frac {\pi }{2}\right ) &= \frac {4}{\pi } \\ \end{align*}

[_linear]

3.484

17168

\begin{align*} y^{\prime } t +y&=2 \,{\mathrm e}^{t} t \\ y \left (1\right ) &= -1 \\ \end{align*}

[_linear]

2.722

17169

\begin{align*} \left (1+{\mathrm e}^{t}\right ) y^{\prime }+{\mathrm e}^{t} y&=t \\ y \left (0\right ) &= -1 \\ \end{align*}

[_linear]

3.340

17170

\begin{align*} \left (t^{2}+4\right ) y^{\prime }+2 t y&=2 t \\ y \left (0\right ) &= -4 \\ \end{align*}

[_separable]

4.647

17171

\begin{align*} x^{\prime }&=x+t +1 \\ x \left (0\right ) &= 2 \\ \end{align*}

[[_linear, ‘class A‘]]

2.145

17172

\begin{align*} y^{\prime }&=2 y+{\mathrm e}^{2 t} \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

2.273

17173

\begin{align*} y^{\prime }-\frac {y}{t}&=\ln \left (t \right ) \\ \end{align*}

[_linear]

3.562

17174

\begin{align*} y^{\prime \prime }-\frac {y^{\prime }}{t}+\frac {y}{t^{2}}&=\frac {1}{t} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15.711

17175

\begin{align*} y+y^{\prime }&=\left \{\begin {array}{cc} 4 & 0\le t <2 \\ 0 & 2\le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

2.755

17176

\begin{align*} y+y^{\prime }&=\left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_linear, ‘class A‘]]

2.973

17177

\begin{align*} -y+y^{\prime }&=\sin \left (2 t \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

2.569

17178

\begin{align*} y+y^{\prime }&=5 \,{\mathrm e}^{2 t} \\ \end{align*}

[[_linear, ‘class A‘]]

2.611

17179

\begin{align*} y+y^{\prime }&={\mathrm e}^{-t} \\ \end{align*}

[[_linear, ‘class A‘]]

1.895

17180

\begin{align*} y+y^{\prime }&=2-{\mathrm e}^{2 t} \\ \end{align*}

[[_linear, ‘class A‘]]

3.116

17181

\begin{align*} y^{\prime }-5 y&=t \\ \end{align*}

[[_linear, ‘class A‘]]

2.111

17182

\begin{align*} 3 y+y^{\prime }&=27 t^{2}+9 \\ \end{align*}

[[_linear, ‘class A‘]]

2.933

17183

\begin{align*} -\frac {y}{2}+y^{\prime }&=5 \cos \left (t \right )+2 \,{\mathrm e}^{t} \\ \end{align*}

[[_linear, ‘class A‘]]

3.357

17184

\begin{align*} y^{\prime }+4 y&=8 \cos \left (4 t \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

2.645

17185

\begin{align*} y^{\prime }+10 y&=2 \,{\mathrm e}^{t} \\ \end{align*}

[[_linear, ‘class A‘]]

2.572

17186

\begin{align*} y^{\prime }-3 y&=27 t^{2} \\ \end{align*}

[[_linear, ‘class A‘]]

3.215

17187

\begin{align*} -y+y^{\prime }&=2 \,{\mathrm e}^{t} \\ \end{align*}

[[_linear, ‘class A‘]]

2.028

17188

\begin{align*} y+y^{\prime }&=4+3 \,{\mathrm e}^{t} \\ \end{align*}

[[_linear, ‘class A‘]]

3.612

17189

\begin{align*} y+y^{\prime }&=2 \cos \left (t \right )+t \\ \end{align*}

[[_linear, ‘class A‘]]

2.801

17190

\begin{align*} \frac {y}{2}+y^{\prime }&=\sin \left (t \right ) \\ y \left (0\right ) &= a \\ \end{align*}

[[_linear, ‘class A‘]]

2.735

17191

\begin{align*} -\frac {y}{2}+y^{\prime }&=\sin \left (t \right ) \\ y \left (0\right ) &= a \\ \end{align*}

[[_linear, ‘class A‘]]

2.708

17192

\begin{align*} y^{\prime } t +y&=t \cos \left (t \right ) \\ \end{align*}

[_linear]

2.549

17193

\begin{align*} y+y^{\prime }&=t \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

2.277

17194

\begin{align*} y+y^{\prime }&=\sin \left (t \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

2.661

17195

\begin{align*} y+y^{\prime }&=\cos \left (t \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

2.466

17196

\begin{align*} y+y^{\prime }&={\mathrm e}^{t} \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

2.285

17197

\begin{align*} y^{2}-\frac {y}{2 \sqrt {t}}+\left (2 t y-\sqrt {t}+1\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.132

17198

\begin{align*} \frac {t}{\sqrt {t^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {t^{2}+y^{2}}}&=0 \\ \end{align*}

[_separable]

20.022

17199

\begin{align*} y \cos \left (t y\right )+t \cos \left (t y\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

0.109

17200

\begin{align*} \sec \left (t \right )^{2} y+2 t +\tan \left (t \right ) y^{\prime }&=0 \\ \end{align*}

[_linear]

12.432