2.2.180 Problems 17901 to 18000

Table 2.361: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

17901

a3yy=1+c2y2

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

4.386

17902

y=1+y2

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

4.012

17903

2(2ay)y=1+y2

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.675

17904

yxy+y3=0

[[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries]]

0.867

17905

yy+y2=y2ln(y)

[[_2nd_order, _missing_x]]

1.767

17906

yyy2=0

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.516

17907

xyy+xy2yy=0

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.225

17908

nx3y=(yyx)2

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.300

17909

y2(x2yyx+y)=x3

[[_2nd_order, _with_linear_symmetries]]

0.280

17910

x2y2y3xy2y+4y3+x6=0

[[_2nd_order, _with_linear_symmetries]]

0.270

17911

yyx2yyxy2=0

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

7.171

17912

x(x2y+2xy)y+4xy2+8xyy+4y21=0

[NONE]

0.317

17913

x(xy+1)y+x2y2+(4xy+2)y+y2+1=0

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

1.298

17914

yyy2y4=0

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

75.263

17915

a2y=2x1+y2

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

1.123

17916

x2yy+x2y25xyy=4y2

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.278

17917

y(1ln(y))y+(1+ln(y))y2=0

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.893

17918

5y23yy=0

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries], [_high_order, _reducible, _mu_poly_yn]]

0.998

17919

40y345yyy+9y2y(5)=0

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries]]

0.117

17920

y2+2xyy=0

[[_2nd_order, _missing_y]]

0.914

17921

y22xyy=0

[[_2nd_order, _missing_y]]

0.922

17922

2x3y6x2y+12yx12y=0

[[_3rd_order, _with_linear_symmetries]]

0.146

17923

y3yx+6yx26yx3=0

[[_3rd_order, _fully, _exact, _linear]]

0.155

17924

(x2+1)y2yx+n(n+1)y=0

[_Gegenbauer]

1.292

17925

y+2yx+y=0

[_Lienard]

0.583

17926

sin(x)2y=2y

[[_2nd_order, _with_linear_symmetries]]

1.085

17927

x3y3x2y+6yx6y=0

[[_3rd_order, _with_linear_symmetries]]

0.143

17928

xyy+yxy=0

[[_3rd_order, _with_linear_symmetries]]

0.078

17929

(x2+1)yxy+y=0

[[_3rd_order, _missing_y]]

1.073

17930

x2y2yx+2y=2x3

[[_2nd_order, _with_linear_symmetries]]

1.521

17931

y+xy1xy1x=x1

[[_2nd_order, _with_linear_symmetries]]

0.926

17932

(x2+2)y2xy+(x2+2)y2xy=x4+12

[[_3rd_order, _linear, _nonhomogeneous]]

0.082

17933

y+y=0

[[_3rd_order, _missing_x]]

0.071

17934

y+y=0

[[_2nd_order, _missing_x]]

1.329

17935

y+yx2ln(x)=ex(2x+ln(x))

[[_2nd_order, _linear, _nonhomogeneous]]

0.533

17936

y+p1y+p2y=0

[[_2nd_order, _missing_x]]

1.384

17937

(2x+1)y+(4x2)y8y=0

[[_2nd_order, _with_linear_symmetries]]

0.533

17938

sin(x)2y+cos(x)sin(x)y=y

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.631

17939

y2y=0

[[_high_order, _missing_x]]

0.078

17940

y3y+3yy=0

[[_3rd_order, _missing_x]]

0.081

17941

y+4y=0

[[_high_order, _missing_x]]

0.092

17942

yy=0

[[_high_order, _missing_x]]

0.082

17943

2y+yy=0

[[_2nd_order, _missing_x]]

0.352

17944

y+2y+3y+2y+y=0

[[_high_order, _missing_x]]

0.108

17945

y4y+4y=x2

[[_2nd_order, _with_linear_symmetries]]

0.590

17946

y6y+8y=ex+e2x

[[_2nd_order, _linear, _nonhomogeneous]]

0.511

17947

y+y+y+y=xex

[[_3rd_order, _linear, _nonhomogeneous]]

0.175

17948

y4y+6y4y+y=ex(x+1)

[[_high_order, _linear, _nonhomogeneous]]

0.186

17949

y+4y=xsin(2x)

[[_2nd_order, _linear, _nonhomogeneous]]

0.880

17950

y+y+y=ex2sin(3x2)

[[_2nd_order, _linear, _nonhomogeneous]]

0.724

17951

yy=exexex+ex

[[_2nd_order, _linear, _nonhomogeneous]]

0.813

17952

y2y=4x2ex2

[[_2nd_order, _linear, _nonhomogeneous]]

0.621

17953

y+y=sin(2x)sin(x)

[[_2nd_order, _linear, _nonhomogeneous]]

1.254

17954

y+9y=ln(2sin(x2))

[[_2nd_order, _linear, _nonhomogeneous]]

2.009

17955

y+2yxn(n+1)yx2=0

[[_2nd_order, _with_linear_symmetries]]

0.930

17956

x2y4yx+6y=x

[[_2nd_order, _with_linear_symmetries]]

1.424

17957

x2yyx+2y=xln(x)

[[_2nd_order, _with_linear_symmetries]]

2.297

17958

x2y2y=x2+1x

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.888

17959

x3yx2y+2yx2y=x3+3x

[[_3rd_order, _with_linear_symmetries]]

0.342

17960

(x+1)2y+(x+1)y+y=4cos(ln(x+1))

[[_2nd_order, _linear, _nonhomogeneous]]

1.641

17961

yyx+(1m2x2)y=0

[[_2nd_order, _with_linear_symmetries]]

0.679

17962

y+2yx+y=0

[_Lienard]

0.593

17963

y+2pyx+y=0

[_Lienard]

0.842

17964

xyyx3y=0

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.796

17965

y4yx+(4x21)y=3ex2sin(2x)

[[_2nd_order, _linear, _nonhomogeneous]]

0.981

17966

yyx+(x+x8)y4x2=0

[[_2nd_order, _with_linear_symmetries]]

0.532

17967

[x=yy=zz=x]

system_of_ODEs

0.820

17968

[y=y+zz=y+z+x]

system_of_ODEs

0.539

17969

[y=y2zz=y2]

system_of_ODEs

0.060

17970

[y=11zz=1yx]

system_of_ODEs

0.065

17971

[y=zz=y]
i.c.

system_of_ODEs

0.560

17972

y=x+y2
i.c.

[NONE]

0.331

17973

y+2y+y2=0
i.c.

[[_2nd_order, _missing_x], [_Emden, _modified]]

1.836

17974

[y=z2yz=y2z]

system_of_ODEs

0.060

17975

[y=y2zz=z2y]

system_of_ODEs

0.059

17976

[x=y+zxy=xy+zz=x+yz]

system_of_ODEs

0.443

17977

[x+x+y=t2y+y+z=2tz+z=t]

system_of_ODEs

0.570

17978

[x+5x+y=7et272x+y+3y=3et+12]

system_of_ODEs

1.238

17979

[y+z2z=e2xz+2y3y=0]

system_of_ODEs

0.053

17980

[x=yy=x+et+et]

system_of_ODEs

0.771

17981

[y+2zx2=1z+y=x]

system_of_ODEs

0.062

17982

[xtx3y=tytx+y=0]

system_of_ODEs

0.066

17983

[xt+6xy3z=0yt+23x6y9z=0tz+x+y2z=0]

system_of_ODEs

0.079

17984

[x+5x+y=etyx+3y=e2t]

system_of_ODEs

0.552

17985

y=2x

[_quadrature]

0.290

17986

yx=2y

[_separable]

1.589

17987

yy=e2x

[_separable]

1.795

17988

y=ky

[_quadrature]

0.703

17989

y+4y=0

[[_2nd_order, _missing_x]]

1.391

17990

y4y=0

[[_2nd_order, _missing_x]]

1.504

17991

yx+y=y1x2y2

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

46.421

17992

yx=y+x2+y2

[[_homogeneous, ‘class D‘], _rational, _Riccati]

1.505

17993

y=xyx2+y2

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.336

17994

2xyy=x2+y2

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7.160

17995

yx+y=x4y2

[[_homogeneous, ‘class G‘], _rational]

1.753

17996

y=y2xyx2

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

92.691

17997

(ycos(y)sin(y)+x)y=y

[[_1st_order, _with_linear_symmetries]]

1.748

17998

1+y2+y2y=0

[_quadrature]

0.607

17999

y=e3xx

[_quadrature]

0.362

18000

yx=1

[_quadrature]

0.334