2.2.180 Problems 17901 to 18000

Table 2.361: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

17901

\[ {}x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4.984

17902

\[ {}3 y-7 x +7 = \left (3 x -7 y-3\right ) y^{\prime } \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.018

17903

\[ {}\left (x +2 y+1\right ) y^{\prime } = 2 x +4 y+3 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.849

17904

\[ {}y^{\prime } = \frac {2 \left (y+2\right )^{2}}{\left (x +y-1\right )^{2}} \]

[[_homogeneous, ‘class C‘], _rational]

1.829

17905

\[ {}\left (x +y\right )^{2} y^{\prime } = a^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

3.278

17906

\[ {}y^{\prime } x -4 y = x^{2} \sqrt {y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3.395

17907

\[ {}\cos \left (x \right ) y^{\prime } = y \sin \left (x \right )+\cos \left (x \right )^{2} \]

[_linear]

2.257

17908

\[ {}y^{\prime } = 2 x y-x^{3}+x \]

[_linear]

1.606

17909

\[ {}y^{\prime }+\frac {x y}{x^{2}+1} = \frac {1}{x \left (x^{2}+1\right )} \]

[_linear]

1.264

17910

\[ {}\left (x -2 x y-y^{2}\right ) y^{\prime }+y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.858

17911

\[ {}y^{\prime } x +y = x y^{2} \ln \left (x \right ) \]

[_Bernoulli]

2.186

17912

\[ {}y^{\prime }-\frac {x y}{2 x^{2}-2}-\frac {x}{2 y} = 0 \]

[_rational, _Bernoulli]

1.779

17913

\[ {}y^{\prime } \left (x^{2} y^{3}+x y\right ) = 1 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.466

17914

\[ {}x -y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.841

17915

\[ {}y^{\prime } = \frac {y^{2}}{3}+\frac {2}{3 x^{2}} \]

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

1.836

17916

\[ {}y^{\prime }+y^{2}+\frac {y}{x}-\frac {4}{x^{2}} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

2.115

17917

\[ {}y^{\prime } x -3 y+y^{2} = 4 x^{2}-4 x \]

[_rational, _Riccati]

1.532

17918

\[ {}y^{\prime } = y^{2}+\frac {1}{x^{4}} \]

[_rational, [_Riccati, _special]]

1.460

17919

\[ {}\left (y-x \right ) \sqrt {x^{2}+1}\, y^{\prime } = \left (1+y^{2}\right )^{{3}/{2}} \]

[‘y=_G(x,y’)‘]

5.148

17920

\[ {}y^{\prime } \left (x^{2}+y^{2}+3\right ) = 2 x \left (2 y-\frac {x^{2}}{y}\right ) \]

[_rational]

2.846

17921

\[ {}y^{\prime } = \frac {x -y^{2}}{2 y \left (x +y^{2}\right )} \]

[[_homogeneous, ‘class G‘], _rational]

2.723

17922

\[ {}\left (\left (x +y\right ) x +a^{2}\right ) y^{\prime } = y \left (x +y\right )+b^{2} \]

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.323

17923

\[ {}y^{\prime } = k y+f \left (x \right ) \]

[[_linear, ‘class A‘]]

1.185

17924

\[ {}y^{\prime } = y^{2}-x^{2} \]

[_Riccati]

1.047

17925

\[ {}\frac {x +y y^{\prime }}{\sqrt {1+x^{2}+y^{2}}}+\frac {y-y^{\prime } x}{x^{2}+y^{2}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact]

2.751

17926

\[ {}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4.339

17927

\[ {}\frac {\sin \left (\frac {x}{y}\right )}{y}-\frac {y \cos \left (\frac {y}{x}\right )}{x^{2}}+1+\left (\frac {\cos \left (\frac {y}{x}\right )}{x}-\frac {x \sin \left (\frac {x}{y}\right )}{y^{2}}+\frac {1}{y^{2}}\right ) y^{\prime } = 0 \]

[_exact]

38.013

17928

\[ {}\frac {1}{x}-\frac {y^{2}}{\left (x -y\right )^{2}}+\left (\frac {x^{2}}{\left (x -y\right )^{2}}-\frac {1}{y}\right ) y^{\prime } = 0 \]

[_exact, _rational]

1.911

17929

\[ {}y^{3}+2 \left (x^{2}-x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1.941

17930

\[ {}\left (x^{2} y^{2}-1\right ) y^{\prime }+2 x y^{3} = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.526

17931

\[ {}a x y^{\prime }+b y+x^{m} y^{n} \left (\alpha x y^{\prime }+\beta y\right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.133

17932

\[ {}2 x y^{2}-y+\left (y^{2}+x +y\right ) y^{\prime } = 0 \]

[_rational]

1.396

17933

\[ {}y^{\prime } = 2 x y-x^{3}+x \]

[_linear]

1.601

17934

\[ {}y^{\prime } x +y-x y^{2} \ln \left (x \right ) = 0 \]

[_Bernoulli]

2.236

17935

\[ {}2 x^{3}+3 x^{2} y+y^{2}-y^{3}+\left (2 y^{3}+3 x y^{2}+x^{2}-x^{3}\right ) y^{\prime } = 0 \]

[_rational]

2.632

17936

\[ {}{y^{\prime }}^{2} y+y^{\prime } \left (x -y\right )-x = 0 \]

[_quadrature]

4.015

17937

\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2} = x^{4}+x^{2} y^{2} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9.350

17938

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y+y^{2}\right ) {y^{\prime }}^{2}+\left (x^{3} y+x^{2} y^{2}+x y^{3}\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

3.115

17939

\[ {}x {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.114

17940

\[ {}x {y^{\prime }}^{3} = 1+y^{\prime } \]

[_quadrature]

0.503

17941

\[ {}{y^{\prime }}^{3}-x^{3} \left (1-y^{\prime }\right ) = 0 \]

[_quadrature]

0.450

17942

\[ {}{y^{\prime }}^{3}+y^{3}-3 y y^{\prime } = 0 \]

[_quadrature]

18.616

17943

\[ {}y = {\mathrm e}^{y^{\prime }} {y^{\prime }}^{2} \]

[_quadrature]

1.560

17944

\[ {}y^{2} \left (y^{\prime }-1\right ) = \left (2-y^{\prime }\right )^{2} \]

[_quadrature]

3.192

17945

\[ {}y \left ({y^{\prime }}^{2}+1\right ) = 2 \alpha \]

[_quadrature]

0.483

17946

\[ {}{y^{\prime }}^{4} = 4 y \left (y^{\prime } x -2 y\right )^{2} \]

[[_homogeneous, ‘class G‘]]

0.606

17947

\[ {}y = 2 y^{\prime } x +\frac {x^{2}}{2}+{y^{\prime }}^{2} \]

[[_homogeneous, ‘class G‘]]

9.784

17948

\[ {}y = \frac {k \left (x +y y^{\prime }\right )}{\sqrt {{y^{\prime }}^{2}+1}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12.332

17949

\[ {}x = y y^{\prime }+a {y^{\prime }}^{2} \]

[_dAlembert]

76.267

17950

\[ {}y = x {y^{\prime }}^{2}+{y^{\prime }}^{3} \]

[_dAlembert]

2.727

17951

\[ {}y = y^{\prime } x +y^{\prime }-{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.362

17952

\[ {}y = 2 y^{\prime } x +y^{2} {y^{\prime }}^{3} \]

[[_1st_order, _with_linear_symmetries]]

107.644

17953

\[ {}{y^{\prime }}^{2} \left (x^{2}-1\right )-2 x y y^{\prime }+y^{2}-1 = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.533

17954

\[ {}{y^{\prime }}^{2}+2 y^{\prime } x +2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.431

17955

\[ {}y^{\prime } = \sqrt {y-x} \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.790

17956

\[ {}y^{\prime } = \sqrt {y-x}+1 \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.144

17957

\[ {}y^{\prime } = \sqrt {y} \]

[_quadrature]

1.507

17958

\[ {}y^{\prime } = y \ln \left (y\right ) \]

[_quadrature]

2.441

17959

\[ {}y^{\prime } = y \ln \left (y\right )^{2} \]

[_quadrature]

6.825

17960

\[ {}y^{\prime } = -x +\sqrt {x^{2}+2 y} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.188

17961

\[ {}y^{\prime } = -x -\sqrt {x^{2}+2 y} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.131

17962

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+4 x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.442

17963

\[ {}x {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.106

17964

\[ {}y^{2} \left (y^{\prime }-1\right ) = \left (2-y^{\prime }\right )^{2} \]

[_quadrature]

3.193

17965

\[ {}{y^{\prime }}^{4} = 4 y \left (y^{\prime } x -2 y\right )^{2} \]

[[_homogeneous, ‘class G‘]]

0.611

17966

\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+2 x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.566

17967

\[ {}y = {y^{\prime }}^{2}-y^{\prime } x +\frac {x^{3}}{2} \]

[‘y=_G(x,y’)‘]

4.559

17968

\[ {}y = 2 y^{\prime } x +\frac {x^{2}}{2}+{y^{\prime }}^{2} \]

[[_homogeneous, ‘class G‘]]

9.694

17969

\[ {}{y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0 \]

[[_1st_order, _with_linear_symmetries]]

3.218

17970

\[ {}{y^{\prime \prime \prime }}^{2}+x^{2} = 1 \]

[[_3rd_order, _quadrature]]

0.513

17971

\[ {}y^{\prime \prime } = \frac {1}{\sqrt {y}} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.584

17972

\[ {}a^{3} y^{\prime \prime \prime } y^{\prime \prime } = \sqrt {1+c^{2} {y^{\prime \prime }}^{2}} \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

3.287

17973

\[ {}y^{\prime \prime \prime } = \sqrt {1+{y^{\prime \prime }}^{2}} \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

2.154

17974

\[ {}2 \left (2 a -y\right ) y^{\prime \prime } = {y^{\prime }}^{2}+1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.102

17975

\[ {}y^{\prime \prime }-x y^{\prime \prime \prime }+{y^{\prime \prime \prime }}^{3} = 0 \]

[[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries]]

0.541

17976

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = y^{2} \ln \left (y\right ) \]

[[_2nd_order, _missing_x]]

1.575

17977

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.246

17978

\[ {}x y y^{\prime \prime }+x {y^{\prime }}^{2}-y y^{\prime } = 0 \]

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.733

17979

\[ {}n \,x^{3} y^{\prime \prime } = \left (y-y^{\prime } x \right )^{2} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.164

17980

\[ {}y^{2} \left (x^{2} y^{\prime \prime }-y^{\prime } x +y\right ) = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

0.158

17981

\[ {}x^{2} y^{2} y^{\prime \prime }-3 x y^{2} y^{\prime }+4 y^{3}+x^{6} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.150

17982

\[ {}y^{\prime } y^{\prime \prime }-x^{2} y y^{\prime }-x y^{2} = 0 \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

5.878

17983

\[ {}x \left (x^{2} y^{\prime }+2 x y\right ) y^{\prime \prime }+4 x {y^{\prime }}^{2}+8 x y y^{\prime }+4 y^{2}-1 = 0 \]

[NONE]

0.173

17984

\[ {}x \left (x y+1\right ) y^{\prime \prime }+x^{2} {y^{\prime }}^{2}+\left (4 x y+2\right ) y^{\prime }+y^{2}+1 = 0 \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

0.793

17985

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}-{y^{\prime }}^{4} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.757

17986

\[ {}a^{2} y^{\prime \prime } = 2 x \sqrt {{y^{\prime }}^{2}+1} \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

1.138

17987

\[ {}x^{2} y y^{\prime \prime }+x^{2} {y^{\prime }}^{2}-5 x y y^{\prime } = 4 y^{2} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.149

17988

\[ {}y \left (1-\ln \left (y\right )\right ) y^{\prime \prime }+\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.481

17989

\[ {}5 {y^{\prime \prime \prime }}^{2}-3 y^{\prime \prime } y^{\prime \prime \prime \prime } = 0 \]

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries], [_high_order, _reducible, _mu_poly_yn]]

0.740

17990

\[ {}40 {y^{\prime \prime \prime }}^{3}-45 y^{\prime \prime } y^{\prime \prime \prime } y^{\prime \prime \prime \prime }+9 {y^{\prime \prime }}^{2} y^{\left (5\right )} = 0 \]

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries]]

0.091

17991

\[ {}{y^{\prime \prime }}^{2}+2 x y^{\prime \prime }-y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.639

17992

\[ {}{y^{\prime \prime }}^{2}-2 x y^{\prime \prime }-y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.593

17993

\[ {}2 x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+12 y^{\prime } x -12 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.128

17994

\[ {}y^{\prime \prime \prime }-\frac {3 y^{\prime \prime }}{x}+\frac {6 y^{\prime }}{x^{2}}-\frac {6 y}{x^{3}} = 0 \]

[[_3rd_order, _fully, _exact, _linear]]

0.125

17995

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +n \left (n +1\right ) y = 0 \]

[_Gegenbauer]

0.930

17996

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+y = 0 \]

[_Lienard]

1.536

17997

\[ {}y^{\prime \prime } \sin \left (x \right )^{2} = 2 y \]

[[_2nd_order, _with_linear_symmetries]]

0.783

17998

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.127

17999

\[ {}x y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.056

18000

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime \prime }-x y^{\prime \prime }+y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

0.260