# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}y^{\prime } = 1+3 \tan \left (x \right ) y
\] |
[_linear] |
✓ |
1.434 |
|
\[
{}y^{\prime } = 1+\frac {y}{x}-\frac {y^{2}}{x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
2.424 |
|
\[
{}y^{\prime } = \frac {2 x y \,{\mathrm e}^{\frac {x^{2}}{y^{2}}}}{y^{2}+y^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}+2 x^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
1077.313 |
|
\[
{}y^{\prime } = \frac {x +2 y+2}{-2 x +y}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
3.192 |
|
\[
{}3 x^{2} \ln \left (y\right )+\frac {x^{3} y^{\prime }}{y} = 0
\] |
[_separable] |
✓ |
2.257 |
|
\[
{}\frac {3 y^{2}}{x^{2}+3 x}+\left (2 y \ln \left (\frac {5 x}{x +3}\right )+3 \sin \left (y\right )\right ) y^{\prime } = 0
\] |
[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
37.415 |
|
\[
{}\frac {y-x}{\left (x +y\right )^{3}}-\frac {2 x y^{\prime }}{\left (x +y\right )^{3}} = 0
\] |
[_linear] |
✓ |
6.303 |
|
\[
{}x y^{2}+y+x y^{\prime } = 0
\] |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
1.083 |
|
\[
{}x^{2} y^{\prime \prime } = y^{\prime } \left (3 x -2 y^{\prime }\right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
0.459 |
|
\[
{}3 x^{2} y-y^{3}-\left (3 x y^{2}-x^{3}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
8.526 |
|
\[
{}x \left (x^{2}+1\right ) y^{\prime }+2 y = \left (x^{2}+1\right )^{3}
\] |
[_linear] |
✓ |
1.318 |
|
\[
{}y^{\prime } = \frac {-3 x -2 y-1}{2 x +3 y-1}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
2.387 |
|
\[
{}{\mathrm e}^{x^{2} y} \left (1+2 x^{2} y\right )+x^{3} {\mathrm e}^{x^{2} y} y^{\prime } = 0
\] |
[_linear] |
✓ |
1.014 |
|
\[
{}3 x^{2} {\mathrm e}^{y}-2 x +\left (x^{3} {\mathrm e}^{y}-\sin \left (y\right )\right ) y^{\prime } = 0
\] |
[_exact] |
✓ |
2.484 |
|
\[
{}y^{2} y^{\prime \prime }+{y^{\prime }}^{3} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
0.271 |
|
\[
{}3 x y+y^{2}+\left (3 x y+x^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
6.043 |
|
\[
{}x^{2} y^{\prime } = y^{2}+x y+x^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
2.107 |
|
\[
{}x y^{\prime }+y = y^{2} \ln \left (x \right )
\] |
[_Bernoulli] |
✓ |
1.918 |
|
\[
{}\frac {\cos \left (y\right )}{x +3}-\left (\sin \left (y\right ) \ln \left (5 x +15\right )-\frac {1}{y}\right ) y^{\prime } = 0
\] |
[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
41.355 |
|
\[
{}x^{2} y^{\prime \prime }+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
0.197 |
|
\[
{}x y+y-1+x y^{\prime } = 0
\] |
[_linear] |
✓ |
1.213 |
|
\[
{}x^{2} y^{\prime }-y^{2} = 2 x y
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
2.365 |
|
\[
{}y^{\prime \prime } = 2 y {y^{\prime }}^{3}
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
0.225 |
|
\[
{}x^{\prime }+x \cot \left (y \right ) = \sec \left (y \right )
\] |
[_linear] |
✓ |
1.678 |
|
\[
{}x y^{\prime \prime }-y^{\prime } = 3 x^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
1.704 |
|
\[
{}x y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
0.733 |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 4 x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.794 |
|
\[
{}x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = 1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
3.452 |
|
\[
{}y^{\prime \prime }-2 y^{\prime } = 6
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.428 |
|
\[
{}y^{\prime \prime }-2 y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.181 |
|
\[
{}y^{\prime \prime } = {\mathrm e}^{x}
\] |
[[_2nd_order, _quadrature]] |
✓ |
0.810 |
|
\[
{}y^{\prime \prime }-2 y^{\prime } = 4
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.269 |
|
\[
{}y^{\prime \prime }-y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.083 |
|
\[
{}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.326 |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = 6 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
1.379 |
|
\[
{}x^{2} y^{\prime \prime }-3 x y^{\prime }-5 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.339 |
|
\[
{}x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (x^{2}+6\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.295 |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
2.490 |
|
\[
{}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
2.082 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.804 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.668 |
|
\[
{}x^{2} y^{\prime \prime }-2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.128 |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.854 |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.804 |
|
\[
{}y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.306 |
|
\[
{}y^{\prime \prime }+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
0.141 |
|
\[
{}y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.693 |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.122 |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.103 |
|
\[
{}x y^{\prime \prime }+3 y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
0.333 |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.099 |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\] |
[_Gegenbauer] |
✓ |
0.102 |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.086 |
|
\[
{}y^{\prime \prime }-\frac {x y^{\prime }}{x -1}+\frac {y}{x -1} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.099 |
|
\[
{}x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.101 |
|
\[
{}x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.103 |
|
\[
{}y^{\prime \prime }-x f \left (x \right ) y^{\prime }+f \left (x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.477 |
|
\[
{}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.111 |
|
\[
{}x y^{\prime \prime }-\left (x +n \right ) y^{\prime }+n y = 0
\] |
[_Laguerre] |
✓ |
1.090 |
|
\[
{}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = 0
\] |
[_Laguerre] |
✓ |
0.951 |
|
\[
{}x y^{\prime \prime }-\left (x +2\right ) y^{\prime }+2 y = 0
\] |
[_Laguerre] |
✓ |
0.880 |
|
\[
{}x y^{\prime \prime }-\left (x +3\right ) y^{\prime }+3 y = 0
\] |
[_Laguerre] |
✓ |
0.969 |
|
\[
{}y^{\prime \prime }-f \left (x \right ) y^{\prime }+\left (f \left (x \right )-1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✗ |
0.647 |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.367 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.626 |
|
\[
{}y^{\prime \prime }+8 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
2.506 |
|
\[
{}2 y^{\prime \prime }-4 y^{\prime }+8 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.635 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.634 |
|
\[
{}y^{\prime \prime }-9 y^{\prime }+20 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.605 |
|
\[
{}2 y^{\prime \prime }+2 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.921 |
|
\[
{}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.701 |
|
\[
{}y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.980 |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.652 |
|
\[
{}4 y^{\prime \prime }+20 y^{\prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.412 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.602 |
|
\[
{}y^{\prime \prime } = 4 y
\] |
[[_2nd_order, _missing_x]] |
✓ |
2.714 |
|
\[
{}4 y^{\prime \prime }-8 y^{\prime }+7 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.866 |
|
\[
{}2 y^{\prime \prime }+y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.642 |
|
\[
{}16 y^{\prime \prime }-8 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.644 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.697 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }-5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.384 |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.826 |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.841 |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.839 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.811 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.256 |
|
\[
{}y^{\prime \prime }+8 y^{\prime }-9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.895 |
|
\[
{}x^{2} y^{\prime \prime }+3 x y^{\prime }+10 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
3.090 |
|
\[
{}2 x^{2} y^{\prime \prime }+10 x y^{\prime }+8 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.448 |
|
\[
{}x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.043 |
|
\[
{}4 x^{2} y^{\prime \prime }-3 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.658 |
|
\[
{}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.386 |
|
\[
{}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.275 |
|
\[
{}x^{2} y^{\prime \prime }+2 x y^{\prime }+3 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
3.378 |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }-2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.133 |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }-16 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.302 |
|
\[
{}x y^{\prime \prime }+\left (x^{2}-1\right ) y^{\prime }+x^{3} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
2.573 |
|
\[
{}y^{\prime \prime }+3 x y^{\prime }+x^{2} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.843 |
|
\[
{}y^{\prime \prime }+3 y^{\prime }-10 y = 6 \,{\mathrm e}^{4 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.943 |
|
\[
{}y^{\prime \prime }+4 y = 3 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.679 |
|