2.3.15 first order ode quadrature

Table 2.361: first order ode quadrature

#

ODE

CAS classification

Solved?

1

\[ {}y^{\prime } = 2 x +1 \]
i.c.

[_quadrature]

2

\[ {}y^{\prime } = \left (x -2\right )^{2} \]
i.c.

[_quadrature]

3

\[ {}y^{\prime } = \sqrt {x} \]
i.c.

[_quadrature]

4

\[ {}y^{\prime } = \frac {1}{x^{2}} \]
i.c.

[_quadrature]

5

\[ {}y^{\prime } = \frac {1}{\sqrt {x +2}} \]
i.c.

[_quadrature]

6

\[ {}y^{\prime } = x \sqrt {x^{2}+9} \]
i.c.

[_quadrature]

7

\[ {}y^{\prime } = \frac {10}{x^{2}+1} \]
i.c.

[_quadrature]

8

\[ {}y^{\prime } = \cos \left (2 x \right ) \]
i.c.

[_quadrature]

9

\[ {}y^{\prime } = \frac {1}{\sqrt {-x^{2}+1}} \]
i.c.

[_quadrature]

10

\[ {}y^{\prime } = x \,{\mathrm e}^{-x} \]
i.c.

[_quadrature]

29

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

30

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

35

\[ {}y^{\prime } = \ln \left (1+y^{2}\right ) \]
i.c.

[_quadrature]

63

\[ {}1+y^{\prime } = 2 y \]
i.c.

[_quadrature]

69

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

70

\[ {}{y^{\prime }}^{2} = 4 y \]
i.c.

[_quadrature]

71

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

72

\[ {}y^{\prime } = y \sqrt {-1+y^{2}} \]
i.c.

[_quadrature]

73

\[ {}y^{\prime }+y = 2 \]
i.c.

[_quadrature]

125

\[ {}y^{\prime } = y+y^{3} \]

[_quadrature]

171

\[ {}x^{\prime } = x-x^{2} \]
i.c.

[_quadrature]

172

\[ {}x^{\prime } = 10 x-x^{2} \]
i.c.

[_quadrature]

173

\[ {}x^{\prime } = 1-x^{2} \]
i.c.

[_quadrature]

174

\[ {}x^{\prime } = 9-4 x^{2} \]
i.c.

[_quadrature]

175

\[ {}x^{\prime } = 3 x \left (5-x\right ) \]
i.c.

[_quadrature]

176

\[ {}x^{\prime } = 3 x \left (5-x\right ) \]
i.c.

[_quadrature]

177

\[ {}x^{\prime } = 4 x \left (7-x\right ) \]
i.c.

[_quadrature]

178

\[ {}x^{\prime } = 7 x \left (x-13\right ) \]
i.c.

[_quadrature]

231

\[ {}y^{\prime }+y^{2} = 0 \]

[_quadrature]

651

\[ {}y^{\prime } = 2 x +1 \]
i.c.

[_quadrature]

652

\[ {}y^{\prime } = \left (x -2\right )^{2} \]
i.c.

[_quadrature]

653

\[ {}y^{\prime } = \sqrt {x} \]
i.c.

[_quadrature]

654

\[ {}y^{\prime } = \frac {1}{x^{2}} \]
i.c.

[_quadrature]

655

\[ {}y^{\prime } = \frac {1}{\sqrt {x +2}} \]
i.c.

[_quadrature]

656

\[ {}y^{\prime } = x \sqrt {x^{2}+9} \]
i.c.

[_quadrature]

657

\[ {}y^{\prime } = \frac {10}{x^{2}+1} \]
i.c.

[_quadrature]

658

\[ {}y^{\prime } = \cos \left (2 x \right ) \]
i.c.

[_quadrature]

659

\[ {}y^{\prime } = \frac {1}{\sqrt {-x^{2}+1}} \]
i.c.

[_quadrature]

660

\[ {}y^{\prime } = x \,{\mathrm e}^{-x} \]
i.c.

[_quadrature]

671

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

672

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

675

\[ {}y^{\prime } = \ln \left (1+y^{2}\right ) \]
i.c.

[_quadrature]

698

\[ {}1+y^{\prime } = 2 y \]
i.c.

[_quadrature]

704

\[ {}y^{\prime }+y = 2 \]
i.c.

[_quadrature]

746

\[ {}\left (x +y\right ) y^{\prime } = 0 \]

[_quadrature]

749

\[ {}y^{\prime } = y+y^{3} \]

[_quadrature]

1065

\[ {}y^{\prime } = 1+y^{2} \]
i.c.

[_quadrature]

1157

\[ {}y^{\prime } = \frac {b +a y}{d +c y} \]

[_quadrature]

1176

\[ {}y^{3}+y^{\prime } = 0 \]

[_quadrature]

1182

\[ {}y^{\prime } = a y+b y^{2} \]

[_quadrature]

1183

\[ {}y^{\prime } = y \left (-2+y\right ) \left (-1+y\right ) \]

[_quadrature]

1184

\[ {}y^{\prime } = -1+{\mathrm e}^{y} \]

[_quadrature]

1185

\[ {}y^{\prime } = -1+{\mathrm e}^{-y} \]

[_quadrature]

1186

\[ {}y^{\prime } = -\frac {2 \arctan \left (y\right )}{1+y^{2}} \]

[_quadrature]

1187

\[ {}y^{\prime } = -k \left (-1+y\right )^{2} \]

[_quadrature]

1188

\[ {}y^{\prime } = y^{2} \left (-1+y^{2}\right ) \]

[_quadrature]

1189

\[ {}y^{\prime } = y \left (1-y^{2}\right ) \]

[_quadrature]

1190

\[ {}y^{\prime } = -b \sqrt {y}+a y \]

[_quadrature]

1191

\[ {}y^{\prime } = y^{2} \left (4-y^{2}\right ) \]

[_quadrature]

1192

\[ {}y^{\prime } = \left (1-y\right )^{2} y^{2} \]

[_quadrature]

1519

\[ {}y^{\prime } = 2 y \]

[_quadrature]

1524

\[ {}y^{\prime } = -x \]

[_quadrature]

1525

\[ {}y^{\prime } = -x \sin \left (x \right ) \]

[_quadrature]

1526

\[ {}y^{\prime } = x \ln \left (x \right ) \]

[_quadrature]

1527

\[ {}y^{\prime } = -x \,{\mathrm e}^{x} \]
i.c.

[_quadrature]

1528

\[ {}y^{\prime } = x \sin \left (x^{2}\right ) \]
i.c.

[_quadrature]

1529

\[ {}y^{\prime } = \tan \left (x \right ) \]
i.c.

[_quadrature]

1534

\[ {}y^{\prime } = a y^{\frac {a -1}{a}} \]

[_quadrature]

1535

\[ {}y^{\prime } = {| y|}+1 \]
i.c.

[_quadrature]

1537

\[ {}y^{\prime }+a y = 0 \]

[_quadrature]

1548

\[ {}y^{\prime }+3 y = 1 \]

[_quadrature]

1574

\[ {}\sec \left (y\right )^{2} y^{\prime }-3 \tan \left (y\right ) = -1 \]

[_quadrature]

1596

\[ {}y^{\prime } = 2 y-y^{2} \]
i.c.

[_quadrature]

1603

\[ {}y^{\prime } = a y-b y^{2} \]
i.c.

[_quadrature]

1621

\[ {}y^{\prime } = y^{{2}/{5}} \]
i.c.

[_quadrature]

1682

\[ {}14 y^{3} x^{2}+21 x^{2} y^{2} y^{\prime } = 0 \]

[_quadrature]

1684

\[ {}\left (x +y\right )^{2}+\left (x +y\right )^{2} y^{\prime } = 0 \]

[_quadrature]

1715

\[ {}2 y^{3}+3 y^{2} y^{\prime } = 0 \]

[_quadrature]

1792

\[ {}y^{\prime }+y^{2}+k^{2} = 0 \]

[_quadrature]

1793

\[ {}y^{\prime }+y^{2}-3 y+2 = 0 \]

[_quadrature]

1794

\[ {}y^{\prime }+y^{2}+5 y-6 = 0 \]

[_quadrature]

1795

\[ {}y^{\prime }+y^{2}+8 y+7 = 0 \]

[_quadrature]

1796

\[ {}y^{\prime }+y^{2}+14 y+50 = 0 \]

[_quadrature]

1797

\[ {}6 y^{\prime }+6 y^{2}-y-1 = 0 \]

[_quadrature]

1798

\[ {}36 y^{\prime }+36 y^{2}-12 y+1 = 0 \]

[_quadrature]

2328

\[ {}y^{\prime } = k \left (a -y\right ) \left (b -y\right ) \]
i.c.

[_quadrature]

2499

\[ {}y^{\prime } = k \left (a -y\right ) \left (b -y\right ) \]
i.c.

[_quadrature]

2785

\[ {}x^{\prime } = 1-\sin \left (2 t \right ) \]

[_quadrature]

2798

\[ {}y^{\prime } = {\mathrm e}^{y} \]
i.c.

[_quadrature]

2799

\[ {}{\mathrm e}^{y} \left (1+y^{\prime }\right ) = 1 \]
i.c.

[_quadrature]

2991

\[ {}y^{\prime }-y = 0 \]

[_quadrature]

3219

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

[_quadrature]

3222

\[ {}\left (1-y^{2}\right ) {y^{\prime }}^{2} = 1 \]

[_quadrature]

3226

\[ {}{y^{\prime }}^{3}+\left (x +y-2 y x \right ) {y^{\prime }}^{2}-2 y^{\prime } x y \left (x +y\right ) = 0 \]

[_quadrature]

3227

\[ {}y {y^{\prime }}^{2}+\left (y^{2}-x^{3}-x y^{2}\right ) y^{\prime }-x y \left (x^{2}+y^{2}\right ) = 0 \]

[_quadrature]

3230

\[ {}y \left (1+{y^{\prime }}^{2}\right ) = 2 \]

[_quadrature]

3232

\[ {}{y^{\prime }}^{2}+y^{2} = 1 \]

[_quadrature]

3238

\[ {}y {y^{\prime }}^{2}+2 y^{\prime }+1 = 0 \]

[_quadrature]

3242

\[ {}x = {y^{\prime }}^{2}+y^{\prime } \]

[_quadrature]

3336

\[ {}y^{\prime } = 2 \]

[_quadrature]

3337

\[ {}y^{\prime } = 2 \,{\mathrm e}^{3 x} \]

[_quadrature]

3338

\[ {}y^{\prime } = \frac {2}{\sqrt {-x^{2}+1}} \]

[_quadrature]

3339

\[ {}y^{\prime } = {\mathrm e}^{x^{2}} \]

[_quadrature]

3340

\[ {}y^{\prime } = x \,{\mathrm e}^{x^{2}} \]

[_quadrature]

3341

\[ {}y^{\prime } = \arcsin \left (x \right ) \]

[_quadrature]

3347

\[ {}{y^{\prime }}^{2}-y^{2} = 0 \]

[_quadrature]

3348

\[ {}{y^{\prime }}^{2}-3 y^{\prime }+2 = 0 \]

[_quadrature]

3349

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1 \]

[_quadrature]

3350

\[ {}y^{\prime } \sin \left (x \right ) = 1 \]

[_quadrature]

3351

\[ {}y^{\prime } = t^{2}+3 \]

[_quadrature]

3352

\[ {}y^{\prime } = t \,{\mathrm e}^{2 t} \]

[_quadrature]

3353

\[ {}y^{\prime } = \sin \left (3 t \right ) \]

[_quadrature]

3354

\[ {}y^{\prime } = \sin \left (t \right )^{2} \]

[_quadrature]

3355

\[ {}y^{\prime } = \frac {t}{t^{2}+4} \]

[_quadrature]

3356

\[ {}y^{\prime } = \ln \left (t \right ) \]

[_quadrature]

3357

\[ {}y^{\prime } = \frac {t}{\sqrt {t}+1} \]

[_quadrature]

3358

\[ {}y^{\prime } = 2 y-4 \]
i.c.

[_quadrature]

3359

\[ {}y^{\prime } = -y^{3} \]
i.c.

[_quadrature]

3361

\[ {}y^{\prime } = t \,{\mathrm e}^{2 t} \]
i.c.

[_quadrature]

3362

\[ {}y^{\prime } = \sin \left (t \right )^{2} \]
i.c.

[_quadrature]

3363

\[ {}y^{\prime } = 8 \,{\mathrm e}^{4 t}+t \]
i.c.

[_quadrature]

3366

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

3367

\[ {}y^{\prime } = -1+y \]

[_quadrature]

3368

\[ {}y^{\prime } = 1-y \]

[_quadrature]

3369

\[ {}y^{\prime } = y^{3}-y^{2} \]

[_quadrature]

3370

\[ {}y^{\prime } = 1-y^{2} \]

[_quadrature]

3372

\[ {}y^{\prime } = -y \]

[_quadrature]

3380

\[ {}y^{\prime } = y \]
i.c.

[_quadrature]

3381

\[ {}y^{\prime } = 2 y \]
i.c.

[_quadrature]

3476

\[ {}y^{\prime }+\frac {m}{x} = \ln \left (x \right ) \]

[_quadrature]

3494

\[ {}y^{\prime } = -y^{2} \]

[_quadrature]

3515

\[ {}y^{\prime } = \sin \left (x \right ) \]

[_quadrature]

3516

\[ {}y^{\prime } = \frac {1}{x^{{2}/{3}}} \]

[_quadrature]

3519

\[ {}y^{\prime } = x^{2} \ln \left (x \right ) \]
i.c.

[_quadrature]

3541

\[ {}y^{\prime } = \frac {2 \sqrt {-1+y}}{3} \]
i.c.

[_quadrature]

3542

\[ {}m v^{\prime } = m g -k v^{2} \]
i.c.

[_quadrature]

3902

\[ {}y = y^{\prime }+\frac {{y^{\prime }}^{2}}{2} \]

[_quadrature]

3906

\[ {}y^{\prime } = {\mathrm e}^{-x} \]

[_quadrature]

3907

\[ {}y^{\prime } = 1-x^{5}+\sqrt {x} \]

[_quadrature]

3914

\[ {}y^{\prime }+y = 0 \]

[_quadrature]

3921

\[ {}y^{\prime } = {\mathrm e}^{x} \sin \left (x \right ) \]
i.c.

[_quadrature]

3923

\[ {}y^{\prime } = x +\frac {1}{x} \]
i.c.

[_quadrature]

3930

\[ {}x +\left (2-x +2 y\right ) y^{\prime } = x y \left (y^{\prime }-1\right ) \]

[_quadrature]

3961

\[ {}y^{\prime } = 3 \cos \left (y\right )^{2} \]

[_quadrature]

3972

\[ {}\left (x^{3}+1\right ) y^{\prime } = 3 x^{2} \tan \left (x \right ) \]
i.c.

[_quadrature]

4049

\[ {}y^{2} y^{\prime } = 2+3 y^{6} \]
i.c.

[_quadrature]

4103

\[ {}\left (\sin \left (y\right )^{2}+x \cot \left (y\right )\right ) y^{\prime } = 0 \]

[_quadrature]

4128

\[ {}x \left (-1+{y^{\prime }}^{2}\right ) = 2 y^{\prime } \]

[_quadrature]

4130

\[ {}x = y^{\prime } \sqrt {1+{y^{\prime }}^{2}} \]

[_quadrature]

4168

\[ {}y^{\prime } = a f \left (x \right ) \]

[_quadrature]

4222

\[ {}y^{\prime } = a +b y^{2} \]

[_quadrature]

4227

\[ {}y^{\prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2} \]

[_quadrature]

4248

\[ {}y^{\prime } = y \left (a +b y^{2}\right ) \]

[_quadrature]

4249

\[ {}y^{\prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2}+\operatorname {a3} y^{3} \]

[_quadrature]

4260

\[ {}y^{\prime } = \sqrt {{| y|}} \]

[_quadrature]

4261

\[ {}y^{\prime } = a +b y+\sqrt {\operatorname {A0} +\operatorname {B0} y} \]

[_quadrature]

4265

\[ {}y^{\prime } = \sqrt {a +b y^{2}} \]

[_quadrature]

4266

\[ {}y^{\prime } = y \sqrt {a +b y} \]

[_quadrature]

4268

\[ {}y^{\prime } = \sqrt {X Y} \]

[_quadrature]

4273

\[ {}y^{\prime } = a +b \cos \left (y\right ) \]

[_quadrature]

4285

\[ {}y^{\prime } = a +b \sin \left (y\right ) \]

[_quadrature]

4289

\[ {}y^{\prime } = \sqrt {a +b \cos \left (y\right )} \]

[_quadrature]

4295

\[ {}y^{\prime } = a f \left (y\right ) \]

[_quadrature]

4302

\[ {}y^{\prime } x = \sqrt {a^{2}-x^{2}} \]

[_quadrature]

4388

\[ {}\left (x +a \right ) y^{\prime } = b x \]

[_quadrature]

4555

\[ {}y^{\prime } \sqrt {X}+\sqrt {Y} = 0 \]

[_quadrature]

4556

\[ {}y^{\prime } \sqrt {X} = \sqrt {Y} \]

[_quadrature]

4562

\[ {}y^{\prime } \sqrt {X} = 0 \]

[_quadrature]

4563

\[ {}y^{\prime } \sqrt {X}+\sqrt {Y} = 0 \]

[_quadrature]

4564

\[ {}y^{\prime } \sqrt {X} = \sqrt {Y} \]

[_quadrature]

4567

\[ {}X^{{2}/{3}} y^{\prime } = Y^{{2}/{3}} \]

[_quadrature]

4584

\[ {}y y^{\prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2} \]

[_quadrature]

4587

\[ {}y y^{\prime } = \sqrt {y^{2}+a^{2}} \]

[_quadrature]

4588

\[ {}y y^{\prime } = \sqrt {y^{2}-a^{2}} \]

[_quadrature]

4677

\[ {}x \left (2+y\right ) y^{\prime }+a x = 0 \]

[_quadrature]

4893

\[ {}{y^{\prime }}^{2} = a \,x^{n} \]

[_quadrature]

4894

\[ {}{y^{\prime }}^{2} = y \]

[_quadrature]

4900

\[ {}{y^{\prime }}^{2} = 1+y^{2} \]

[_quadrature]

4901

\[ {}{y^{\prime }}^{2} = 1-y^{2} \]

[_quadrature]

4902

\[ {}{y^{\prime }}^{2} = a^{2}-y^{2} \]

[_quadrature]

4903

\[ {}{y^{\prime }}^{2} = a^{2} y^{2} \]

[_quadrature]

4904

\[ {}{y^{\prime }}^{2} = a +b y^{2} \]

[_quadrature]

4906

\[ {}{y^{\prime }}^{2} = \left (-1+y\right ) y^{2} \]

[_quadrature]

4907

\[ {}{y^{\prime }}^{2} = \left (y-a \right ) \left (y-b \right ) \left (y-c \right ) \]

[_quadrature]

4908

\[ {}{y^{\prime }}^{2} = a^{2} y^{n} \]

[_quadrature]

4909

\[ {}{y^{\prime }}^{2} = a^{2} \left (1-\ln \left (y\right )^{2}\right ) y^{2} \]

[_quadrature]

4916

\[ {}{y^{\prime }}^{2}+2 y^{\prime }+x = 0 \]

[_quadrature]

4918

\[ {}{y^{\prime }}^{2}-2 y^{\prime }-y^{2} = 0 \]

[_quadrature]

4919

\[ {}{y^{\prime }}^{2}-5 y^{\prime }+6 = 0 \]

[_quadrature]

4920

\[ {}{y^{\prime }}^{2}-7 y^{\prime }+12 = 0 \]

[_quadrature]

4921

\[ {}{y^{\prime }}^{2}+a y^{\prime }+b = 0 \]

[_quadrature]

4922

\[ {}{y^{\prime }}^{2}+a y^{\prime }+b x = 0 \]

[_quadrature]

4923

\[ {}{y^{\prime }}^{2}+a y^{\prime }+b y = 0 \]

[_quadrature]

4924

\[ {}{y^{\prime }}^{2}+y^{\prime } x +1 = 0 \]

[_quadrature]

4933

\[ {}{y^{\prime }}^{2}-2 y^{\prime } x +1 = 0 \]

[_quadrature]

4934

\[ {}{y^{\prime }}^{2}+2 y^{\prime } x -3 x^{2} = 0 \]

[_quadrature]

4938

\[ {}{y^{\prime }}^{2}-\left (2 x +1\right ) y^{\prime }-x \left (1-x \right ) = 0 \]

[_quadrature]

4942

\[ {}{y^{\prime }}^{2}+a x y^{\prime } = b c \,x^{2} \]

[_quadrature]

4946

\[ {}{y^{\prime }}^{2}-2 x^{2} y^{\prime }+2 y^{\prime } x = 0 \]

[_quadrature]

4950

\[ {}{y^{\prime }}^{2}-2 y^{\prime } \cosh \left (x \right )+1 = 0 \]

[_quadrature]

4951

\[ {}{y^{\prime }}^{2}+y y^{\prime } = x \left (x +y\right ) \]

[_quadrature]

4953

\[ {}{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+y x = 0 \]

[_quadrature]

4955

\[ {}{y^{\prime }}^{2}+\left (1+2 y\right ) y^{\prime }+y \left (-1+y\right ) = 0 \]

[_quadrature]

4956

\[ {}{y^{\prime }}^{2}-2 \left (x -y\right ) y^{\prime }-4 y x = 0 \]

[_quadrature]

4957

\[ {}{y^{\prime }}^{2}-\left (1+4 y\right ) y^{\prime }+\left (1+4 y\right ) y = 0 \]

[_quadrature]

4958

\[ {}{y^{\prime }}^{2}-2 \left (1-3 y\right ) y^{\prime }-\left (4-9 y\right ) y = 0 \]

[_quadrature]

4959

\[ {}{y^{\prime }}^{2}+\left (a +6 y\right ) y^{\prime }+y \left (3 a +b +9 y\right ) = 0 \]

[_quadrature]

4962

\[ {}{y^{\prime }}^{2}+\left (a x +b y\right ) y^{\prime }+a b x y = 0 \]

[_quadrature]

4964

\[ {}{y^{\prime }}^{2}-\left (1+2 y x \right ) y^{\prime }+2 y x = 0 \]

[_quadrature]

4965

\[ {}{y^{\prime }}^{2}-\left (4+y^{2}\right ) y^{\prime }+4+y^{2} = 0 \]

[_quadrature]

4966

\[ {}{y^{\prime }}^{2}-\left (x -y\right ) y y^{\prime }-x y^{3} = 0 \]

[_separable]

4977

\[ {}2 {y^{\prime }}^{2}+2 \left (6 y-1\right ) y^{\prime }+3 y \left (6 y-1\right ) = 0 \]

[_quadrature]

4980

\[ {}4 {y^{\prime }}^{2} = 9 x \]

[_quadrature]

4986

\[ {}x {y^{\prime }}^{2} = a \]

[_quadrature]

4987

\[ {}x {y^{\prime }}^{2} = -x^{2}+a \]

[_quadrature]

4995

\[ {}x {y^{\prime }}^{2}-\left (x^{2}+1\right ) y^{\prime }+x = 0 \]

[_quadrature]

5011

\[ {}x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

[_quadrature]

5014

\[ {}x {y^{\prime }}^{2}-\left (1+y x \right ) y^{\prime }+y = 0 \]

[_quadrature]

5015

\[ {}x {y^{\prime }}^{2}+\left (1-x \right ) y y^{\prime }-y^{2} = 0 \]

[_quadrature]

5016

\[ {}x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-y x = 0 \]

[_quadrature]

5024

\[ {}4 x {y^{\prime }}^{2} = \left (a -3 x \right )^{2} \]

[_quadrature]

5029

\[ {}4 \left (2-x \right ) {y^{\prime }}^{2}+1 = 0 \]

[_quadrature]

5031

\[ {}x^{2} {y^{\prime }}^{2} = a^{2} \]

[_quadrature]

5053

\[ {}x^{2} {y^{\prime }}^{2}+\left (a +b \,x^{2} y^{3}\right ) y^{\prime }+a b y^{3} = 0 \]

[_quadrature]

5056

\[ {}\left (a^{2}+x^{2}\right ) {y^{\prime }}^{2} = b^{2} \]

[_quadrature]

5057

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}+b^{2} = 0 \]

[_quadrature]

5058

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2} = b^{2} \]

[_quadrature]

5059

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2} = x^{2} \]

[_quadrature]

5066

\[ {}x^{3} {y^{\prime }}^{2} = a \]

[_quadrature]

5070

\[ {}4 x \left (a -x \right ) \left (b -x \right ) {y^{\prime }}^{2} = \left (a b -2 x \left (a +b \right )+2 x^{2}\right )^{2} \]

[_quadrature]

5074

\[ {}x^{2} \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}+1 = 0 \]

[_quadrature]

5079

\[ {}y {y^{\prime }}^{2} = a \]

[_quadrature]

5087

\[ {}y {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-x = 0 \]

[_quadrature]

5089

\[ {}y {y^{\prime }}^{2}-\left (1+y x \right ) y^{\prime }+x = 0 \]

[_quadrature]

5090

\[ {}y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-y x = 0 \]

[_quadrature]

5091

\[ {}y {y^{\prime }}^{2}+y = a \]

[_quadrature]

5096

\[ {}\left (1-a y\right ) {y^{\prime }}^{2} = a y \]

[_quadrature]

5097

\[ {}\left (x^{2}-a y\right ) {y^{\prime }}^{2}-2 x y y^{\prime } = 0 \]

[_quadrature]

5098

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

[_quadrature]

5107

\[ {}y^{2} {y^{\prime }}^{2} = a^{2} \]

[_quadrature]

5108

\[ {}y^{2} {y^{\prime }}^{2}-a^{2}+y^{2} = 0 \]

[_quadrature]

5112

\[ {}y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x = 0 \]

[_quadrature]

5118

\[ {}\left (1-y^{2}\right ) {y^{\prime }}^{2} = 1 \]

[_quadrature]

5119

\[ {}\left (a^{2}-y^{2}\right ) {y^{\prime }}^{2} = y^{2} \]

[_quadrature]

5132

\[ {}\left (2-3 y\right )^{2} {y^{\prime }}^{2} = 4-4 y \]

[_quadrature]

5144

\[ {}{y^{\prime }}^{3} = b x +a \]

[_quadrature]

5145

\[ {}{y^{\prime }}^{3} = a \,x^{n} \]

[_quadrature]

5148

\[ {}{y^{\prime }}^{3} = \left (y-a \right )^{2} \left (y-b \right )^{2} \]

[_quadrature]

5151

\[ {}{y^{\prime }}^{3}+y^{\prime }+a -b x = 0 \]

[_quadrature]

5152

\[ {}{y^{\prime }}^{3}+y^{\prime }-y = 0 \]

[_quadrature]

5153

\[ {}{y^{\prime }}^{3}+y^{\prime } = {\mathrm e}^{y} \]

[_quadrature]

5154

\[ {}{y^{\prime }}^{3}-7 y^{\prime }+6 = 0 \]

[_quadrature]

5158

\[ {}{y^{\prime }}^{3}-a x y^{\prime }+x^{3} = 0 \]

[_quadrature]

5161

\[ {}{y^{\prime }}^{3}-2 y y^{\prime }+y^{2} = 0 \]

[_quadrature]

5166

\[ {}{y^{\prime }}^{3}+{y^{\prime }}^{2}-y = 0 \]

[_quadrature]

5167

\[ {}{y^{\prime }}^{3}-{y^{\prime }}^{2}+y^{2} = 0 \]

[_quadrature]

5170

\[ {}{y^{\prime }}^{3}+\operatorname {a0} {y^{\prime }}^{2}+\operatorname {a1} y^{\prime }+\operatorname {a2} +\operatorname {a3} y = 0 \]

[_quadrature]

5171

\[ {}{y^{\prime }}^{3}+\left (1-3 x \right ) {y^{\prime }}^{2}-x \left (1-3 x \right ) y^{\prime }-1-x^{3} = 0 \]

[_quadrature]

5172

\[ {}{y^{\prime }}^{3}-y {y^{\prime }}^{2}+y^{2} = 0 \]

[_quadrature]

5173

\[ {}{y^{\prime }}^{3}+\left (\cos \left (x \right ) \cot \left (x \right )-y\right ) {y^{\prime }}^{2}-\left (1+y \cos \left (x \right ) \cot \left (x \right )\right ) y^{\prime }+y = 0 \]

[_quadrature]

5174

\[ {}{y^{\prime }}^{3}+\left (2 x -y^{2}\right ) {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0 \]

[_quadrature]

5175

\[ {}{y^{\prime }}^{3}-\left (2 x +y^{2}\right ) {y^{\prime }}^{2}+\left (x^{2}-y^{2}+2 x y^{2}\right ) y^{\prime }-\left (x^{2}-y^{2}\right ) y^{2} = 0 \]

[_quadrature]

5176

\[ {}{y^{\prime }}^{3}-\left (x^{2}+y x +y^{2}\right ) {y^{\prime }}^{2}+x y \left (x^{2}+y x +y^{2}\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

5177

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y^{2}+y^{4}\right ) {y^{\prime }}^{2}+x y^{2} \left (x^{2}+x y^{2}+y^{4}\right ) y^{\prime }-x^{3} y^{6} = 0 \]

[_quadrature]

5179

\[ {}2 {y^{\prime }}^{3}+{y^{\prime }}^{2}-y = 0 \]

[_quadrature]

5181

\[ {}4 {y^{\prime }}^{3}+4 y^{\prime } = x \]

[_quadrature]

5184

\[ {}x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+y x \right ) y^{\prime }-y x = 0 \]

[_quadrature]

5190

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{3}+b x \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}-y^{\prime }-b x = 0 \]

[_quadrature]

5197

\[ {}\left (x +2 y\right ) {y^{\prime }}^{3}+3 \left (x +y\right ) {y^{\prime }}^{2}+\left (2 x +y\right ) y^{\prime } = 0 \]

[_quadrature]

5205

\[ {}{y^{\prime }}^{4} = \left (y-a \right )^{3} \left (y-b \right )^{2} \]

[_quadrature]

5211

\[ {}{y^{\prime }}^{4}+4 y {y^{\prime }}^{3}+6 y^{2} {y^{\prime }}^{2}-\left (1-4 y^{3}\right ) y^{\prime }-\left (3-y^{3}\right ) y = 0 \]

[_quadrature]

5212

\[ {}2 {y^{\prime }}^{4}-y y^{\prime }-2 = 0 \]

[_quadrature]

5214

\[ {}3 {y^{\prime }}^{5}-y y^{\prime }+1 = 0 \]

[_quadrature]

5215

\[ {}{y^{\prime }}^{6} = \left (y-a \right )^{4} \left (y-b \right )^{3} \]

[_quadrature]

5223

\[ {}\sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } = x \]

[_quadrature]

5224

\[ {}\sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } = y \]

[_quadrature]

5225

\[ {}\sqrt {1+{y^{\prime }}^{2}} = y^{\prime } x \]

[_quadrature]

5232

\[ {}a \cos \left (y^{\prime }\right )+b y^{\prime }+x = 0 \]

[_quadrature]

5233

\[ {}\sin \left (y^{\prime }\right )+y^{\prime } = x \]

[_quadrature]

5234

\[ {}y^{\prime } \sin \left (y^{\prime }\right )+\cos \left (y^{\prime }\right ) = y \]

[_quadrature]

5238

\[ {}{\mathrm e}^{y^{\prime }-y}-{y^{\prime }}^{2}+1 = 0 \]

[_quadrature]

5239

\[ {}\ln \left (y^{\prime }\right )+y^{\prime } x +a = 0 \]

[_quadrature]

5256

\[ {}y^{2} \left (1+{y^{\prime }}^{2}\right ) = R^{2} \]

[_quadrature]

5310

\[ {}{y^{\prime }}^{2}-5 y^{\prime }+6 = 0 \]

[_quadrature]

5311

\[ {}{y^{\prime }}^{2}-\frac {a^{2}}{x^{2}} = 0 \]

[_quadrature]

5312

\[ {}{y^{\prime }}^{2} = \frac {1-x}{x} \]

[_quadrature]

5314

\[ {}y = a y^{\prime }+b {y^{\prime }}^{2} \]

[_quadrature]

5315

\[ {}x = a y^{\prime }+b {y^{\prime }}^{2} \]

[_quadrature]

5316

\[ {}y = \sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } \]

[_quadrature]

5317

\[ {}x = \sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } \]

[_quadrature]

5318

\[ {}y^{\prime }-\frac {\sqrt {1+{y^{\prime }}^{2}}}{x} = 0 \]

[_quadrature]

5319

\[ {}x^{2} \left (1+{y^{\prime }}^{2}\right )^{3}-a^{2} = 0 \]

[_quadrature]

5320

\[ {}1+{y^{\prime }}^{2} = \frac {\left (x +a \right )^{2}}{2 a x +x^{2}} \]

[_quadrature]

5347

\[ {}x +y+1+\left (2 x +2 y+2\right ) y^{\prime } = 0 \]

[_quadrature]

5400

\[ {}y^{\prime }+a y = b \]

[_quadrature]

5588

\[ {}{y^{\prime }}^{2} \left (-x^{2}+1\right )+1 = 0 \]

[_quadrature]

5596

\[ {}y^{\prime }+b^{2} y^{2} = a^{2} \]

[_quadrature]

5652

\[ {}y^{\prime } = y \]

[_quadrature]

5657

\[ {}x y y^{\prime }-y x = y \]
i.c.

[_quadrature]

5661

\[ {}\left (1+y\right ) y^{\prime } = y \]
i.c.

[_quadrature]

5663

\[ {}2 y^{\prime } = 3 \left (y-2\right )^{{1}/{3}} \]
i.c.

[_quadrature]

5817

\[ {}y^{\prime } = 4 y^{2}-3 y+1 \]

[_quadrature]

5829

\[ {}x^{\prime }-x^{3} = x \]

[_quadrature]

5842

\[ {}y^{\prime } = {\mathrm e}^{x^{2}} \]
i.c.

[_quadrature]

5846

\[ {}y^{\prime } = y^{{1}/{3}} \]

[_quadrature]

5847

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

5853

\[ {}y^{\prime } = y^{2}-3 y+2 \]
i.c.

[_quadrature]

5881

\[ {}u^{\prime } = \alpha \left (1-u\right )-\beta u \]

[_quadrature]

5979

\[ {}y^{\prime } x = x^{2}+2 x -3 \]

[_quadrature]

5983

\[ {}x^{2} y^{\prime } = x^{3} \sin \left (3 x \right )+4 \]

[_quadrature]

6179

\[ {}1-\sqrt {a^{2}-x^{2}}\, y^{\prime } = 0 \]

[_quadrature]

6228

\[ {}x {y^{\prime }}^{2}+\left (y-1-x^{2}\right ) y^{\prime }-x \left (-1+y\right ) = 0 \]

[_quadrature]

6240

\[ {}y = 2 y^{\prime }+\sqrt {1+{y^{\prime }}^{2}} \]

[_quadrature]

6246

\[ {}\left (3 y-1\right )^{2} {y^{\prime }}^{2} = 4 y \]

[_quadrature]

6249

\[ {}y \left (3-4 y\right )^{2} {y^{\prime }}^{2} = 4-4 y \]

[_quadrature]

6625

\[ {}y^{\prime } = 3 y^{{2}/{3}} \]
i.c.

[_quadrature]

6629

\[ {}\left (1+z^{\prime }\right ) {\mathrm e}^{-z} = 1 \]

[_quadrature]

6642

\[ {}x^{\prime }+t = 1 \]

[_quadrature]

6675

\[ {}y^{\prime } \left (y^{\prime }+y\right ) = x \left (x +y\right ) \]
i.c.

[_quadrature]

6751

\[ {}{y^{\prime }}^{2}-a^{2} y^{2} = 0 \]

[_quadrature]

6752

\[ {}{y^{\prime }}^{2} = 4 x^{2} \]

[_quadrature]

6780

\[ {}{y^{\prime }}^{2} = a^{2}-y^{2} \]

[_quadrature]

6816

\[ {}y^{\prime } = {\mathrm e}^{3 x}+\sin \left (x \right ) \]

[_quadrature]

6824

\[ {}y^{\prime }+5 y = 2 \]

[_quadrature]

6826

\[ {}y^{\prime } = k y \]

[_quadrature]

6827

\[ {}y^{\prime }-2 y = 1 \]

[_quadrature]

6833

\[ {}L y^{\prime }+R y = E \]

[_quadrature]

6845

\[ {}y^{\prime } = 1+y \]
i.c.

[_quadrature]

6846

\[ {}y^{\prime } = 1+y^{2} \]
i.c.

[_quadrature]

6847

\[ {}y^{\prime } = 1+y^{2} \]
i.c.

[_quadrature]

6972

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

6973

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

6974

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

7009

\[ {}y^{\prime } = 2 x \]

[_quadrature]

7012

\[ {}y^{\prime } = k y \]

[_quadrature]

7022

\[ {}1+y^{2}+y^{2} y^{\prime } = 0 \]

[_quadrature]

7023

\[ {}y^{\prime } = {\mathrm e}^{3 x}-x \]

[_quadrature]

7024

\[ {}y^{\prime } = x \,{\mathrm e}^{x^{2}} \]

[_quadrature]

7025

\[ {}\left (x +1\right ) y^{\prime } = x \]

[_quadrature]

7026

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \]

[_quadrature]

7027

\[ {}\left (x^{2}+1\right ) y^{\prime } = \arctan \left (x \right ) \]

[_quadrature]

7028

\[ {}y^{\prime } x = 1 \]

[_quadrature]

7029

\[ {}y^{\prime } = \arcsin \left (x \right ) \]

[_quadrature]

7030

\[ {}y^{\prime } \sin \left (x \right ) = 1 \]

[_quadrature]

7031

\[ {}\left (x^{3}+1\right ) y^{\prime } = x \]

[_quadrature]

7032

\[ {}\left (x^{2}-3 x +2\right ) y^{\prime } = x \]

[_quadrature]

7033

\[ {}y^{\prime } = x \,{\mathrm e}^{x} \]
i.c.

[_quadrature]

7034

\[ {}y^{\prime } = 2 \sin \left (x \right ) \cos \left (x \right ) \]
i.c.

[_quadrature]

7035

\[ {}y^{\prime } = \ln \left (x \right ) \]
i.c.

[_quadrature]

7036

\[ {}\left (x^{2}-1\right ) y^{\prime } = 1 \]
i.c.

[_quadrature]

7037

\[ {}x \left (x^{2}-4\right ) y^{\prime } = 1 \]
i.c.

[_quadrature]

7038

\[ {}\left (x +1\right ) \left (x^{2}+1\right ) y^{\prime } = 2 x^{2}+x \]
i.c.

[_quadrature]

7311

\[ {}y^{\prime }+y = 1 \]

[_quadrature]

7313

\[ {}y^{\prime }-y = 2 \]

[_quadrature]

7315

\[ {}y^{\prime }+y = 0 \]

[_quadrature]

7317

\[ {}y^{\prime }-y = 0 \]

[_quadrature]

7672

\[ {}x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

[_quadrature]

7675

\[ {}x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-y x = 0 \]

[_quadrature]

7676

\[ {}{y^{\prime }}^{2}-\left (x^{2} y+3\right ) y^{\prime }+3 x^{2} y = 0 \]

[_quadrature]

7677

\[ {}x {y^{\prime }}^{2}-\left (1+y x \right ) y^{\prime }+y = 0 \]

[_quadrature]

7680

\[ {}y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-y x = 0 \]

[_quadrature]

7682

\[ {}\left (4 x -y\right ) {y^{\prime }}^{2}+6 \left (x -y\right ) y^{\prime }+2 x -5 y = 0 \]

[_quadrature]

7684

\[ {}x y {y^{\prime }}^{2}+\left (-1+x y^{2}\right ) y^{\prime }-y = 0 \]

[_quadrature]

7688

\[ {}x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+y x \right ) y^{\prime }-y x = 0 \]

[_quadrature]

7689

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

[_quadrature]

7770

\[ {}6 x {y^{\prime }}^{2}-\left (3 x +2 y\right ) y^{\prime }+y = 0 \]

[_quadrature]

7775

\[ {}y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x = 0 \]

[_quadrature]

7781

\[ {}x {y^{\prime }}^{2}-\left (x^{2}+1\right ) y^{\prime }+x = 0 \]

[_quadrature]

7789

\[ {}x {y^{\prime }}^{2}+\left (1-x \right ) y y^{\prime }-y^{2} = 0 \]

[_quadrature]

7953

\[ {}y^{\prime } = 1+y \]

[_quadrature]

7954

\[ {}y^{\prime } = x +1 \]

[_quadrature]

7955

\[ {}y^{\prime } = x \]

[_quadrature]

7956

\[ {}y^{\prime } = y \]

[_quadrature]

7957

\[ {}y^{\prime } = 0 \]

[_quadrature]

7958

\[ {}y^{\prime } = 1+\frac {\sec \left (x \right )}{x} \]

[_quadrature]

7963

\[ {}y^{\prime } = \frac {1}{x} \]

[_quadrature]

7966

\[ {}y^{\prime } = \sqrt {\frac {1+y}{y^{2}}} \]
i.c.

[_quadrature]

7972

\[ {}\left (x +y\right ) y^{\prime } = 0 \]

[_quadrature]

7973

\[ {}y^{\prime } x = 0 \]

[_quadrature]

7974

\[ {}\frac {y^{\prime }}{x +y} = 0 \]

[_quadrature]

7975

\[ {}\frac {y^{\prime }}{x} = 0 \]

[_quadrature]

7976

\[ {}y^{\prime } = 0 \]

[_quadrature]

7980

\[ {}y^{\prime } = \frac {1}{1-y} \]
i.c.

[_quadrature]

7981

\[ {}p^{\prime } = a p-b p^{2} \]
i.c.

[_quadrature]

7994

\[ {}f^{\prime } = \frac {1}{f} \]

[_quadrature]

8025

\[ {}x^{\prime } = 4 A k \left (\frac {x}{A}\right )^{{3}/{4}}-3 k x \]

[_quadrature]

8030

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

8032

\[ {}y^{\prime } = \sqrt {1-y^{2}} \]

[_quadrature]

8096

\[ {}w^{\prime } = -\frac {1}{2}-\frac {\sqrt {1-12 w}}{2} \]
i.c.

[_quadrature]

8188

\[ {}y^{\prime } = y \left (1-y^{2}\right ) \]

[_quadrature]

8212

\[ {}h^{2}+\frac {2 a h}{\sqrt {1+{h^{\prime }}^{2}}} = b^{2} \]

[_quadrature]

8221

\[ {}y^{\prime } = 0 \]

[_quadrature]

8222

\[ {}y^{\prime } = a \]

[_quadrature]

8223

\[ {}y^{\prime } = x \]

[_quadrature]

8224

\[ {}y^{\prime } = 1 \]

[_quadrature]

8225

\[ {}y^{\prime } = a x \]

[_quadrature]

8229

\[ {}y^{\prime } = y \]

[_quadrature]

8230

\[ {}y^{\prime } = b y \]

[_quadrature]

8232

\[ {}c y^{\prime } = 0 \]

[_quadrature]

8233

\[ {}c y^{\prime } = a \]

[_quadrature]

8234

\[ {}c y^{\prime } = a x \]

[_quadrature]

8237

\[ {}c y^{\prime } = y \]

[_quadrature]

8238

\[ {}c y^{\prime } = b y \]

[_quadrature]

8244

\[ {}a \sin \left (x \right ) y x y^{\prime } = 0 \]

[_quadrature]

8245

\[ {}f \left (x \right ) \sin \left (x \right ) y x y^{\prime } \pi = 0 \]

[_quadrature]

8251

\[ {}y^{\prime } x = 0 \]

[_quadrature]

8252

\[ {}5 y^{\prime } = 0 \]

[_quadrature]

8253

\[ {}{\mathrm e} y^{\prime } = 0 \]

[_quadrature]

8254

\[ {}\pi y^{\prime } = 0 \]

[_quadrature]

8255

\[ {}y^{\prime } \sin \left (x \right ) = 0 \]

[_quadrature]

8256

\[ {}f \left (x \right ) y^{\prime } = 0 \]

[_quadrature]

8257

\[ {}y^{\prime } x = 1 \]

[_quadrature]

8258

\[ {}y^{\prime } x = \sin \left (x \right ) \]

[_quadrature]

8259

\[ {}\left (x -1\right ) y^{\prime } = 0 \]

[_quadrature]

8260

\[ {}y y^{\prime } = 0 \]

[_quadrature]

8261

\[ {}x y y^{\prime } = 0 \]

[_quadrature]

8262

\[ {}x y \sin \left (x \right ) y^{\prime } = 0 \]

[_quadrature]

8263

\[ {}\pi y \sin \left (x \right ) y^{\prime } = 0 \]

[_quadrature]

8264

\[ {}x \sin \left (x \right ) y^{\prime } = 0 \]

[_quadrature]

8265

\[ {}x \sin \left (x \right ) {y^{\prime }}^{2} = 0 \]

[_quadrature]

8266

\[ {}y {y^{\prime }}^{2} = 0 \]

[_quadrature]

8267

\[ {}{y^{\prime }}^{n} = 0 \]

[_quadrature]

8268

\[ {}x {y^{\prime }}^{n} = 0 \]

[_quadrature]

8269

\[ {}{y^{\prime }}^{2} = x \]

[_quadrature]

8342

\[ {}y^{3} {y^{\prime \prime }}^{2}+y y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8344

\[ {}y {y^{\prime \prime }}^{3}+y^{3} y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

8345

\[ {}y {y^{\prime \prime }}^{3}+y^{3} {y^{\prime }}^{5} = 0 \]

[[_2nd_order, _missing_x]]

8393

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

9237

\[ {}y^{\prime }-\frac {1}{\sqrt {\operatorname {a4} \,x^{4}+\operatorname {a3} \,x^{3}+\operatorname {a2} \,x^{2}+\operatorname {a1} x +\operatorname {a0}}} = 0 \]

[_quadrature]

9248

\[ {}y^{\prime }+y^{2}-1 = 0 \]

[_quadrature]

9253

\[ {}y^{\prime }-y^{2}-3 y+4 = 0 \]

[_quadrature]

9259

\[ {}y^{\prime }+a y^{2}-b = 0 \]

[_quadrature]

9262

\[ {}y^{\prime }-\left (A y-a \right ) \left (B y-b \right ) = 0 \]

[_quadrature]

9275

\[ {}y^{\prime }-\operatorname {a3} y^{3}-\operatorname {a2} y^{2}-\operatorname {a1} y-\operatorname {a0} = 0 \]

[_quadrature]

9293

\[ {}y^{\prime }-\sqrt {{| y|}} = 0 \]

[_quadrature]

9295

\[ {}y^{\prime }-a \sqrt {1+y^{2}}-b = 0 \]

[_quadrature]

9312

\[ {}y^{\prime }-a \cos \left (y\right )+b = 0 \]

[_quadrature]

9325

\[ {}y^{\prime } x -\sqrt {a^{2}-x^{2}} = 0 \]

[_quadrature]

9444

\[ {}y y^{\prime }-\sqrt {a y^{2}+b} = 0 \]

[_quadrature]

9595

\[ {}y^{\prime } \cos \left (a y\right )-b \left (1-c \cos \left (a y\right )\right ) \sqrt {\cos \left (a y\right )^{2}-1+c \cos \left (a y\right )} = 0 \]

[_quadrature]

9604

\[ {}{y^{\prime }}^{2}+y^{2}-a^{2} = 0 \]

[_quadrature]

9606

\[ {}{y^{\prime }}^{2}-y^{3}+y^{2} = 0 \]

[_quadrature]

9607

\[ {}{y^{\prime }}^{2}-4 y^{3}+a y+b = 0 \]

[_quadrature]

9608

\[ {}{y^{\prime }}^{2}+a^{2} y^{2} \left (\ln \left (y\right )^{2}-1\right ) = 0 \]

[_quadrature]

9609

\[ {}{y^{\prime }}^{2}-2 y^{\prime }-y^{2} = 0 \]

[_quadrature]

9610

\[ {}{y^{\prime }}^{2}+a y^{\prime }+b x = 0 \]

[_quadrature]

9611

\[ {}{y^{\prime }}^{2}+a y^{\prime }+b y = 0 \]

[_quadrature]

9617

\[ {}{y^{\prime }}^{2}+a x y^{\prime }-b \,x^{2}-c = 0 \]

[_quadrature]

9624

\[ {}{y^{\prime }}^{2}-\left (1+4 y\right ) y^{\prime }+\left (1+4 y\right ) y = 0 \]

[_quadrature]

9626

\[ {}{y^{\prime }}^{2}+\left (b x +a y\right ) y^{\prime }+a b x y = 0 \]

[_quadrature]

9630

\[ {}{y^{\prime }}^{2}+y \left (-x +y\right ) y^{\prime }-x y^{3} = 0 \]

[_separable]

9637

\[ {}a {y^{\prime }}^{2}+b y^{\prime }-y = 0 \]

[_quadrature]

9668

\[ {}y^{\prime }-1 = 0 \]

[_quadrature]

9678

\[ {}x^{2} {y^{\prime }}^{2}+\left (a \,x^{2} y^{3}+b \right ) y^{\prime }+a b y^{3} = 0 \]

[_quadrature]

9680

\[ {}\left (x^{2}-1\right ) {y^{\prime }}^{2}-1 = 0 \]

[_quadrature]

9691

\[ {}x^{2} \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}-1 = 0 \]

[_quadrature]

9695

\[ {}y {y^{\prime }}^{2}-1 = 0 \]

[_quadrature]

9704

\[ {}y {y^{\prime }}^{2}-\left (-x +y\right ) y^{\prime }-x = 0 \]

[_quadrature]

9711

\[ {}\left (b +a y\right ) \left (1+{y^{\prime }}^{2}\right )-c = 0 \]

[_quadrature]

9719

\[ {}y^{2} {y^{\prime }}^{2}-a^{2}+y^{2} = 0 \]

[_quadrature]

9725

\[ {}\left (y^{2}-a^{2}\right ) {y^{\prime }}^{2}+y^{2} = 0 \]

[_quadrature]

9731

\[ {}\left (3 y-2\right ) {y^{\prime }}^{2}-4+4 y = 0 \]

[_quadrature]

9747

\[ {}{y^{\prime }}^{2} \left (a \cos \left (y\right )+b \right )-c \cos \left (y\right )+d = 0 \]

[_quadrature]

9751

\[ {}{y^{\prime }}^{3}-\left (y-a \right )^{2} \left (y-b \right )^{2} = 0 \]

[_quadrature]

9753

\[ {}{y^{\prime }}^{3}+y^{\prime }-y = 0 \]

[_quadrature]

9756

\[ {}{y^{\prime }}^{3}-a x y^{\prime }+x^{3} = 0 \]

[_quadrature]

9757

\[ {}{y^{\prime }}^{3}-2 y y^{\prime }+y^{2} = 0 \]

[_quadrature]

9759

\[ {}{y^{\prime }}^{3}-\left (x^{2}+y x +y^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

9763

\[ {}{y^{\prime }}^{3}-y {y^{\prime }}^{2}+y^{2} = 0 \]

[_quadrature]

9765

\[ {}a {y^{\prime }}^{3}+b {y^{\prime }}^{2}+c y^{\prime }-y-d = 0 \]

[_quadrature]

9769

\[ {}\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{3}+b x \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}+y^{\prime }+b x = 0 \]

[_quadrature]

9772

\[ {}{y^{\prime }}^{3} \sin \left (x \right )-\left (y \sin \left (x \right )-\cos \left (x \right )^{2}\right ) {y^{\prime }}^{2}-\left (y \cos \left (x \right )^{2}+\sin \left (x \right )\right ) y^{\prime }+y \sin \left (x \right ) = 0 \]

[_quadrature]

9773

\[ {}2 y {y^{\prime }}^{3}-y {y^{\prime }}^{2}+2 y^{\prime } x -x = 0 \]

[_quadrature]

9778

\[ {}{y^{\prime }}^{4}-\left (y-a \right )^{3} \left (y-b \right )^{2} = 0 \]

[_quadrature]

9781

\[ {}{y^{\prime }}^{6}-\left (y-a \right )^{4} \left (y-b \right )^{3} = 0 \]

[_quadrature]

9782

\[ {}x^{2} \left (1+{y^{\prime }}^{2}\right )^{3}-a^{2} = 0 \]

[_quadrature]

9786

\[ {}a {y^{\prime }}^{m}+b {y^{\prime }}^{n}-y = 0 \]

[_quadrature]

9799

\[ {}\sin \left (y^{\prime }\right )+y^{\prime }-x = 0 \]

[_quadrature]

9800

\[ {}a \cos \left (y^{\prime }\right )+b y^{\prime }+x = 0 \]

[_quadrature]

9801

\[ {}{y^{\prime }}^{2} \sin \left (y^{\prime }\right )-y = 0 \]

[_quadrature]

10806

\[ {}x \left (a y^{\prime }+b y^{\prime \prime }+c y^{\prime \prime \prime }+e y^{\prime \prime \prime \prime }\right ) y = 0 \]

[[_high_order, _missing_x]]

11067

\[ {}2 y^{\prime } y^{\prime \prime \prime }-3 {y^{\prime }}^{2} = 0 \]

[[_3rd_order, _missing_x]]

11223

\[ {}y^{\prime } = f \left (x \right ) \]

[_quadrature]

11224

\[ {}y^{\prime } = f \left (y\right ) \]

[_quadrature]

11548

\[ {}y y^{\prime }-y = A \]

[_quadrature]

12098

\[ {}{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+y x = 0 \]

[_quadrature]

12100

\[ {}{y^{\prime }}^{2}+y^{2} = 1 \]

[_quadrature]

12102

\[ {}\left (x^{2}+1\right ) {y^{\prime }}^{2} = 1 \]

[_quadrature]

12103

\[ {}{y^{\prime }}^{3}-\left (2 x +y^{2}\right ) {y^{\prime }}^{2}+\left (x^{2}-y^{2}+2 x y^{2}\right ) y^{\prime }-\left (x^{2}-y^{2}\right ) y^{2} = 0 \]

[_quadrature]

12123

\[ {}y^{2} \left (1+{y^{\prime }}^{2}\right ) = a^{2} \]

[_quadrature]

12137

\[ {}x^{2} {y^{\prime }}^{2}-\left (x -1\right )^{2} = 0 \]

[_quadrature]

12139

\[ {}4 {y^{\prime }}^{2} = 9 x \]

[_quadrature]

12140

\[ {}y \left (3-4 y\right )^{2} {y^{\prime }}^{2} = 4-4 y \]

[_quadrature]

12249

\[ {}x^{\prime } = -x^{2} \]

[_quadrature]

12251

\[ {}x^{\prime } = {\mathrm e}^{-x} \]

[_quadrature]

12256

\[ {}x^{\prime } = x \left (1-\frac {x}{4}\right ) \]

[_quadrature]

12258

\[ {}x^{\prime } = t \cos \left (t^{2}\right ) \]
i.c.

[_quadrature]

12259

\[ {}x^{\prime } = \frac {1+t}{\sqrt {t}} \]
i.c.

[_quadrature]

12261

\[ {}x^{\prime } = t \,{\mathrm e}^{-2 t} \]

[_quadrature]

12262

\[ {}x^{\prime } = \frac {1}{t \ln \left (t \right )} \]

[_quadrature]

12263

\[ {}\sqrt {t}\, x^{\prime } = \cos \left (\sqrt {t}\right ) \]

[_quadrature]

12264

\[ {}x^{\prime } = \frac {{\mathrm e}^{-t}}{\sqrt {t}} \]
i.c.

[_quadrature]

12266

\[ {}x^{\prime } = \sqrt {x} \]
i.c.

[_quadrature]

12267

\[ {}x^{\prime } = {\mathrm e}^{-2 x} \]
i.c.

[_quadrature]

12268

\[ {}y^{\prime } = 1+y^{2} \]

[_quadrature]

12269

\[ {}u^{\prime } = \frac {1}{5-2 u} \]

[_quadrature]

12270

\[ {}x^{\prime } = a x+b \]

[_quadrature]

12271

\[ {}Q^{\prime } = \frac {Q}{4+Q^{2}} \]

[_quadrature]

12272

\[ {}x^{\prime } = {\mathrm e}^{x^{2}} \]

[_quadrature]

12273

\[ {}y^{\prime } = r \left (a -y\right ) \]

[_quadrature]

12278

\[ {}y^{\prime }+y+\frac {1}{y} = 0 \]

[_quadrature]

12280

\[ {}y^{\prime } = \frac {1}{2 y+1} \]
i.c.

[_quadrature]

12284

\[ {}x^{\prime } = x \left (4+x\right ) \]
i.c.

[_quadrature]

12320

\[ {}x^{\prime } = a x+b \]

[_quadrature]

12326

\[ {}x^{\prime } = a x+b x^{3} \]

[_quadrature]

12482

\[ {}{y^{\prime }}^{2}-4 y = 0 \]

[_quadrature]

12493

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

12866

\[ {}x^{\prime } = \sin \left (t \right )+\cos \left (t \right ) \]

[_quadrature]

12867

\[ {}y^{\prime } = \frac {1}{x^{2}-1} \]

[_quadrature]

12868

\[ {}u^{\prime } = 4 t \ln \left (t \right ) \]

[_quadrature]

12869

\[ {}z^{\prime } = x \,{\mathrm e}^{-2 x} \]

[_quadrature]

12870

\[ {}T^{\prime } = {\mathrm e}^{-t} \sin \left (2 t \right ) \]

[_quadrature]

12871

\[ {}x^{\prime } = \sec \left (t \right )^{2} \]
i.c.

[_quadrature]

12872

\[ {}y^{\prime } = x -\frac {1}{3} x^{3} \]
i.c.

[_quadrature]

12873

\[ {}x^{\prime } = 2 \sin \left (t \right )^{2} \]
i.c.

[_quadrature]

12874

\[ {}x V^{\prime } = x^{2}+1 \]
i.c.

[_quadrature]

12876

\[ {}x^{\prime } = -x+1 \]

[_quadrature]

12877

\[ {}x^{\prime } = x \left (2-x\right ) \]

[_quadrature]

12878

\[ {}x^{\prime } = \left (x+1\right ) \left (2-x\right ) \sin \left (x\right ) \]

[_quadrature]

12879

\[ {}x^{\prime } = -x \left (-x+1\right ) \left (2-x\right ) \]

[_quadrature]

12880

\[ {}x^{\prime } = x^{2}-x^{4} \]

[_quadrature]

12884

\[ {}x^{\prime } = -x^{2} \]

[_quadrature]

12886

\[ {}x^{\prime }+p x = q \]

[_quadrature]

12889

\[ {}x^{\prime } = \lambda x \]

[_quadrature]

12890

\[ {}m v^{\prime } = -m g +k v^{2} \]

[_quadrature]

12891

\[ {}x^{\prime } = k x-x^{2} \]
i.c.

[_quadrature]

12892

\[ {}x^{\prime } = -x \left (k^{2}+x^{2}\right ) \]
i.c.

[_quadrature]

12911

\[ {}x^{\prime } = k x-x^{2} \]

[_quadrature]

13021

\[ {}{y^{\prime }}^{2} = 9 y^{4} \]

[_quadrature]

13023

\[ {}x^{2}+{y^{\prime }}^{2} = 1 \]

[_quadrature]

13025

\[ {}x = {y^{\prime }}^{3}-y^{\prime }+2 \]

[_quadrature]

13027

\[ {}y = {y^{\prime }}^{4}-{y^{\prime }}^{3}-2 \]

[_quadrature]

13028

\[ {}{y^{\prime }}^{2}+y^{2} = 4 \]

[_quadrature]

13035

\[ {}{y^{\prime }}^{3}-y^{\prime } {\mathrm e}^{2 x} = 0 \]

[_quadrature]

13048

\[ {}y \left (1+{y^{\prime }}^{2}\right ) = a \]

[_quadrature]

13128

\[ {}y y^{\prime } = 1 \]

[_quadrature]

13381

\[ {}y = y y^{\prime }+y^{\prime }-{y^{\prime }}^{2} \]

[_quadrature]

13477

\[ {}y^{\prime }+\frac {1}{2 y} = 0 \]

[_quadrature]

13479

\[ {}y^{\prime }-2 \sqrt {{| y|}} = 0 \]

[_quadrature]

13481

\[ {}y^{\prime }-y^{2} = 1 \]

[_quadrature]

13483

\[ {}y^{\prime } x -\sin \left (x \right ) = 0 \]

[_quadrature]

13484

\[ {}y^{\prime }+3 y = 0 \]

[_quadrature]

13492

\[ {}{y^{\prime }}^{2}-4 y = 0 \]

[_quadrature]

13494

\[ {}{y^{\prime }}^{2} = x^{6} \]

[_quadrature]

13500

\[ {}y^{\prime } = 3 y^{{2}/{3}} \]

[_quadrature]

13513

\[ {}y^{\prime } = 1-x \]

[_quadrature]

13514

\[ {}y^{\prime } = x -1 \]

[_quadrature]

13515

\[ {}y^{\prime } = 1-y \]

[_quadrature]

13516

\[ {}y^{\prime } = 1+y \]

[_quadrature]

13517

\[ {}y^{\prime } = y^{2}-4 \]

[_quadrature]

13518

\[ {}y^{\prime } = 4-y^{2} \]

[_quadrature]

13527

\[ {}y^{\prime } = 1+y^{2} \]

[_quadrature]

13528

\[ {}y^{\prime } = y^{2}-3 y \]

[_quadrature]

13530

\[ {}y^{\prime } = {| y|} \]

[_quadrature]

13538

\[ {}y^{\prime } = \ln \left (-1+y\right ) \]

[_quadrature]

13539

\[ {}y^{\prime } = \sqrt {\left (2+y\right ) \left (-1+y\right )} \]

[_quadrature]

13547

\[ {}y^{\prime } = 4 y-5 \]
i.c.

[_quadrature]

13548

\[ {}y^{\prime }+3 y = 1 \]
i.c.

[_quadrature]

13549

\[ {}y^{\prime } = b +a y \]
i.c.

[_quadrature]

13550

\[ {}y^{\prime } = x^{2}+{\mathrm e}^{x}-\sin \left (x \right ) \]
i.c.

[_quadrature]

13559

\[ {}y^{\prime } = 3 x +1 \]
i.c.

[_quadrature]

13560

\[ {}y^{\prime } = x +\frac {1}{x} \]
i.c.

[_quadrature]

13561

\[ {}y^{\prime } = 2 \sin \left (x \right ) \]
i.c.

[_quadrature]

13562

\[ {}y^{\prime } = x \sin \left (x \right ) \]
i.c.

[_quadrature]

13563

\[ {}y^{\prime } = \frac {1}{x -1} \]
i.c.

[_quadrature]

13564

\[ {}y^{\prime } = \frac {1}{x -1} \]
i.c.

[_quadrature]

13565

\[ {}y^{\prime } = \frac {1}{x^{2}-1} \]
i.c.

[_quadrature]

13566

\[ {}y^{\prime } = \frac {1}{x^{2}-1} \]
i.c.

[_quadrature]

13567

\[ {}y^{\prime } = \tan \left (x \right ) \]
i.c.

[_quadrature]

13568

\[ {}y^{\prime } = \tan \left (x \right ) \]
i.c.

[_quadrature]

13569

\[ {}y^{\prime } = 3 y \]
i.c.

[_quadrature]

13570

\[ {}y^{\prime } = 1-y \]
i.c.

[_quadrature]

13571

\[ {}y^{\prime } = 1-y \]
i.c.

[_quadrature]

13575

\[ {}y^{\prime } = -2 y+y^{2} \]
i.c.

[_quadrature]

13579

\[ {}2 y y^{\prime } = 1 \]

[_quadrature]

13584

\[ {}y^{\prime } = 1+4 y \]
i.c.

[_quadrature]

13597

\[ {}y^{\prime } = \frac {1}{x -1} \]
i.c.

[_quadrature]

13604

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

13605

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

13606

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

13607

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

13608

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

13609

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

13624

\[ {}y^{\prime } = \sqrt {\left (2+y\right ) \left (-1+y\right )} \]
i.c.

[_quadrature]

13671

\[ {}y^{\prime }-i y = 0 \]
i.c.

[_quadrature]

13766

\[ {}y^{\prime } = 2 y+1 \]

[_quadrature]

13767

\[ {}y^{\prime } = 2-y \]

[_quadrature]

13768

\[ {}y^{\prime } = {\mathrm e}^{-y} \]

[_quadrature]

13769

\[ {}x^{\prime } = 1+x^{2} \]

[_quadrature]

13774

\[ {}y^{\prime } = \frac {1}{2 y+1} \]

[_quadrature]

13776

\[ {}y^{\prime } = y \left (1-y\right ) \]

[_quadrature]

13781

\[ {}y^{\prime } = y^{2}-4 \]

[_quadrature]

13783

\[ {}y^{\prime } = \sec \left (y\right ) \]

[_quadrature]

13786

\[ {}y^{\prime } = -y^{2} \]
i.c.

[_quadrature]

13788

\[ {}y^{\prime } = -y^{2} \]
i.c.

[_quadrature]

13790

\[ {}y^{\prime } = 2 y+1 \]
i.c.

[_quadrature]

13793

\[ {}y^{\prime } = \frac {1-y^{2}}{y} \]
i.c.

[_quadrature]

13795

\[ {}y^{\prime } = \frac {1}{2 y+3} \]
i.c.

[_quadrature]

13797

\[ {}y^{\prime } = \frac {y^{2}+5}{y} \]
i.c.

[_quadrature]

13798

\[ {}y^{\prime } = t^{2}+t \]

[_quadrature]

13799

\[ {}y^{\prime } = t^{2}+1 \]

[_quadrature]

13800

\[ {}y^{\prime } = 1-2 y \]

[_quadrature]

13801

\[ {}y^{\prime } = 4 y^{2} \]

[_quadrature]

13802

\[ {}y^{\prime } = 2 y \left (1-y\right ) \]

[_quadrature]

13804

\[ {}y^{\prime } = 3 y \left (1-y\right ) \]
i.c.

[_quadrature]

13808

\[ {}S^{\prime } = S^{3}-2 S^{2}+S \]
i.c.

[_quadrature]

13809

\[ {}S^{\prime } = S^{3}-2 S^{2}+S \]
i.c.

[_quadrature]

13810

\[ {}S^{\prime } = S^{3}-2 S^{2}+S \]
i.c.

[_quadrature]

13811

\[ {}S^{\prime } = S^{3}-2 S^{2}+S \]
i.c.

[_quadrature]

13812

\[ {}S^{\prime } = S^{3}-2 S^{2}+S \]
i.c.

[_quadrature]

13813

\[ {}y^{\prime } = y^{2}+y \]

[_quadrature]

13814

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

13815

\[ {}y^{\prime } = y^{3}+y^{2} \]

[_quadrature]

13816

\[ {}y^{\prime } = -t^{2}+2 \]

[_quadrature]

13820

\[ {}y^{\prime } = t^{2}-2 \]

[_quadrature]

13821

\[ {}\theta ^{\prime } = \frac {9}{10}-\frac {11 \cos \left (\theta \right )}{10} \]

[_quadrature]

13822

\[ {}\theta ^{\prime } = 2 \]

[_quadrature]

13823

\[ {}\theta ^{\prime } = \frac {11}{10}-\frac {9 \cos \left (\theta \right )}{10} \]

[_quadrature]

13824

\[ {}v^{\prime } = -\frac {v}{R C} \]

[_quadrature]

13825

\[ {}v^{\prime } = \frac {K -v}{R C} \]

[_quadrature]

13827

\[ {}y^{\prime } = 2 y+1 \]
i.c.

[_quadrature]

13830

\[ {}y^{\prime } = \sin \left (y\right ) \]
i.c.

[_quadrature]

13831

\[ {}w^{\prime } = \left (3-w\right ) \left (w+1\right ) \]
i.c.

[_quadrature]

13832

\[ {}w^{\prime } = \left (3-w\right ) \left (w+1\right ) \]
i.c.

[_quadrature]

13833

\[ {}y^{\prime } = {\mathrm e}^{\frac {2}{y}} \]
i.c.

[_quadrature]

13834

\[ {}y^{\prime } = {\mathrm e}^{\frac {2}{y}} \]
i.c.

[_quadrature]

13835

\[ {}y^{\prime } = y^{2}-y^{3} \]
i.c.

[_quadrature]

13837

\[ {}y^{\prime } = \sqrt {y} \]
i.c.

[_quadrature]

13838

\[ {}y^{\prime } = 2-y \]
i.c.

[_quadrature]

13839

\[ {}\theta ^{\prime } = \frac {9}{10}-\frac {11 \cos \left (\theta \right )}{10} \]
i.c.

[_quadrature]

13840

\[ {}y^{\prime } = y \left (y-1\right ) \left (y-3\right ) \]
i.c.

[_quadrature]

13841

\[ {}y^{\prime } = y \left (y-1\right ) \left (y-3\right ) \]
i.c.

[_quadrature]

13842

\[ {}y^{\prime } = y \left (y-1\right ) \left (y-3\right ) \]
i.c.

[_quadrature]

13843

\[ {}y^{\prime } = y \left (y-1\right ) \left (y-3\right ) \]
i.c.

[_quadrature]

13844

\[ {}y^{\prime } = -y^{2} \]

[_quadrature]

13845

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

13847

\[ {}y^{\prime } = \frac {1}{\left (y+2\right )^{2}} \]
i.c.

[_quadrature]

13849

\[ {}y^{\prime } = 3 y \left (-2+y\right ) \]
i.c.

[_quadrature]

13850

\[ {}y^{\prime } = 3 y \left (-2+y\right ) \]
i.c.

[_quadrature]

13851

\[ {}y^{\prime } = 3 y \left (-2+y\right ) \]
i.c.

[_quadrature]

13852

\[ {}y^{\prime } = 3 y \left (-2+y\right ) \]
i.c.

[_quadrature]

13853

\[ {}y^{\prime } = y^{2}-4 y-12 \]
i.c.

[_quadrature]

13854

\[ {}y^{\prime } = y^{2}-4 y-12 \]
i.c.

[_quadrature]

13855

\[ {}y^{\prime } = y^{2}-4 y-12 \]
i.c.

[_quadrature]

13856

\[ {}y^{\prime } = y^{2}-4 y-12 \]
i.c.

[_quadrature]

13857

\[ {}y^{\prime } = \cos \left (y\right ) \]
i.c.

[_quadrature]

13858

\[ {}y^{\prime } = \cos \left (y\right ) \]
i.c.

[_quadrature]

13859

\[ {}y^{\prime } = \cos \left (y\right ) \]
i.c.

[_quadrature]

13860

\[ {}y^{\prime } = \cos \left (y\right ) \]
i.c.

[_quadrature]

13861

\[ {}w^{\prime } = w \cos \left (w\right ) \]

[_quadrature]

13862

\[ {}w^{\prime } = w \cos \left (w\right ) \]
i.c.

[_quadrature]

13863

\[ {}w^{\prime } = w \cos \left (w\right ) \]
i.c.

[_quadrature]

13864

\[ {}w^{\prime } = w \cos \left (w\right ) \]
i.c.

[_quadrature]

13865

\[ {}w^{\prime } = w \cos \left (w\right ) \]
i.c.

[_quadrature]

13866

\[ {}w^{\prime } = \left (1-w\right ) \sin \left (w\right ) \]

[_quadrature]

13867

\[ {}y^{\prime } = \frac {1}{-2+y} \]

[_quadrature]

13868

\[ {}v^{\prime } = -v^{2}-2 v-2 \]

[_quadrature]

13869

\[ {}w^{\prime } = 3 w^{3}-12 w^{2} \]

[_quadrature]

13870

\[ {}y^{\prime } = 1+\cos \left (y\right ) \]

[_quadrature]

13871

\[ {}y^{\prime } = \tan \left (y\right ) \]

[_quadrature]

13872

\[ {}y^{\prime } = y \ln \left ({| y|}\right ) \]

[_quadrature]

13873

\[ {}w^{\prime } = \left (w^{2}-2\right ) \arctan \left (w\right ) \]

[_quadrature]

13874

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

13875

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

13876

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

13877

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

13878

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

13879

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

13880

\[ {}y^{\prime } = y \cos \left (\frac {\pi y}{2}\right ) \]

[_quadrature]

13881

\[ {}y^{\prime } = y-y^{2} \]

[_quadrature]

13882

\[ {}y^{\prime } = y \sin \left (\frac {\pi y}{2}\right ) \]

[_quadrature]

13883

\[ {}y^{\prime } = y^{3}-y^{2} \]

[_quadrature]

13884

\[ {}y^{\prime } = \cos \left (\frac {\pi y}{2}\right ) \]

[_quadrature]

13885

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

13886

\[ {}y^{\prime } = y \sin \left (\frac {\pi y}{2}\right ) \]

[_quadrature]

13887

\[ {}y^{\prime } = y^{2}-y^{3} \]

[_quadrature]

13927

\[ {}y^{\prime } = 3 y \]

[_quadrature]

13928

\[ {}y^{\prime } = t^{2} \left (t^{2}+1\right ) \]

[_quadrature]

13929

\[ {}y^{\prime } = -\sin \left (y\right )^{5} \]

[_quadrature]

13931

\[ {}y^{\prime } = \sin \left (y\right )^{2} \]

[_quadrature]

13934

\[ {}y^{\prime } = 3-2 y \]

[_quadrature]

13940

\[ {}y^{\prime } = 3+y^{2} \]

[_quadrature]

13941

\[ {}y^{\prime } = 2 y-y^{2} \]

[_quadrature]

13951

\[ {}y^{\prime } = 1-y^{2} \]
i.c.

[_quadrature]

13953

\[ {}y^{\prime } = y^{2}-2 y+1 \]
i.c.

[_quadrature]

13958

\[ {}y^{\prime } = 3-y^{2} \]
i.c.

[_quadrature]

14141

\[ {}y^{\prime } = 3-\sin \left (x \right ) \]

[_quadrature]

14142

\[ {}y^{\prime } = 3-\sin \left (y\right ) \]

[_quadrature]

14144

\[ {}y^{\prime } x = \arcsin \left (x^{2}\right ) \]

[_quadrature]

14151

\[ {}y^{\prime } = 4 x^{3} \]

[_quadrature]

14152

\[ {}y^{\prime } = 20 \,{\mathrm e}^{-4 x} \]

[_quadrature]

14153

\[ {}y^{\prime } x +\sqrt {x} = 2 \]

[_quadrature]

14154

\[ {}\sqrt {x +4}\, y^{\prime } = 1 \]

[_quadrature]

14155

\[ {}y^{\prime } = x \cos \left (x^{2}\right ) \]

[_quadrature]

14156

\[ {}y^{\prime } = \cos \left (x \right ) x \]

[_quadrature]

14157

\[ {}x = \left (x^{2}-9\right ) y^{\prime } \]

[_quadrature]

14158

\[ {}1 = \left (x^{2}-9\right ) y^{\prime } \]

[_quadrature]

14159

\[ {}1 = x^{2}-9 y^{\prime } \]

[_quadrature]

14163

\[ {}y^{\prime } = 40 x \,{\mathrm e}^{2 x} \]
i.c.

[_quadrature]

14164

\[ {}\left (x +6\right )^{{1}/{3}} y^{\prime } = 1 \]
i.c.

[_quadrature]

14165

\[ {}y^{\prime } = \frac {x -1}{x +1} \]
i.c.

[_quadrature]

14166

\[ {}y^{\prime } x +2 = \sqrt {x} \]
i.c.

[_quadrature]

14167

\[ {}\cos \left (x \right ) y^{\prime }-\sin \left (x \right ) = 0 \]
i.c.

[_quadrature]

14168

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1 \]
i.c.

[_quadrature]

14170

\[ {}y^{\prime } = \sin \left (\frac {x}{2}\right ) \]

[_quadrature]

14171

\[ {}y^{\prime } = \sin \left (\frac {x}{2}\right ) \]
i.c.

[_quadrature]

14172

\[ {}y^{\prime } = \sin \left (\frac {x}{2}\right ) \]
i.c.

[_quadrature]

14173

\[ {}y^{\prime } = 3 \sqrt {x +3} \]

[_quadrature]

14174

\[ {}y^{\prime } = 3 \sqrt {x +3} \]
i.c.

[_quadrature]

14175

\[ {}y^{\prime } = 3 \sqrt {x +3} \]
i.c.

[_quadrature]

14176

\[ {}y^{\prime } = 3 \sqrt {x +3} \]
i.c.

[_quadrature]

14177

\[ {}y^{\prime } = x \,{\mathrm e}^{-x^{2}} \]
i.c.

[_quadrature]

14178

\[ {}y^{\prime } = \frac {x}{\sqrt {x^{2}+5}} \]
i.c.

[_quadrature]

14179

\[ {}y^{\prime } = \frac {1}{x^{2}+1} \]
i.c.

[_quadrature]

14180

\[ {}y^{\prime } = {\mathrm e}^{-9 x^{2}} \]
i.c.

[_quadrature]

14181

\[ {}y^{\prime } x = \sin \left (x \right ) \]
i.c.

[_quadrature]

14182

\[ {}y^{\prime } x = \sin \left (x^{2}\right ) \]
i.c.

[_quadrature]

14183

\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & x <0 \\ 1 & 0\le x \end {array}\right . \]
i.c.

[_quadrature]

14184

\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & x <1 \\ 1 & 1\le x \end {array}\right . \]
i.c.

[_quadrature]

14185

\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & x <1 \\ 1 & 1\le x <2 \\ 0 & 2\le x \end {array}\right . \]
i.c.

[_quadrature]

14188

\[ {}y^{\prime }-y^{3} = 8 \]

[_quadrature]

14191

\[ {}y^{3}-25 y+y^{\prime } = 0 \]

[_quadrature]

14194

\[ {}y^{\prime }+2 y-y^{2} = -2 \]

[_quadrature]

14196

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

14200

\[ {}y^{\prime } = \sqrt {x^{2}+1} \]

[_quadrature]

14201

\[ {}y^{\prime }+4 y = 8 \]

[_quadrature]

14208

\[ {}y^{\prime } = y^{2}+9 \]

[_quadrature]

14218

\[ {}y^{\prime }-4 y = 2 \]

[_quadrature]

14220

\[ {}y^{\prime } = \sin \left (y\right ) \]

[_quadrature]

14222

\[ {}y^{\prime } = 200 y-2 y^{2} \]

[_quadrature]

14226

\[ {}y^{\prime } = \tan \left (y\right ) \]

[_quadrature]

14231

\[ {}y^{\prime } = {\mathrm e}^{-y} \]

[_quadrature]

14232

\[ {}y^{\prime } = {\mathrm e}^{-y}+1 \]

[_quadrature]

14237

\[ {}y^{\prime } = 200 y-2 y^{2} \]

[_quadrature]

14238

\[ {}y^{\prime }-2 y = -10 \]
i.c.

[_quadrature]

14250

\[ {}y^{\prime } = 4 y+8 \]

[_quadrature]

14251

\[ {}y^{\prime }-{\mathrm e}^{2 x} = 0 \]

[_quadrature]

14253

\[ {}y^{\prime }+4 y = y^{3} \]

[_quadrature]

14255

\[ {}y^{\prime }+2 y = 6 \]

[_quadrature]

14265

\[ {}y^{\prime }-3 y = 6 \]
i.c.

[_quadrature]

14266

\[ {}y^{\prime }-3 y = 6 \]
i.c.

[_quadrature]

14282

\[ {}y^{\prime }+3 y = 3 y^{3} \]

[_quadrature]

14325

\[ {}x^{2} y^{\prime }-\sqrt {x} = 3 \]

[_quadrature]

14335

\[ {}\left (y^{2}-4\right ) y^{\prime } = y \]

[_quadrature]

14336

\[ {}\left (x^{2}-4\right ) y^{\prime } = x \]

[_quadrature]

14341

\[ {}\sin \left (x \right )+2 \cos \left (x \right ) y^{\prime } = 0 \]

[_quadrature]

14349

\[ {}y^{2}+1-y^{\prime } = 0 \]

[_quadrature]

14352

\[ {}\left (x +2\right ) y^{\prime }-x^{3} = 0 \]

[_quadrature]

14362

\[ {}y^{\prime }+2 x = \sin \left (x \right ) \]

[_quadrature]

14946

\[ {}{y^{\prime }}^{2}+y = 0 \]

[_quadrature]

14950

\[ {}2 x -1-y^{\prime } = 0 \]

[_quadrature]

14952

\[ {}y^{\prime }+2 y = 0 \]

[_quadrature]

14969

\[ {}y^{\prime } = \left (x^{2}-1\right ) \left (x^{3}-3 x \right )^{3} \]

[_quadrature]

14970

\[ {}y^{\prime } = x \sin \left (x^{2}\right ) \]

[_quadrature]

14971

\[ {}y^{\prime } = \frac {x}{\sqrt {x^{2}-16}} \]

[_quadrature]

14972

\[ {}y^{\prime } = \frac {1}{x \ln \left (x \right )} \]

[_quadrature]

14973

\[ {}y^{\prime } = x \ln \left (x \right ) \]

[_quadrature]

14974

\[ {}y^{\prime } = x \,{\mathrm e}^{-x} \]

[_quadrature]

14975

\[ {}y^{\prime } = \frac {-2 x -10}{\left (x +2\right ) \left (x -4\right )} \]

[_quadrature]

14976

\[ {}y^{\prime } = \frac {-x^{2}+x}{\left (x +1\right ) \left (x^{2}+1\right )} \]

[_quadrature]

14977

\[ {}y^{\prime } = \frac {\sqrt {x^{2}-16}}{x} \]

[_quadrature]

14978

\[ {}y^{\prime } = \left (-x^{2}+4\right )^{{3}/{2}} \]

[_quadrature]

14979

\[ {}y^{\prime } = \frac {1}{x^{2}-16} \]

[_quadrature]

14980

\[ {}y^{\prime } = \cos \left (x \right ) \cot \left (x \right ) \]

[_quadrature]

14981

\[ {}y^{\prime } = \sin \left (x \right )^{3} \tan \left (x \right ) \]

[_quadrature]

14982

\[ {}y^{\prime }+2 y = 0 \]
i.c.

[_quadrature]

14990

\[ {}y^{\prime } = 4 x^{3}-x +2 \]
i.c.

[_quadrature]

14991

\[ {}y^{\prime } = \sin \left (2 t \right )-\cos \left (2 t \right ) \]
i.c.

[_quadrature]

14992

\[ {}y^{\prime } = \frac {\cos \left (\frac {1}{x}\right )}{x^{2}} \]
i.c.

[_quadrature]

14993

\[ {}y^{\prime } = \frac {\ln \left (x \right )}{x} \]
i.c.

[_quadrature]

15000

\[ {}y^{\prime } = \sin \left (x \right )^{4} \]
i.c.

[_quadrature]

15014

\[ {}y^{\prime } = x \,{\mathrm e}^{-x^{2}} \]

[_quadrature]

15015

\[ {}y^{\prime } = \sin \left (x \right ) x^{2} \]

[_quadrature]

15016

\[ {}y^{\prime } = \frac {2 x^{2}-x +1}{\left (x -1\right ) \left (x^{2}+1\right )} \]

[_quadrature]

15017

\[ {}y^{\prime } = \frac {x^{2}}{\sqrt {x^{2}-1}} \]

[_quadrature]

15021

\[ {}y^{\prime } = \cos \left (x \right )^{2} \sin \left (x \right ) \]
i.c.

[_quadrature]

15022

\[ {}y^{\prime } = \frac {4 x -9}{3 \left (x -3\right )^{{2}/{3}}} \]
i.c.

[_quadrature]

15026

\[ {}y^{\prime } = y^{{1}/{5}} \]
i.c.

[_quadrature]

15030

\[ {}y^{\prime } = 6 y^{{2}/{3}} \]
i.c.

[_quadrature]

15033

\[ {}y^{\prime } = \frac {1}{t^{2}+1} \]
i.c.

[_quadrature]

15035

\[ {}y^{\prime } = \sqrt {-1+y^{2}} \]
i.c.

[_quadrature]

15037

\[ {}y^{\prime } = \sqrt {-1+y^{2}} \]
i.c.

[_quadrature]

15038

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]
i.c.

[_quadrature]

15039

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]
i.c.

[_quadrature]

15040

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]
i.c.

[_quadrature]

15041

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]
i.c.

[_quadrature]

15052

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

15055

\[ {}y^{\prime } = -y^{3} \]
i.c.

[_quadrature]

15059

\[ {}y^{\prime } = \frac {1+y^{2}}{y} \]

[_quadrature]

15068

\[ {}y^{\prime }+k y = 0 \]

[_quadrature]

15087

\[ {}y^{\prime } = y^{2}-3 y+2 \]

[_quadrature]

15090

\[ {}y^{\prime } = y^{3}+1 \]

[_quadrature]

15091

\[ {}y^{\prime } = y^{3}-1 \]

[_quadrature]

15092

\[ {}y^{\prime } = y^{3}+y \]

[_quadrature]

15093

\[ {}y^{\prime } = y^{3}-y^{2} \]

[_quadrature]

15094

\[ {}y^{\prime } = y^{3}-y \]

[_quadrature]

15095

\[ {}y^{\prime } = y^{3}+y \]

[_quadrature]

15096

\[ {}y^{\prime } = x^{3} \]
i.c.

[_quadrature]

15097

\[ {}y^{\prime } = \cos \left (t \right ) \]
i.c.

[_quadrature]

15098

\[ {}1 = \cos \left (y\right ) y^{\prime } \]
i.c.

[_quadrature]

15099

\[ {}\sin \left (y \right )^{2} = x^{\prime } \]
i.c.

[_quadrature]

15104

\[ {}y^{\prime } = \frac {y}{\ln \left (y\right )} \]
i.c.

[_quadrature]

15105

\[ {}y^{\prime } = t \sin \left (t^{2}\right ) \]
i.c.

[_quadrature]

15106

\[ {}y^{\prime } = \frac {1}{x^{2}+1} \]
i.c.

[_quadrature]

15120

\[ {}y^{\prime } = \left (3 y+1\right )^{4} \]

[_quadrature]

15121

\[ {}y^{\prime } = 3 y \]

[_quadrature]

15122

\[ {}y^{\prime } = -y \]

[_quadrature]

15123

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

15124

\[ {}y^{\prime } = 16 y-8 y^{2} \]

[_quadrature]

15125

\[ {}y^{\prime } = 12+4 y-y^{2} \]

[_quadrature]

15127

\[ {}y^{\prime }-y = 10 \]

[_quadrature]

15195

\[ {}3 t^{2}-y^{\prime } = 0 \]

[_quadrature]

15196

\[ {}-1+3 y^{2} y^{\prime } = 0 \]

[_quadrature]

15237

\[ {}2 t +2 y+\left (2 t +2 y\right ) y^{\prime } = 0 \]

[_quadrature]

15318

\[ {}y^{\prime }+y = 5 \]

[_quadrature]

15828

\[ {}y^{\prime } = y+3 y^{{1}/{3}} \]

[_quadrature]

15831

\[ {}y^{\prime } = \sqrt {1-y^{2}} \]

[_quadrature]

15834

\[ {}y^{\prime } = 1-\cot \left (y\right ) \]

[_quadrature]

15840

\[ {}y^{\prime } = x +1 \]

[_quadrature]

15844

\[ {}y^{\prime } = \left (-1+y\right )^{2} \]

[_quadrature]

15852

\[ {}y^{\prime } = 1-x \]

[_quadrature]

15856

\[ {}y^{\prime } = 1 \]

[_quadrature]

15857

\[ {}y^{\prime } = \frac {1}{x} \]

[_quadrature]

15858

\[ {}y^{\prime } = y \]

[_quadrature]

15859

\[ {}y^{\prime } = y^{2} \]

[_quadrature]

15871

\[ {}{\mathrm e}^{-y} y^{\prime } = 1 \]

[_quadrature]

15884

\[ {}\cos \left (y^{\prime }\right ) = 0 \]

[_quadrature]

15885

\[ {}{\mathrm e}^{y^{\prime }} = 1 \]

[_quadrature]

15886

\[ {}\sin \left (y^{\prime }\right ) = x \]

[_quadrature]

15887

\[ {}\ln \left (y^{\prime }\right ) = x \]

[_quadrature]

15888

\[ {}\tan \left (y^{\prime }\right ) = 0 \]

[_quadrature]

15889

\[ {}{\mathrm e}^{y^{\prime }} = x \]

[_quadrature]

15890

\[ {}\tan \left (y^{\prime }\right ) = x \]

[_quadrature]

15895

\[ {}{\mathrm e}^{y} = {\mathrm e}^{4 y} y^{\prime }+1 \]

[_quadrature]

15979

\[ {}4 {y^{\prime }}^{2}-9 x = 0 \]

[_quadrature]

15981

\[ {}{y^{\prime }}^{2}-2 y^{\prime } x -8 x^{2} = 0 \]

[_quadrature]

15983

\[ {}{y^{\prime }}^{2}-\left (2 x +y\right ) y^{\prime }+x^{2}+y x = 0 \]

[_quadrature]

15985

\[ {}{y^{\prime }}^{3} = y {y^{\prime }}^{2}-x^{2} y^{\prime }+x^{2} y \]

[_quadrature]

15988

\[ {}y = {y^{\prime }}^{2} {\mathrm e}^{y^{\prime }} \]

[_quadrature]

15989

\[ {}y^{\prime } = {\mathrm e}^{\frac {y^{\prime }}{y}} \]

[_quadrature]

15991

\[ {}x = {y^{\prime }}^{2}-2 y^{\prime }+2 \]

[_quadrature]

15992

\[ {}y = y^{\prime } \ln \left (y^{\prime }\right ) \]

[_quadrature]

15993

\[ {}y = \left (y^{\prime }-1\right ) {\mathrm e}^{y^{\prime }} \]

[_quadrature]

15994

\[ {}x {y^{\prime }}^{2} = {\mathrm e}^{\frac {1}{y^{\prime }}} \]

[_quadrature]

15995

\[ {}x \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = a \]

[_quadrature]

15997

\[ {}x = y^{\prime }+\sin \left (y^{\prime }\right ) \]

[_quadrature]

15998

\[ {}y = y^{\prime } \left (1+y^{\prime } \cos \left (y^{\prime }\right )\right ) \]

[_quadrature]

16015

\[ {}{y^{\prime }}^{2}-4 y = 0 \]

[_quadrature]

16017

\[ {}{y^{\prime }}^{2}-y^{2} = 0 \]

[_quadrature]

16018

\[ {}y^{\prime } = y^{{2}/{3}}+a \]

[_quadrature]

16022

\[ {}\left (y^{\prime }-1\right )^{2} = y^{2} \]

[_quadrature]

16025

\[ {}y^{2} {y^{\prime }}^{2}+y^{2} = 1 \]

[_quadrature]

16038

\[ {}x^{2}+y^{\prime } x = 3 x +y^{\prime } \]

[_quadrature]

16072

\[ {}{y^{\prime }}^{4} = 1 \]

[_quadrature]