2.16.135 Problems 13401 to 13500

Table 2.286: Main lookup table. Sorted sequentially by problem number.

#

ODE

Program classification

CAS classification

Solved?

Verified?

time (sec)

13401

\[ {}\cos \left (y\right ) y^{\prime } = {\mathrm e}^{-x}-\sin \left (y\right ) \]

exactWithIntegrationFactor

[‘y=_G(x,y’)‘]

1.832

13402

\[ {}y^{\prime } = x \left (1+\frac {2 y}{x^{2}}+\frac {y^{2}}{x^{4}}\right ) \]

riccati, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class G‘], _rational, _Riccati]

1.08

13403

\[ {}y^{\prime } = \frac {1}{y}-\frac {y}{2 x} \]

exact, bernoulli, first_order_ode_lie_symmetry_lookup

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

0.885

13404

\[ {}{\mathrm e}^{x y^{2}-x^{2}} \left (y^{2}-2 x \right )+2 \,{\mathrm e}^{x y^{2}-x^{2}} x y y^{\prime } = 0 \]

exact, bernoulli, first_order_ode_lie_symmetry_lookup

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

0.941

13405

\[ {}2 x y+y^{2}+\left (2 x y+x^{2}\right ) y^{\prime } = 0 \]

exact, homogeneousTypeD2, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.411

13406

\[ {}2 x y^{3}+4 x^{3}+3 x^{2} y^{2} y^{\prime } = 0 \]

exact, bernoulli, first_order_ode_lie_symmetry_lookup

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

1.638

13407

\[ {}2-2 x +3 y^{2} y^{\prime } = 0 \]

exact, separable, differentialType, first_order_ode_lie_symmetry_lookup

[_separable]

12.222

13408

\[ {}1+3 x^{2} y^{2}+\left (2 x^{3} y+6 y\right ) y^{\prime } = 0 \]

exact, bernoulli, first_order_ode_lie_symmetry_lookup

[_exact, _rational, _Bernoulli]

1.307

13409

\[ {}4 x^{3} y+\left (x^{4}-y^{4}\right ) y^{\prime } = 0 \]

exact, differentialType, homogeneousTypeD2, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

2.842

13410

\[ {}1+\ln \left (x y\right )+\frac {x y^{\prime }}{y} = 0 \]

exact, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class G‘], _exact]

2.614

13411

\[ {}1+{\mathrm e}^{y}+x \,{\mathrm e}^{y} y^{\prime } = 0 \]

exact, separable, first_order_ode_lie_symmetry_lookup

[_separable]

1.158

13412

\[ {}{\mathrm e}^{y}+\left (x \,{\mathrm e}^{y}+1\right ) y^{\prime } = 0 \]

exact, first_order_ode_lie_symmetry_calculated

[[_1st_order, _with_exponential_symmetries], _exact]

0.989

13413

\[ {}1+y^{4}+x y^{3} y^{\prime } = 0 \]

exact, bernoulli, separable, first_order_ode_lie_symmetry_lookup

[_separable]

2.348

13414

\[ {}y+\left (y^{4}-3 x \right ) y^{\prime } = 0 \]

exactWithIntegrationFactor, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class G‘], _rational]

4.097

13415

\[ {}\frac {2 y}{x}+\left (4 x^{2} y-3\right ) y^{\prime } = 0 \]

first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

8.607

13416

\[ {}1+\left (1-x \tan \left (y\right )\right ) y^{\prime } = 0 \]

exactWithIntegrationFactor

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.204

13417

\[ {}3 y+3 y^{2}+\left (2 x +4 x y\right ) y^{\prime } = 0 \]

exact, separable, first_order_ode_lie_symmetry_lookup

[_separable]

2.772

13418

\[ {}2 x \left (y+1\right )-y^{\prime } = 0 \]

exact, linear, separable, first_order_ode_lie_symmetry_lookup

[_separable]

1.078

13419

\[ {}2 y^{3}+\left (4 x^{3} y^{3}-3 x y^{2}\right ) y^{\prime } = 0 \]

exactWithIntegrationFactor, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6.408

13420

\[ {}4 x y+\left (3 x^{2}+5 y\right ) y^{\prime } = 0 \]

exactWithIntegrationFactor, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.204

13421

\[ {}6+12 x^{2} y^{2}+\left (7 x^{3} y+\frac {x}{y}\right ) y^{\prime } = 0 \]

exactWithIntegrationFactor, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class G‘], _rational]

3.278

13422

\[ {}x y^{\prime } = 2 y-6 x^{3} \]

linear, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[_linear]

0.721

13423

\[ {}x y^{\prime } = 2 y^{2}-6 y \]

exact, riccati, bernoulli, separable, first_order_ode_lie_symmetry_lookup

[_separable]

2.752

13424

\[ {}4 y^{2}-x^{2} y^{2}+y^{\prime } = 0 \]

exact, riccati, separable, first_order_ode_lie_symmetry_lookup

[_separable]

0.845

13425

\[ {}y^{\prime } = \sqrt {x +y} \]

homogeneousTypeC, first_order_ode_lie_symmetry_lookup

[[_homogeneous, ‘class C‘], _dAlembert]

1.669

13426

\[ {}x^{2} y^{\prime }-\sqrt {x} = 3 \]

quadrature

[_quadrature]

0.18

13427

\[ {}x y y^{\prime }-y^{2} = \sqrt {x^{4}+x^{2} y^{2}} \]

first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.862

13428

\[ {}y^{\prime } = x^{2}-2 x y+y^{2} \]

riccati, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class C‘], _Riccati]

1.462

13429

\[ {}4 x y-6+x^{2} y^{\prime } = 0 \]

linear, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[_linear]

0.74

13430

\[ {}x y^{2}-6+x^{2} y y^{\prime } = 0 \]

exact, bernoulli, first_order_ode_lie_symmetry_lookup

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

1.003

13431

\[ {}x^{3}+y^{3}+x y^{2} y^{\prime } = 0 \]

bernoulli, homogeneousTypeD2, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.127

13432

\[ {}3 y-x^{3}+x y^{\prime } = 0 \]

linear, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[_linear]

0.747

13433

\[ {}1+2 x y^{2}+\left (2 x^{2} y+2 y\right ) y^{\prime } = 0 \]

exact, bernoulli, first_order_ode_lie_symmetry_lookup

[_exact, _rational, _Bernoulli]

1.183

13434

\[ {}3 x y^{3}-y+x y^{\prime } = 0 \]

bernoulli, homogeneousTypeD2, first_order_ode_lie_symmetry_lookup

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

1.03

13435

\[ {}2+2 x^{2}-2 x y+\left (x^{2}+1\right ) y^{\prime } = 0 \]

linear, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[_linear]

0.832

13436

\[ {}\left (y^{2}-4\right ) y^{\prime } = y \]

quadrature

[_quadrature]

0.355

13437

\[ {}\left (x^{2}-4\right ) y^{\prime } = x \]

quadrature

[_quadrature]

0.19

13438

\[ {}y^{\prime } = \frac {1}{x y-3 x} \]

exact, separable, first_order_ode_lie_symmetry_lookup

[_separable]

0.931

13439

\[ {}y^{\prime } = \frac {3 y}{1+x}-y^{2} \]

riccati, bernoulli, first_order_ode_lie_symmetry_lookup

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

0.89

13440

\[ {}\sin \left (y\right )+\left (x +y\right ) \cos \left (y\right ) y^{\prime } = 0 \]

exact

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

10.493

13441

\[ {}\sin \left (y\right )+\left (1+x \right ) \cos \left (y\right ) y^{\prime } = 0 \]

exact, separable, first_order_ode_lie_symmetry_lookup

[_separable]

10.951

13442

\[ {}\sin \left (x \right )+2 \cos \left (x \right ) y^{\prime } = 0 \]

quadrature

[_quadrature]

0.235

13443

\[ {}x y y^{\prime } = 2 x^{2}+2 y^{2} \]

bernoulli, homogeneousTypeD2, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1.588

13444

\[ {}y^{\prime } = \frac {2 y+x}{x +2 y+3} \]

first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.162

13445

\[ {}y^{\prime } = \frac {2 y+x}{2 x -y} \]

exactByInspection, homogeneousTypeD2, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.306

13446

\[ {}y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right ) \]

homogeneousTypeD, homogeneousTypeD2, first_order_ode_lie_symmetry_lookup

[[_homogeneous, ‘class A‘], _dAlembert]

1.951

13447

\[ {}y^{\prime } = x y^{2}+3 y^{2}+x +3 \]

exact, riccati, separable, first_order_ode_lie_symmetry_lookup

[_separable]

0.981

13448

\[ {}1-\left (2 y+x \right ) y^{\prime } = 0 \]

exactWithIntegrationFactor, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

1.086

13449

\[ {}\ln \left (y\right )+\left (\frac {x}{y}+3\right ) y^{\prime } = 0 \]

exact

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.429

13450

\[ {}y^{2}+1-y^{\prime } = 0 \]

quadrature

[_quadrature]

0.144

13451

\[ {}y^{\prime }-3 y = 12 \,{\mathrm e}^{2 x} \]

linear, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[[_linear, ‘class A‘]]

0.749

13452

\[ {}x y y^{\prime } = x^{2}+x y+y^{2} \]

homogeneousTypeD2, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.259

13453

\[ {}\left (2+x \right ) y^{\prime }-x^{3} = 0 \]

quadrature

[_quadrature]

0.187

13454

\[ {}x y^{3} y^{\prime } = y^{4}-x^{2} \]

bernoulli, homogeneousTypeD2, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

1.307

13455

\[ {}y^{\prime } = 4 y-\frac {16 \,{\mathrm e}^{4 x}}{y^{2}} \]

bernoulli, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[[_1st_order, _with_linear_symmetries], _Bernoulli]

1.252

13456

\[ {}2 y-6 x +\left (1+x \right ) y^{\prime } = 0 \]

linear, homogeneousTypeMapleC, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[_linear]

1.564

13457

\[ {}x y^{2}+\left (x^{2} y+10 y^{4}\right ) y^{\prime } = 0 \]

exact, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class G‘], _exact, _rational]

2.127

13458

\[ {}y y^{\prime }-x y^{2} = 6 x \,{\mathrm e}^{4 x^{2}} \]

bernoulli, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[_Bernoulli]

2.217

13459

\[ {}\left (y-x +3\right )^{2} \left (y^{\prime }-1\right ) = 1 \]

exact, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class C‘], _exact, _rational, _dAlembert]

1.268

13460

\[ {}x +y \,{\mathrm e}^{x y}+x \,{\mathrm e}^{x y} y^{\prime } = 0 \]

exact

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.372

13461

\[ {}y^{2}-y^{2} \cos \left (x \right )+y^{\prime } = 0 \]

exact, riccati, separable, first_order_ode_lie_symmetry_lookup

[_separable]

1.0

13462

\[ {}y^{\prime }+2 y = \sin \left (x \right ) \]

linear, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[[_linear, ‘class A‘]]

0.923

13463

\[ {}y^{\prime }+2 x = \sin \left (x \right ) \]

quadrature

[_quadrature]

0.357

13464

\[ {}y^{\prime } = y^{3}-y^{3} \cos \left (x \right ) \]

exact, separable, first_order_ode_lie_symmetry_lookup

[_separable]

1.077

13465

\[ {}y^{2} {\mathrm e}^{x y^{2}}-2 x +2 x y \,{\mathrm e}^{x y^{2}} y^{\prime } = 0 \]

exact

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.64

13466

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]

exact, separable, first order special form ID 1, first_order_ode_lie_symmetry_lookup

[_separable]

0.825

13467

\[ {}y^{\prime } = \tan \left (6 x +3 y+1\right )-2 \]

first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class C‘], _dAlembert]

498.314

13468

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]

exact, separable, first order special form ID 1, first_order_ode_lie_symmetry_lookup

[_separable]

0.732

13469

\[ {}y^{\prime } = x \left (6 y+{\mathrm e}^{x^{2}}\right ) \]

linear, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[_linear]

0.832

13470

\[ {}x \left (1-2 y\right )+\left (-x^{2}+y\right ) y^{\prime } = 0 \]

exact, differentialType

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1.736

13471

\[ {}x^{2} y^{\prime }+3 x y = 6 \,{\mathrm e}^{-x^{2}} \]

linear, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[_linear]

0.908

13472

\[ {}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2} \]

kovacic, exact linear second order ode, second_order_integrable_as_is, second_order_ode_missing_y, second_order_ode_non_constant_coeff_transformation_on_B

[[_2nd_order, _missing_y]]

2.438

13473

\[ {}x y^{\prime \prime } = 2 y^{\prime } \]

kovacic, exact linear second order ode, second_order_integrable_as_is, second_order_ode_missing_y, second_order_ode_non_constant_coeff_transformation_on_B

[[_2nd_order, _missing_y]]

2.237

13474

\[ {}y^{\prime \prime } = y^{\prime } \]

kovacic, exact linear second order ode, second_order_integrable_as_is, second_order_ode_missing_y, second_order_linear_constant_coeff

[[_2nd_order, _missing_x]]

0.737

13475

\[ {}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x} \]

kovacic, exact linear second order ode, second_order_integrable_as_is, second_order_ode_missing_y, second_order_linear_constant_coeff

[[_2nd_order, _missing_y]]

1.638

13476

\[ {}x y^{\prime \prime } = y^{\prime }-2 x^{2} y^{\prime } \]

kovacic, second_order_ode_missing_y

[[_2nd_order, _missing_y]]

1.319

13477

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime } = 0 \]

kovacic, exact linear second order ode, second_order_integrable_as_is, second_order_ode_missing_y

[[_2nd_order, _missing_y]]

1.174

13478

\[ {}y^{\prime \prime } = 4 x \sqrt {y^{\prime }} \]

second_order_ode_missing_y

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

1.045

13479

\[ {}y^{\prime } y^{\prime \prime } = 1 \]

second_order_integrable_as_is, second_order_ode_missing_x, second_order_ode_missing_y, exact nonlinear second order ode

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

2.463

13480

\[ {}y y^{\prime \prime } = -{y^{\prime }}^{2} \]

second_order_integrable_as_is, second_order_ode_missing_x, exact nonlinear second order ode

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.296

13481

\[ {}x y^{\prime \prime } = {y^{\prime }}^{2}-y^{\prime } \]

second_order_ode_missing_y

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.948

13482

\[ {}x y^{\prime \prime }-{y^{\prime }}^{2} = 6 x^{5} \]

second_order_ode_missing_y

[[_2nd_order, _missing_y]]

1.695

13483

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \]

second_order_ode_missing_x

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.372

13484

\[ {}y^{\prime \prime } = 2 y^{\prime }-6 \]

kovacic, exact linear second order ode, second_order_integrable_as_is, second_order_ode_missing_y, second_order_linear_constant_coeff

[[_2nd_order, _missing_x]]

1.451

13485

\[ {}\left (y-3\right ) y^{\prime \prime } = 2 {y^{\prime }}^{2} \]

second_order_ode_missing_x

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.821

13486

\[ {}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \]

kovacic, exact linear second order ode, second_order_integrable_as_is, second_order_ode_missing_y, second_order_linear_constant_coeff

[[_2nd_order, _missing_y]]

1.694

13487

\[ {}y^{\prime \prime \prime } = y^{\prime \prime } \]

higher_order_linear_constant_coefficients_ODE

[[_3rd_order, _missing_x]]

0.199

13488

\[ {}x y^{\prime \prime \prime }+2 y^{\prime \prime } = 6 x \]

higher_order_missing_y

[[_3rd_order, _missing_y]]

0.76

13489

\[ {}y^{\prime \prime \prime } = 2 \sqrt {y^{\prime \prime }} \]

unknown

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

N/A

0.0

13490

\[ {}y^{\prime \prime \prime \prime } = -2 y^{\prime \prime \prime } \]

higher_order_linear_constant_coefficients_ODE

[[_high_order, _missing_x]]

0.233

13491

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \]

i.c.

second_order_ode_missing_x

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.182

13492

\[ {}3 y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]

i.c.

second_order_ode_missing_x

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.884

13493

\[ {}\sin \left (y\right ) y^{\prime \prime }+\cos \left (y\right ) {y^{\prime }}^{2} = 0 \]

second_order_integrable_as_is, second_order_ode_missing_x, exact nonlinear second order ode

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

2.275

13494

\[ {}y^{\prime \prime } = y^{\prime } \]

kovacic, exact linear second order ode, second_order_integrable_as_is, second_order_ode_missing_y, second_order_linear_constant_coeff

[[_2nd_order, _missing_x]]

0.634

13495

\[ {}{y^{\prime }}^{2}+y y^{\prime \prime } = 2 y y^{\prime } \]

second_order_integrable_as_is, second_order_ode_missing_x, exact nonlinear second order ode, second_order_nonlinear_solved_by_mainardi_lioville_method

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

2.186

13496

\[ {}y^{2} y^{\prime \prime }+y^{\prime \prime }+2 y {y^{\prime }}^{2} = 0 \]

second_order_integrable_as_is, second_order_ode_missing_x, exact nonlinear second order ode

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

602.552

13497

\[ {}y^{\prime \prime } = 4 x \sqrt {y^{\prime }} \]

second_order_ode_missing_y

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.939

13498

\[ {}y^{\prime } y^{\prime \prime } = 1 \]

second_order_integrable_as_is, second_order_ode_missing_x, second_order_ode_missing_y, exact nonlinear second order ode

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

1.559

13499

\[ {}x y^{\prime \prime } = {y^{\prime }}^{2}-y^{\prime } \]

second_order_ode_missing_y

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.815

13500

\[ {}x y^{\prime \prime }-y^{\prime } = 6 x^{5} \]

kovacic, exact linear second order ode, second_order_integrable_as_is, second_order_ode_missing_y, second_order_ode_non_constant_coeff_transformation_on_B

[[_2nd_order, _missing_y]]

2.281