2.3.16 first order ode lie symmetry

Table 2.363: first order ode lie symmetry

#

ODE

CAS classification

Solved?

20

\[ {}y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

22

\[ {}y^{\prime } = x -y \]

[[_linear, ‘class A‘]]

23

\[ {}y^{\prime } = y-x +1 \]

[[_linear, ‘class A‘]]

24

\[ {}y^{\prime } = x -y+1 \]

[[_linear, ‘class A‘]]

25

\[ {}y^{\prime } = x^{2}-y \]

[[_linear, ‘class A‘]]

26

\[ {}y^{\prime } = x^{2}-y-2 \]

[[_linear, ‘class A‘]]

27

\[ {}y^{\prime } = 2 x^{2} y^{2} \]
i.c.

[_separable]

31

\[ {}y^{\prime } = \sqrt {x -y} \]
i.c.

[[_homogeneous, ‘class C‘], _dAlembert]

37

\[ {}y^{\prime } = x +y \]
i.c.

[[_linear, ‘class A‘]]

38

\[ {}y^{\prime } = -x +y \]
i.c.

[[_linear, ‘class A‘]]

41

\[ {}y^{\prime }+2 y x = 0 \]

[_separable]

42

\[ {}y^{\prime }+2 x y^{2} = 0 \]

[_separable]

43

\[ {}y^{\prime } = y \sin \left (x \right ) \]

[_separable]

44

\[ {}\left (x +1\right ) y^{\prime } = 4 y \]

[_separable]

46

\[ {}y^{\prime } = 3 \sqrt {y x} \]

[[_homogeneous, ‘class G‘]]

47

\[ {}y^{\prime } = 64^{{1}/{3}} \left (y x \right )^{{1}/{3}} \]

[[_homogeneous, ‘class G‘]]

49

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 2 y \]

[_separable]

50

\[ {}\left (x +1\right )^{2} y^{\prime } = \left (1+y\right )^{2} \]

[_separable]

51

\[ {}y^{\prime } = x y^{3} \]

[_separable]

57

\[ {}y^{\prime } = 1+x +y+y x \]

[_separable]

58

\[ {}x^{2} y^{\prime } = 1-x^{2}+y^{2}-x^{2} y^{2} \]

[_separable]

59

\[ {}y^{\prime } = y \,{\mathrm e}^{x} \]
i.c.

[_separable]

60

\[ {}y^{\prime } = 3 x^{2} \left (1+y^{2}\right ) \]
i.c.

[_separable]

62

\[ {}y^{\prime } = 4 x^{3} y-y \]
i.c.

[_separable]

64

\[ {}\tan \left (x \right ) y^{\prime } = y \]
i.c.

[_separable]

65

\[ {}-y+y^{\prime } x = 2 x^{2} y \]
i.c.

[_separable]

66

\[ {}y^{\prime } = 2 x y^{2}+3 x^{2} y^{2} \]
i.c.

[_separable]

67

\[ {}y^{\prime } = 6 \,{\mathrm e}^{2 x -y} \]
i.c.

[_separable]

74

\[ {}y^{\prime }-2 y = 3 \,{\mathrm e}^{2 x} \]
i.c.

[[_linear, ‘class A‘]]

75

\[ {}y^{\prime }+3 y = 2 x \,{\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

76

\[ {}y^{\prime }-2 y x = {\mathrm e}^{x^{2}} \]

[_linear]

77

\[ {}y^{\prime } x +2 y = 3 x \]
i.c.

[_linear]

78

\[ {}y^{\prime } x +5 y = 7 x^{2} \]
i.c.

[_linear]

79

\[ {}2 y^{\prime } x +y = 10 \sqrt {x} \]

[_linear]

80

\[ {}3 y^{\prime } x +y = 12 x \]

[_linear]

81

\[ {}-y+y^{\prime } x = x \]
i.c.

[_linear]

82

\[ {}2 y^{\prime } x -3 y = 9 x^{3} \]

[_linear]

84

\[ {}y^{\prime } x +3 y = 2 x^{5} \]
i.c.

[_linear]

85

\[ {}y^{\prime }+y = {\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

86

\[ {}y^{\prime } x -3 y = x^{3} \]
i.c.

[_linear]

87

\[ {}y^{\prime }+2 y x = x \]
i.c.

[_separable]

88

\[ {}y^{\prime } = \left (1-y\right ) \cos \left (x \right ) \]
i.c.

[_separable]

90

\[ {}y^{\prime } x = 2 y+x^{3} \cos \left (x \right ) \]

[_linear]

92

\[ {}y^{\prime } = 1+x +y+y x \]
i.c.

[_separable]

93

\[ {}y^{\prime } x = 3 y+x^{4} \cos \left (x \right ) \]
i.c.

[_linear]

94

\[ {}y^{\prime } = 2 y x +3 x^{2} {\mathrm e}^{x^{2}} \]
i.c.

[_linear]

95

\[ {}y^{\prime } x +\left (2 x -3\right ) y = 4 x^{4} \]

[_linear]

96

\[ {}\left (x^{2}+4\right ) y^{\prime }+3 y x = x \]
i.c.

[_separable]

98

\[ {}\frac {1-4 x y^{2}}{x^{\prime }} = y^{3} \]

[_linear]

99

\[ {}\frac {x+y \,{\mathrm e}^{y}}{x^{\prime }} = 1 \]

[[_linear, ‘class A‘]]

100

\[ {}\frac {1+2 x y}{x^{\prime }} = y^{2}+1 \]

[_linear]

103

\[ {}y^{\prime }+p \left (x \right ) y = 0 \]

[_separable]

105

\[ {}\left (x +y\right ) y^{\prime } = x -y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

106

\[ {}2 x y y^{\prime } = x^{2}+2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

107

\[ {}y^{\prime } x = y+2 \sqrt {y x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

108

\[ {}\left (x -y\right ) y^{\prime } = x +y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

109

\[ {}x \left (x +y\right ) y^{\prime } = \left (x -y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

110

\[ {}\left (x +2 y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

111

\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

112

\[ {}x^{2} y^{\prime } = y x +x^{2} {\mathrm e}^{\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

113

\[ {}x^{2} y^{\prime } = y x +y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

114

\[ {}x y y^{\prime } = x^{2}+3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

115

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 y x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

116

\[ {}x y y^{\prime } = y^{2}+x \sqrt {4 x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

117

\[ {}y^{\prime } x = y+\sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

118

\[ {}y y^{\prime }+x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

119

\[ {}x \left (x +y\right ) y^{\prime }+y \left (3 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

120

\[ {}y^{\prime } = \sqrt {x +y+1} \]

[[_homogeneous, ‘class C‘], _dAlembert]

121

\[ {}y^{\prime } = \left (4 x +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

122

\[ {}\left (x +y\right ) y^{\prime } = 1 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

123

\[ {}x^{2} y^{\prime }+2 y x = 5 y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

126

\[ {}x^{2} y^{\prime }+2 y x = 5 y^{4} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

127

\[ {}y^{\prime } x +6 y = 3 x y^{{4}/{3}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

128

\[ {}2 y^{\prime } x +y^{3} {\mathrm e}^{-2 x} = 2 y x \]

[_Bernoulli]

130

\[ {}3 y^{2} y^{\prime }+y^{3} = {\mathrm e}^{-x} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

131

\[ {}3 x y^{2} y^{\prime } = 3 x^{4}+y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

134

\[ {}\left ({\mathrm e}^{y}+x \right ) y^{\prime } = x \,{\mathrm e}^{-y}-1 \]

[[_1st_order, _with_linear_symmetries]]

135

\[ {}2 x +3 y+\left (3 x +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

136

\[ {}4 x -y+\left (6 y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

137

\[ {}3 x^{2}+2 y^{2}+\left (4 y x +6 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

146

\[ {}\frac {2 x^{{5}/{2}}-3 y^{{5}/{3}}}{2 x^{{5}/{2}} y^{{2}/{3}}}+\frac {\left (3 y^{{5}/{3}}-2 x^{{5}/{2}}\right ) y^{\prime }}{3 x^{{3}/{2}} y^{{5}/{3}}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

159

\[ {}y^{\prime } = f \left (a x +b y+c \right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

162

\[ {}y^{\prime } x -4 x^{2} y+2 y \ln \left (y\right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

163

\[ {}y^{\prime } = \frac {x -y-1}{x +y+3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

164

\[ {}y^{\prime } = \frac {2 y-x +7}{4 x -3 y-18} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

165

\[ {}y^{\prime } = \sin \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

166

\[ {}y^{\prime } = -\frac {y \left (2 x^{3}-y^{3}\right )}{x \left (2 y^{3}-x^{3}\right )} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

168

\[ {}y^{\prime }+2 y x = 1+x^{2}+y^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

179

\[ {}x^{3}+3 y-y^{\prime } x = 0 \]

[_linear]

180

\[ {}x y^{2}+3 y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

181

\[ {}y x +y^{2}-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

183

\[ {}3 y+x^{4} y^{\prime } = 2 y x \]

[_separable]

184

\[ {}2 x y^{2}+x^{2} y^{\prime } = y^{2} \]

[_separable]

185

\[ {}2 x^{2} y+x^{3} y^{\prime } = 1 \]

[_linear]

186

\[ {}x^{2} y^{\prime }+2 y x = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

187

\[ {}y^{\prime } x +2 y = 6 x^{2} \sqrt {y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

188

\[ {}y^{\prime } = 1+x^{2}+y^{2}+x^{2} y^{2} \]

[_separable]

189

\[ {}x^{2} y^{\prime } = y x +3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

190

\[ {}6 x y^{3}+2 y^{4}+\left (9 x^{2} y^{2}+8 x y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

191

\[ {}4 x y^{2}+y^{\prime } = 5 x^{4} y^{2} \]

[_separable]

192

\[ {}x^{3} y^{\prime } = x^{2} y-y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

193

\[ {}y^{\prime }+3 y = 3 x^{2} {\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

194

\[ {}y^{\prime } = x^{2}-2 y x +y^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

196

\[ {}2 x^{2} y-x^{3} y^{\prime } = y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

197

\[ {}3 x^{5} y^{2}+x^{3} y^{\prime } = 2 y^{2} \]

[_separable]

198

\[ {}y^{\prime } x +3 y = \frac {3}{x^{{3}/{2}}} \]

[_linear]

200

\[ {}y^{\prime } x = 6 y+12 x^{4} y^{{2}/{3}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

202

\[ {}9 x^{2} y^{2}+x^{{3}/{2}} y^{\prime } = y^{2} \]

[_separable]

203

\[ {}2 y+\left (x +1\right ) y^{\prime } = 3 x +3 \]

[_linear]

204

\[ {}9 \sqrt {x}\, y^{{4}/{3}}-12 x^{{1}/{5}} y^{{3}/{2}}+\left (8 x^{{3}/{2}} y^{{1}/{3}}-15 x^{{6}/{5}} \sqrt {y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

205

\[ {}3 y+x^{3} y^{4}+3 y^{\prime } x = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

207

\[ {}\left (2 x +1\right ) y^{\prime }+y = \left (2 x +1\right )^{{3}/{2}} \]

[_linear]

208

\[ {}y^{\prime } = \sqrt {x +y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

209

\[ {}y^{\prime } = 3 \left (y+7\right ) x^{2} \]

[_separable]

210

\[ {}y^{\prime } = x y^{3}-y x \]

[_separable]

211

\[ {}y^{\prime } = -\frac {3 x^{2}+2 y^{2}}{4 y x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

212

\[ {}y^{\prime } = \frac {x +3 y}{y-3 x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

213

\[ {}y^{\prime } = \frac {2 y x +2 x}{x^{2}+1} \]

[_separable]

662

\[ {}y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

664

\[ {}y^{\prime } = x -y \]

[[_linear, ‘class A‘]]

665

\[ {}y^{\prime } = y-x +1 \]

[[_linear, ‘class A‘]]

666

\[ {}y^{\prime } = x -y+1 \]

[[_linear, ‘class A‘]]

667

\[ {}y^{\prime } = x^{2}-y \]

[[_linear, ‘class A‘]]

668

\[ {}y^{\prime } = x^{2}-y-2 \]

[[_linear, ‘class A‘]]

669

\[ {}y^{\prime } = 2 x^{2} y^{2} \]
i.c.

[_separable]

677

\[ {}y^{\prime }+2 y x = 0 \]

[_separable]

678

\[ {}y^{\prime }+2 x y^{2} = 0 \]

[_separable]

679

\[ {}y^{\prime } = y \sin \left (x \right ) \]

[_separable]

680

\[ {}\left (x +1\right ) y^{\prime } = 4 y \]

[_separable]

682

\[ {}y^{\prime } = 3 \sqrt {y x} \]

[[_homogeneous, ‘class G‘]]

683

\[ {}y^{\prime } = 4 \left (y x \right )^{{1}/{3}} \]

[[_homogeneous, ‘class G‘]]

685

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 2 y \]

[_separable]

686

\[ {}\left (x^{2}+1\right ) y^{\prime } = \left (1+y\right )^{2} \]

[_separable]

687

\[ {}y^{\prime } = x y^{3} \]

[_separable]

692

\[ {}y^{\prime } = 1+x +y+y x \]

[_separable]

693

\[ {}x^{2} y^{\prime } = 1-x^{2}+y^{2}-x^{2} y^{2} \]

[_separable]

694

\[ {}y^{\prime } = y \,{\mathrm e}^{x} \]
i.c.

[_separable]

695

\[ {}y^{\prime } = 3 x^{2} \left (1+y^{2}\right ) \]
i.c.

[_separable]

697

\[ {}y^{\prime } = 4 x^{3} y-y \]
i.c.

[_separable]

699

\[ {}\tan \left (x \right ) y^{\prime } = y \]
i.c.

[_separable]

700

\[ {}-y+y^{\prime } x = 2 x^{2} y \]
i.c.

[_separable]

701

\[ {}y^{\prime } = 2 x y^{2}+3 x^{2} y^{2} \]
i.c.

[_separable]

702

\[ {}y^{\prime } = 6 \,{\mathrm e}^{2 x -y} \]
i.c.

[_separable]

705

\[ {}y^{\prime }-2 y = 3 \,{\mathrm e}^{2 x} \]
i.c.

[[_linear, ‘class A‘]]

706

\[ {}y^{\prime }+3 y = 2 x \,{\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

707

\[ {}y^{\prime }-2 y x = {\mathrm e}^{x^{2}} \]

[_linear]

708

\[ {}y^{\prime } x +2 y = 3 x \]
i.c.

[_linear]

709

\[ {}2 y^{\prime } x +y = 10 \sqrt {x} \]
i.c.

[_linear]

710

\[ {}2 y^{\prime } x +y = 10 \sqrt {x} \]

[_linear]

711

\[ {}3 y^{\prime } x +y = 12 x \]

[_linear]

712

\[ {}-y+y^{\prime } x = x \]
i.c.

[_linear]

713

\[ {}2 y^{\prime } x -3 y = 9 x^{3} \]

[_linear]

715

\[ {}y^{\prime } x +3 y = 2 x^{5} \]
i.c.

[_linear]

716

\[ {}y^{\prime }+y = {\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

717

\[ {}y^{\prime } x -3 y = x^{3} \]
i.c.

[_linear]

718

\[ {}y^{\prime }+2 y x = x \]
i.c.

[_separable]

719

\[ {}y^{\prime } = \left (1-y\right ) \cos \left (x \right ) \]
i.c.

[_separable]

721

\[ {}y^{\prime } x = 2 y+x^{3} \cos \left (x \right ) \]

[_linear]

723

\[ {}y^{\prime } = 1+x +y+y x \]
i.c.

[_separable]

724

\[ {}y^{\prime } x = 3 y+x^{4} \cos \left (x \right ) \]
i.c.

[_linear]

725

\[ {}y^{\prime } = 2 y x +3 x^{2} {\mathrm e}^{x^{2}} \]
i.c.

[_linear]

726

\[ {}y^{\prime } x +\left (2 x -3\right ) y = 4 x^{4} \]

[_linear]

727

\[ {}\left (x^{2}+4\right ) y^{\prime }+3 y x = x \]
i.c.

[_separable]

729

\[ {}\left (x +y\right ) y^{\prime } = x -y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

730

\[ {}2 x y y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

731

\[ {}y^{\prime } x = y+2 \sqrt {y x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

732

\[ {}\left (x -y\right ) y^{\prime } = x +y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

733

\[ {}x \left (x +y\right ) y^{\prime } = \left (x -y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

734

\[ {}\left (x +2 y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

735

\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

736

\[ {}x^{2} y^{\prime } = y x +x^{2} {\mathrm e}^{\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

737

\[ {}x^{2} y^{\prime } = y x +y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

738

\[ {}x y y^{\prime } = x^{2}+3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

739

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 y x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

740

\[ {}x y y^{\prime } = y^{2}+x \sqrt {4 x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

741

\[ {}y^{\prime } x = y+\sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

742

\[ {}y y^{\prime }+x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

743

\[ {}x \left (x +y\right ) y^{\prime }+y \left (3 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

744

\[ {}y^{\prime } = \sqrt {x +y+1} \]

[[_homogeneous, ‘class C‘], _dAlembert]

745

\[ {}y^{\prime } = \left (4 x +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

747

\[ {}x^{2} y^{\prime }+2 y x = 5 y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

750

\[ {}x^{2} y^{\prime }+2 y x = 5 y^{4} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

751

\[ {}y^{\prime } x +6 y = 3 x y^{{4}/{3}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

752

\[ {}2 y^{\prime } x +y^{3} {\mathrm e}^{-2 x} = 2 y x \]

[_Bernoulli]

754

\[ {}3 y^{2} y^{\prime }+y^{3} = {\mathrm e}^{-x} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

755

\[ {}3 x y^{2} y^{\prime } = 3 x^{4}+y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

758

\[ {}\left ({\mathrm e}^{y}+x \right ) y^{\prime } = x \,{\mathrm e}^{-y}-1 \]

[[_1st_order, _with_linear_symmetries]]

759

\[ {}2 x +3 y+\left (3 x +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

760

\[ {}4 x -y+\left (6 y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

761

\[ {}3 x^{2}+2 y^{2}+\left (4 y x +6 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

770

\[ {}\frac {2 x^{{5}/{2}}-3 y^{{5}/{3}}}{2 x^{{5}/{2}} y^{{2}/{3}}}+\frac {\left (3 y^{{5}/{3}}-2 x^{{5}/{2}}\right ) y^{\prime }}{3 x^{{3}/{2}} y^{{5}/{3}}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

771

\[ {}x^{3}+3 y-y^{\prime } x = 0 \]

[_linear]

772

\[ {}x y^{2}+3 y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

773

\[ {}y x +y^{2}-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

775

\[ {}3 y+x^{4} y^{\prime } = 2 y x \]

[_separable]

776

\[ {}2 x y^{2}+x^{2} y^{\prime } = y^{2} \]

[_separable]

777

\[ {}2 x^{2} y+x^{3} y^{\prime } = 1 \]

[_linear]

778

\[ {}x^{2} y^{\prime }+2 y x = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

779

\[ {}y^{\prime } x +2 y = 6 x^{2} \sqrt {y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

780

\[ {}y^{\prime } = 1+x^{2}+y^{2}+x^{2} y^{2} \]

[_separable]

781

\[ {}x^{2} y^{\prime } = y x +3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

782

\[ {}6 x y^{3}+2 y^{4}+\left (9 x^{2} y^{2}+8 x y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

784

\[ {}x^{3} y^{\prime } = x^{2} y-y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

785

\[ {}y^{\prime }+3 y = 3 x^{2} {\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

786

\[ {}y^{\prime } = x^{2}-2 y x +y^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

788

\[ {}2 x^{2} y-x^{3} y^{\prime } = y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

789

\[ {}3 x^{5} y^{2}+x^{3} y^{\prime } = 2 y^{2} \]

[_separable]

790

\[ {}y^{\prime } x +3 y = \frac {3}{x^{{3}/{2}}} \]

[_linear]

792

\[ {}y^{\prime } x = 6 y+12 x^{4} y^{{2}/{3}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

794

\[ {}9 x^{2} y^{2}+x^{{3}/{2}} y^{\prime } = y^{2} \]

[_separable]

795

\[ {}2 y+\left (x +1\right ) y^{\prime } = 3 x +3 \]

[_linear]

797

\[ {}3 y+x^{3} y^{4}+3 y^{\prime } x = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

799

\[ {}\left (2 x +1\right ) y^{\prime }+y = \left (2 x +1\right )^{{3}/{2}} \]

[_linear]

800

\[ {}y^{\prime } = 3 \left (y+7\right ) x^{2} \]

[_separable]

801

\[ {}y^{\prime } = 3 \left (y+7\right ) x^{2} \]

[_separable]

802

\[ {}y^{\prime } = x y^{3}-y x \]

[_separable]

803

\[ {}y^{\prime } = \frac {-3 x^{2}-2 y^{2}}{4 y x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

804

\[ {}y^{\prime } = \frac {x +3 y}{y-3 x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

805

\[ {}y^{\prime } = \frac {2 y x +2 x}{x^{2}+1} \]

[_separable]

1098

\[ {}3 y+y^{\prime } = {\mathrm e}^{-2 t}+t \]

[[_linear, ‘class A‘]]

1099

\[ {}-2 y+y^{\prime } = {\mathrm e}^{2 t} t^{2} \]

[[_linear, ‘class A‘]]

1100

\[ {}y^{\prime }+y = 1+t \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

1102

\[ {}-2 y+y^{\prime } = 3 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

1104

\[ {}2 t y+y^{\prime } = 2 t \,{\mathrm e}^{-t^{2}} \]

[_linear]

1105

\[ {}4 t y+\left (t^{2}+1\right ) y^{\prime } = \frac {1}{\left (t^{2}+1\right )^{2}} \]

[_linear]

1106

\[ {}y+2 y^{\prime } = 3 t \]

[[_linear, ‘class A‘]]

1107

\[ {}-y+t y^{\prime } = t^{2} {\mathrm e}^{-t} \]

[_linear]

1109

\[ {}y+2 y^{\prime } = 3 t^{2} \]

[[_linear, ‘class A‘]]

1111

\[ {}2 y+y^{\prime } = t \,{\mathrm e}^{-2 t} \]
i.c.

[[_linear, ‘class A‘]]

1112

\[ {}2 y+t y^{\prime } = t^{2}-t +1 \]
i.c.

[_linear]

1114

\[ {}-2 y+y^{\prime } = {\mathrm e}^{2 t} \]
i.c.

[[_linear, ‘class A‘]]

1119

\[ {}-y+2 y^{\prime } = {\mathrm e}^{\frac {t}{3}} \]
i.c.

[[_linear, ‘class A‘]]

1120

\[ {}-2 y+3 y^{\prime } = {\mathrm e}^{-\frac {\pi t}{2}} \]
i.c.

[[_linear, ‘class A‘]]

1121

\[ {}\left (1+t \right ) y+t y^{\prime } = 2 t \,{\mathrm e}^{-t} \]
i.c.

[_linear]

1125

\[ {}\frac {2 y}{3}+y^{\prime } = 1-\frac {t}{2} \]

[[_linear, ‘class A‘]]

1128

\[ {}-\frac {3 y}{2}+y^{\prime } = 2 \,{\mathrm e}^{t}+3 t \]

[[_linear, ‘class A‘]]

1129

\[ {}y^{\prime } = \frac {x^{2}}{y} \]

[_separable]

1131

\[ {}\sin \left (x \right ) y^{2}+y^{\prime } = 0 \]

[_separable]

1134

\[ {}y^{\prime } x = \sqrt {1-y^{2}} \]

[_separable]

1137

\[ {}y^{\prime } = \left (1-2 x \right ) y^{2} \]
i.c.

[_separable]

1138

\[ {}y^{\prime } = \frac {1-2 x}{y} \]
i.c.

[_separable]

1140

\[ {}r^{\prime } = \frac {r^{2}}{x} \]
i.c.

[_separable]

1142

\[ {}y^{\prime } = \frac {x y^{2}}{\sqrt {x^{2}+1}} \]
i.c.

[_separable]

1143

\[ {}y^{\prime } = \frac {2 x}{1+2 y} \]
i.c.

[_separable]

1151

\[ {}y^{\prime } = 2 y^{2}+x y^{2} \]
i.c.

[_separable]

1154

\[ {}y^{\prime } = 2 \left (x +1\right ) \left (1+y^{2}\right ) \]
i.c.

[_separable]

1155

\[ {}y^{\prime } = \frac {t \left (4-y\right ) y}{3} \]

[_separable]

1156

\[ {}y^{\prime } = \frac {t y \left (4-y\right )}{1+t} \]

[_separable]

1158

\[ {}y^{\prime } = \frac {x^{2}+y x +y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1159

\[ {}y^{\prime } = \frac {x^{2}+3 y^{2}}{2 y x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1160

\[ {}y^{\prime } = \frac {4 y-3 x}{2 x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1161

\[ {}y^{\prime } = -\frac {4 x +3 y}{2 x +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1162

\[ {}y^{\prime } = \frac {x +3 y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1163

\[ {}x^{2}+3 y x +y^{2}-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1164

\[ {}y^{\prime } = \frac {x^{2}-3 y^{2}}{2 y x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1165

\[ {}y^{\prime } = \frac {3 y^{2}-x^{2}}{2 y x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1167

\[ {}y+\left (t -4\right ) t y^{\prime } = 0 \]
i.c.

[_separable]

1169

\[ {}2 t y+\left (-t^{2}+4\right ) y^{\prime } = 3 t^{2} \]
i.c.

[_linear]

1170

\[ {}2 t y+\left (-t^{2}+4\right ) y^{\prime } = 3 t^{2} \]
i.c.

[_linear]

1174

\[ {}y^{\prime } = -\frac {4 t}{y} \]

[_separable]

1175

\[ {}y^{\prime } = 2 t y^{2} \]

[_separable]

1178

\[ {}y^{\prime } = t \left (3-y\right ) y \]

[_separable]

1179

\[ {}y^{\prime } = y \left (3-t y\right ) \]

[_Bernoulli]

1180

\[ {}y^{\prime } = -y \left (3-t y\right ) \]

[_Bernoulli]

1193

\[ {}3+2 x +\left (-2+2 y\right ) y^{\prime } = 0 \]

[_separable]

1194

\[ {}2 x +4 y+\left (2 x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1196

\[ {}2 y+2 x y^{2}+\left (2 x +2 x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

1197

\[ {}y^{\prime } = \frac {-a x -b y}{b x +c y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1198

\[ {}y^{\prime } = \frac {-a x +b y}{b x -c y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1204

\[ {}\frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

1205

\[ {}2 x -y+\left (-x +2 y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1211

\[ {}y^{\prime } = -1+{\mathrm e}^{2 x}+y \]

[[_linear, ‘class A‘]]

1213

\[ {}y+\left (-{\mathrm e}^{-2 y}+2 y x \right ) y^{\prime } = 0 \]

[[_1st_order, _with_exponential_symmetries]]

1217

\[ {}3 y x +y^{2}+\left (x^{2}+y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1218

\[ {}y^{\prime } = \frac {x^{3}-2 y}{x} \]

[_linear]

1221

\[ {}y^{\prime } = 3-6 x +y-2 y x \]

[_separable]

1230

\[ {}y^{\prime } = 1+2 x +y^{2}+2 x y^{2} \]

[_separable]

1231

\[ {}x +y+\left (x +2 y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1232

\[ {}\left (1+{\mathrm e}^{x}\right ) y^{\prime } = y-y \,{\mathrm e}^{x} \]

[_separable]

1234

\[ {}y^{\prime } = {\mathrm e}^{2 x}+3 y \]

[[_linear, ‘class A‘]]

1237

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

1243

\[ {}y^{\prime } x = {\mathrm e}^{\frac {y}{x}} x +y \]

[[_homogeneous, ‘class A‘], _dAlembert]

1245

\[ {}3 t +2 y = -t y^{\prime } \]

[_linear]

1246

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1247

\[ {}2 y x +3 y^{2}-\left (x^{2}+2 y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1248

\[ {}y^{\prime } = \frac {-3 x^{2} y-y^{2}}{2 x^{3}+3 y x} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1520

\[ {}y^{\prime } x +y = x^{2} \]

[_linear]

1521

\[ {}y^{\prime }+2 y x = x \]

[_separable]

1522

\[ {}2 y^{\prime }+x \left (-1+y^{2}\right ) = 0 \]

[_separable]

1523

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

[_separable]

1531

\[ {}y^{\prime } = \frac {x^{2}-2 x^{2} y+2}{x^{3}} \]
i.c.

[_linear]

1532

\[ {}y^{\prime } = x \left (1+y^{2}\right ) \]
i.c.

[_separable]

1533

\[ {}y^{\prime } = -\frac {y \left (1+y\right )}{x} \]
i.c.

[_separable]

1536

\[ {}y^{\prime } = -\frac {x}{2}-1+\frac {\sqrt {x^{2}+4 x +4 y}}{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

1538

\[ {}y^{\prime }+3 x^{2} y = 0 \]

[_separable]

1539

\[ {}y^{\prime } x +y \ln \left (x \right ) = 0 \]

[_separable]

1540

\[ {}y^{\prime } x +3 y = 0 \]

[_separable]

1541

\[ {}x^{2} y^{\prime }+y = 0 \]

[_separable]

1542

\[ {}y^{\prime }+\frac {\left (x +1\right ) y}{x} = 0 \]
i.c.

[_separable]

1543

\[ {}y^{\prime } x +\left (1+\frac {1}{\ln \left (x \right )}\right ) y = 0 \]
i.c.

[_separable]

1544

\[ {}y^{\prime } x +\left (1+x \cot \left (x \right )\right ) y = 0 \]
i.c.

[_separable]

1545

\[ {}y^{\prime }-\frac {2 x y}{x^{2}+1} = 0 \]
i.c.

[_separable]

1546

\[ {}y^{\prime }+\frac {k y}{x} = 0 \]
i.c.

[_separable]

1547

\[ {}y^{\prime }+\tan \left (k x \right ) y = 0 \]
i.c.

[_separable]

1550

\[ {}y^{\prime }+2 y x = x \,{\mathrm e}^{-x^{2}} \]

[_linear]

1552

\[ {}y^{\prime }+\frac {y}{x} = \frac {7}{x^{2}}+3 \]

[_linear]

1554

\[ {}y^{\prime } x +\left (2 x^{2}+1\right ) y = x^{3} {\mathrm e}^{-x^{2}} \]

[_linear]

1555

\[ {}y^{\prime } x +2 y = \frac {2}{x^{2}}+1 \]

[_linear]

1558

\[ {}\left (x -2\right ) \left (x -1\right ) y^{\prime }-\left (4 x -3\right ) y = \left (x -2\right )^{3} \]

[_linear]

1561

\[ {}y^{\prime }+7 y = {\mathrm e}^{3 x} \]
i.c.

[[_linear, ‘class A‘]]

1562

\[ {}\left (x^{2}+1\right ) y^{\prime }+4 y x = \frac {2}{x^{2}+1} \]
i.c.

[_linear]

1565

\[ {}y^{\prime }+\frac {y}{x} = \frac {2}{x^{2}}+1 \]
i.c.

[_linear]

1567

\[ {}y^{\prime } x +2 y = 8 x^{2} \]
i.c.

[_linear]

1568

\[ {}y^{\prime } x -2 y = -x^{2} \]
i.c.

[_linear]

1569

\[ {}y^{\prime }+2 y x = x \]
i.c.

[_separable]

1572

\[ {}\left (x^{2}-1\right ) y^{\prime }-2 y x = x \left (x^{2}-1\right ) \]
i.c.

[_linear]

1573

\[ {}y^{\prime } x -2 y = -1 \]
i.c.

[_separable]

1576

\[ {}\frac {x y^{\prime }}{y}+2 \ln \left (y\right ) = 4 x^{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1577

\[ {}\frac {y^{\prime }}{\left (1+y\right )^{2}}-\frac {1}{x \left (1+y\right )} = -\frac {3}{x^{2}} \]

[[_homogeneous, ‘class C‘], _rational, _Riccati]

1580

\[ {}y^{\prime } x +y^{2}+y = 0 \]

[_separable]

1582

\[ {}x^{2} y y^{\prime } = \left (-1+y^{2}\right )^{{3}/{2}} \]

[_separable]

1583

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

[_separable]

1584

\[ {}\left (x^{2}+1\right ) y^{\prime }+y x = 0 \]

[_separable]

1585

\[ {}y^{\prime } = \left (x -1\right ) \left (-1+y\right ) \left (y-2\right ) \]

[_separable]

1586

\[ {}\left (-1+y\right )^{2} y^{\prime } = 2 x +3 \]

[_separable]

1588

\[ {}y^{\prime }+x \left (y^{2}+y\right ) = 0 \]
i.c.

[_separable]

1590

\[ {}y^{\prime }+\frac {\left (1+y\right ) \left (-1+y\right ) \left (y-2\right )}{x +1} = 0 \]
i.c.

[_separable]

1591

\[ {}y^{\prime }+2 x \left (1+y\right ) = 0 \]
i.c.

[_separable]

1592

\[ {}y^{\prime } = 2 x y \left (1+y^{2}\right ) \]
i.c.

[_separable]

1593

\[ {}y^{\prime } \left (x^{2}+2\right ) = 4 x \left (y^{2}+2 y+1\right ) \]

[_separable]

1594

\[ {}y^{\prime } = -2 x \left (y^{3}-3 y+2\right ) \]
i.c.

[_separable]

1595

\[ {}y^{\prime } = \frac {2 x}{1+2 y} \]
i.c.

[_separable]

1597

\[ {}y y^{\prime }+x = 0 \]
i.c.

[_separable]

1598

\[ {}y^{\prime }+x^{2} \left (1+y\right ) \left (y-2\right )^{2} = 0 \]

[_separable]

1599

\[ {}\left (x +1\right ) \left (x -2\right ) y^{\prime }+y = 0 \]
i.c.

[_separable]

1600

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

1601

\[ {}y^{\prime } \sqrt {-x^{2}+1}+\sqrt {1-y^{2}} = 0 \]

[_separable]

1605

\[ {}y^{\prime } x -2 y = \frac {x^{6}}{y+x^{2}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1613

\[ {}y^{\prime } = 2 y x \]

[_separable]

1615

\[ {}y^{\prime } = \frac {2 x +3 y}{x -4 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1619

\[ {}y^{\prime } = \sqrt {x +y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

1620

\[ {}y^{\prime } = \frac {\tan \left (y\right )}{x -1} \]

[_separable]

1624

\[ {}y^{\prime } = 3 x \left (-1+y\right )^{{1}/{3}} \]
i.c.

[_separable]

1625

\[ {}y^{\prime }-y = x y^{2} \]

[_Bernoulli]

1626

\[ {}y^{\prime } = \frac {y+x \,{\mathrm e}^{-\frac {y}{x}}}{x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

1628

\[ {}x^{2} y^{\prime } = y^{2}+y x -x^{2} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1642

\[ {}y^{\prime } = \frac {x +y}{x} \]

[_linear]

1643

\[ {}y^{\prime } = \frac {y^{2}+2 y x}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1644

\[ {}x y^{3} y^{\prime } = y^{4}+x^{4} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1645

\[ {}y^{\prime } = \frac {y}{x}+\sec \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

1646

\[ {}x^{2} y^{\prime } = x^{2}+y x +y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1647

\[ {}x y y^{\prime } = x^{2}+2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1648

\[ {}y^{\prime } = \frac {2 y^{2}+x^{2} {\mathrm e}^{-\frac {y^{2}}{x^{2}}}}{2 y x} \]

[[_homogeneous, ‘class A‘]]

1649

\[ {}y^{\prime } = \frac {y x +y^{2}}{x^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1650

\[ {}y^{\prime } = \frac {x^{3}+y^{3}}{x y^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1651

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1652

\[ {}y^{\prime } = \frac {y^{2}-3 y x -5 x^{2}}{x^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1653

\[ {}x^{2} y^{\prime } = 2 x^{2}+y^{2}+4 y x \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1654

\[ {}x y y^{\prime } = 3 x^{2}+4 y^{2} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1655

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1657

\[ {}y^{\prime } = \frac {y^{3}+2 x y^{2}+x^{2} y+x^{3}}{x \left (x +y\right )^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1658

\[ {}y^{\prime } = \frac {x +2 y}{2 x +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1659

\[ {}y^{\prime } = \frac {y}{y-2 x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1660

\[ {}y^{\prime } = \frac {x y^{2}+2 y^{3}}{x^{3}+x^{2} y+x y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1661

\[ {}y^{\prime } = \frac {x^{3}+x^{2} y+3 y^{3}}{x^{3}+3 x y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1662

\[ {}x^{2} y^{\prime } = y^{2}+y x -4 x^{2} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1663

\[ {}x y y^{\prime } = x^{2}-y x +y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1664

\[ {}y^{\prime } = \frac {2 y^{2}-y x +2 x^{2}}{y x +2 x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1665

\[ {}y^{\prime } = \frac {x^{2}+y x +y^{2}}{y x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1666

\[ {}y^{\prime } = \frac {-6 x +y-3}{2 x -y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1667

\[ {}y^{\prime } = \frac {2 x +y+1}{x +2 y-4} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1668

\[ {}y^{\prime } = \frac {-x +3 y-14}{x +y-2} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1669

\[ {}3 x y^{2} y^{\prime } = x +y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1670

\[ {}x y y^{\prime } = 3 x^{6}+6 y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1671

\[ {}x^{3} y^{\prime } = 2 y^{2}+2 x^{2} y-2 x^{4} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

1672

\[ {}y^{\prime } = y^{2} {\mathrm e}^{-x}+4 y+2 \,{\mathrm e}^{x} \]

[[_1st_order, _with_linear_symmetries], _Riccati]

1675

\[ {}2 x \left (y+2 \sqrt {x}\right ) y^{\prime } = \left (y+\sqrt {x}\right )^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1677

\[ {}y^{\prime }+\frac {2 y}{x} = \frac {3 x^{2} y^{2}+6 y x +2}{x^{2} \left (2 y x +3\right )} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1678

\[ {}y^{\prime }+\frac {3 y}{x} = \frac {3 x^{4} y^{2}+10 x^{2} y+6}{x^{3} \left (2 x^{2} y+5\right )} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1679

\[ {}y^{\prime } = 1+x -\left (2 x +1\right ) y+x y^{2} \]

[_Riccati]

1680

\[ {}6 x^{2} y^{2}+4 x^{3} y y^{\prime } = 0 \]

[_separable]

1685

\[ {}4 x +7 y+\left (3 x +4 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1687

\[ {}2 x +y+\left (2 y+2 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1692

\[ {}\frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

1695

\[ {}{\mathrm e}^{y x} \left (x^{4} y+4 x^{3}\right )+3 y+\left (x^{5} {\mathrm e}^{y x}+3 x \right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1701

\[ {}\left (2 x -1\right ) \left (-1+y\right )+\left (x +2\right ) \left (x -3\right ) y^{\prime } = 0 \]
i.c.

[_separable]

1702

\[ {}7 x +4 y+\left (4 x +3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1707

\[ {}x^{2}+y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

1710

\[ {}y^{\prime }+2 y x = -\frac {{\mathrm e}^{-x^{2}} \left (3 x +2 y \,{\mathrm e}^{x^{2}}\right )}{2 x +3 y \,{\mathrm e}^{x^{2}}} \]
i.c.

[[_Abel, ‘2nd type‘, ‘class B‘]]

1711

\[ {}y+\left (2 x +\frac {1}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1712

\[ {}-y^{2}+x^{2} y^{\prime } = 0 \]

[_separable]

1713

\[ {}y-y^{\prime } x = 0 \]

[_separable]

1714

\[ {}3 x^{2} y+2 x^{3} y^{\prime } = 0 \]

[_separable]

1718

\[ {}27 x y^{2}+8 y^{3}+\left (18 x^{2} y+12 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1722

\[ {}x^{2} y+4 y x +2 y+\left (x^{2}+x \right ) y^{\prime } = 0 \]

[_separable]

1723

\[ {}-y+\left (x^{4}-x \right ) y^{\prime } = 0 \]

[_separable]

1726

\[ {}y \sin \left (y\right )+x \left (\sin \left (y\right )-y \cos \left (y\right )\right ) y^{\prime } = 0 \]

[_separable]

1729

\[ {}2 y+3 \left (x^{2}+y^{3} x^{2}\right ) y^{\prime } = 0 \]

[_separable]

1731

\[ {}x^{4} y^{4}+x^{5} y^{3} y^{\prime } = 0 \]

[_separable]

1733

\[ {}x^{4} y^{3}+y+\left (x^{5} y^{2}-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1735

\[ {}12 y x +6 y^{3}+\left (9 x^{2}+10 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1736

\[ {}3 x^{2} y^{2}+2 y+2 y^{\prime } x = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1800

\[ {}y^{\prime }+y^{2}+4 y x +4 x^{2}+2 = 0 \]

[[_homogeneous, ‘class C‘], _Riccati]

1801

\[ {}\left (2 x +1\right ) \left (y^{\prime }+y^{2}\right )-2 y-2 x -3 = 0 \]

[_rational, _Riccati]

1802

\[ {}\left (3 x -1\right ) \left (y^{\prime }+y^{2}\right )-\left (3 x +2\right ) y-6 x +8 = 0 \]

[_rational, _Riccati]

1804

\[ {}x^{2} \left (y^{\prime }+y^{2}\right )-7 y x +7 = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

2299

\[ {}\cos \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

2300

\[ {}\sqrt {t}\, \sin \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

2304

\[ {}t^{2} y+y^{\prime } = t^{2} \]

[_separable]

2306

\[ {}\sqrt {t^{2}+1}\, y+y^{\prime } = 0 \]
i.c.

[_separable]

2307

\[ {}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0 \]

[_separable]

2308

\[ {}-2 t y+y^{\prime } = t \]
i.c.

[_separable]

2313

\[ {}4 t y+\left (t^{2}+1\right ) y^{\prime } = t \]
i.c.

[_separable]

2318

\[ {}\left (t^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

2319

\[ {}y^{\prime } = \left (1+t \right ) \left (y+1\right ) \]

[_separable]

2320

\[ {}y^{\prime } = 1-t +y^{2}-t y^{2} \]

[_separable]

2321

\[ {}y^{\prime } = {\mathrm e}^{3+t +y} \]

[_separable]

2325

\[ {}\sqrt {t^{2}+1}\, y^{\prime } = \frac {t y^{3}}{\sqrt {t^{2}+1}} \]
i.c.

[_separable]

2330

\[ {}t y^{\prime } = y+\sqrt {t^{2}+y^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2331

\[ {}2 t y y^{\prime } = 3 y^{2}-t^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2332

\[ {}\left (t -\sqrt {t y}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2333

\[ {}y^{\prime } = \frac {y+t}{t -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2334

\[ {}{\mathrm e}^{\frac {t}{y}} \left (y-t \right ) y^{\prime }+y \left (1+{\mathrm e}^{\frac {t}{y}}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2335

\[ {}y^{\prime } = \frac {t +y+1}{t -y+3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2336

\[ {}1+t -2 y+\left (4 t -3 y-6\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2337

\[ {}t +2 y+3+\left (2 t +4 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2341

\[ {}\frac {y^{2}}{2}-2 \,{\mathrm e}^{t} y+\left (-{\mathrm e}^{t}+y\right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class A‘]]

2342

\[ {}2 t y^{3}+3 t^{2} y^{2} y^{\prime } = 0 \]
i.c.

[_separable]

2346

\[ {}3 t y+y^{2}+\left (t^{2}+t y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2355

\[ {}y^{\prime } = {\mathrm e}^{\left (y-t \right )^{2}} \]
i.c.

[[_homogeneous, ‘class C‘], _dAlembert]

2472

\[ {}\cos \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

2473

\[ {}\sqrt {t}\, \sin \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

2477

\[ {}t^{2} y+y^{\prime } = t^{2} \]

[_separable]

2479

\[ {}\sqrt {t^{2}+1}\, y+y^{\prime } = 0 \]
i.c.

[_separable]

2480

\[ {}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0 \]
i.c.

[_separable]

2482

\[ {}-2 t y+y^{\prime } = t \]
i.c.

[_separable]

2489

\[ {}\left (t^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

2490

\[ {}y^{\prime } = \left (1+t \right ) \left (y+1\right ) \]

[_separable]

2491

\[ {}y^{\prime } = 1-t +y^{2}-t y^{2} \]

[_separable]

2492

\[ {}y^{\prime } = {\mathrm e}^{3+t +y} \]

[_separable]

2501

\[ {}y^{\prime } = \frac {2 y}{t}+\frac {y^{2}}{t^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2502

\[ {}t y^{\prime } = y+\sqrt {t^{2}+y^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2503

\[ {}2 t y y^{\prime } = 3 y^{2}-t^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2504

\[ {}\left (t -\sqrt {t y}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2505

\[ {}y^{\prime } = \frac {y+t}{t -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2506

\[ {}{\mathrm e}^{\frac {t}{y}} \left (y-t \right ) y^{\prime }+y \left (1+{\mathrm e}^{\frac {t}{y}}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2507

\[ {}y^{\prime } = \frac {t +y+1}{t -y+3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2509

\[ {}t +2 y+3+\left (2 t +4 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2513

\[ {}\frac {y^{2}}{2}-2 \,{\mathrm e}^{t} y+\left (-{\mathrm e}^{t}+y\right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class A‘]]

2514

\[ {}2 t y^{3}+3 t^{2} y^{2} y^{\prime } = 0 \]
i.c.

[_separable]

2518

\[ {}3 t y+y^{2}+\left (t^{2}+t y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2519

\[ {}y^{\prime } = 2 t \left (y+1\right ) \]
i.c.

[_separable]

2530

\[ {}y^{\prime } = {\mathrm e}^{\left (y-t \right )^{2}} \]
i.c.

[[_homogeneous, ‘class C‘], _dAlembert]

2542

\[ {}y^{\prime } = t y^{3}-y \]
i.c.

[_Bernoulli]

2774

\[ {}\left (x^{2}+1\right ) y^{\prime }+y x = 0 \]

[_separable]

2775

\[ {}x y^{2}+x +\left (y-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

2776

\[ {}1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

2777

\[ {}y^{\prime } x +y = 0 \]

[_separable]

2778

\[ {}y^{\prime } = 2 y x \]

[_separable]

2781

\[ {}\left (x +1\right ) y^{\prime }-1+y = 0 \]

[_separable]

2782

\[ {}\tan \left (x \right ) y^{\prime }-y = 1 \]

[_separable]

2783

\[ {}y+3+\cot \left (x \right ) y^{\prime } = 0 \]

[_separable]

2784

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

2786

\[ {}y^{\prime } x +y = y^{2} \]

[_separable]

2790

\[ {}y x +\sqrt {x^{2}+1}\, y^{\prime } = 0 \]

[_separable]

2791

\[ {}y = y x +x^{2} y^{\prime } \]

[_separable]

2793

\[ {}y^{2}+y y^{\prime }+x^{2} y y^{\prime }-1 = 0 \]

[_separable]

2794

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

2795

\[ {}y^{\prime } x +2 y = 0 \]
i.c.

[_separable]

2797

\[ {}x^{2} y^{\prime }+y^{2} = 0 \]
i.c.

[_separable]

2800

\[ {}1+y^{2} = \frac {y^{\prime }}{x^{3} \left (x -1\right )} \]
i.c.

[_separable]

2802

\[ {}\left (x^{2}+x +1\right ) y^{\prime } = y^{2}+2 y+5 \]
i.c.

[_separable]

2803

\[ {}\left (x^{2}-2 x -8\right ) y^{\prime } = y^{2}+y-2 \]
i.c.

[_separable]

2804

\[ {}x +y = y^{\prime } x \]

[_linear]

2805

\[ {}\left (x +y\right ) y^{\prime }+x = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2806

\[ {}-y+y^{\prime } x = \sqrt {y x} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2807

\[ {}y^{\prime } = \frac {2 x -y}{x +4 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2808

\[ {}-y+y^{\prime } x = \sqrt {x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2809

\[ {}y y^{\prime }+x = 2 y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2810

\[ {}y^{\prime } x -y+\sqrt {y^{2}-x^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2811

\[ {}x^{2}+y^{2} = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2812

\[ {}\left (y x -x^{2}\right ) y^{\prime }-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2813

\[ {}y^{\prime } x +y = 2 \sqrt {y x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

2814

\[ {}x +y+\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2815

\[ {}y \left (x^{2}-y x +y^{2}\right )+x y^{\prime } \left (x^{2}+y x +y^{2}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2816

\[ {}y^{\prime } x -y-x \sin \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2817

\[ {}y^{\prime } = \frac {y}{x}+\cosh \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

2818

\[ {}x^{2}+y^{2} = 2 x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2819

\[ {}\left (\frac {x}{y}+\frac {y}{x}\right ) y^{\prime }+1 = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2820

\[ {}x \,{\mathrm e}^{\frac {y}{x}}+y = y^{\prime } x \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

2821

\[ {}y^{\prime } = \frac {x +y}{x -y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2822

\[ {}y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right ) \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

2823

\[ {}\left (3 y x -2 x^{2}\right ) y^{\prime } = 2 y^{2}-y x \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2825

\[ {}y^{2} \left (y y^{\prime }-x \right )+x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2826

\[ {}y^{\prime } = \frac {y}{x}+\tanh \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

2827

\[ {}x +y-\left (x -y+2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2828

\[ {}x +\left (x -2 y+2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

2829

\[ {}2 x -y+1+\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2830

\[ {}x -y+2+\left (x +y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2831

\[ {}x -y+\left (y-x +1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2832

\[ {}y^{\prime } = \frac {x +y-1}{x -y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2833

\[ {}x +y+\left (2 x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2834

\[ {}x -y+1+\left (x -y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2835

\[ {}x +2 y+\left (3 x +6 y+3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2836

\[ {}x +2 y+2 = \left (2 x +y-1\right ) y^{\prime } \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2837

\[ {}3 x -y+1+\left (x -3 y-5\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2838

\[ {}6 x -3 y+6+\left (2 x -y+5\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2839

\[ {}2 x +3 y+2+\left (-x +y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2840

\[ {}x +y+4 = \left (2 x +2 y-1\right ) y^{\prime } \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2841

\[ {}2 x +3 y-1+\left (2 x +3 y+2\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2842

\[ {}3 x -y+2+\left (x +2 y+1\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2843

\[ {}3 x +2 y+3-\left (x +2 y-1\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2844

\[ {}x -2 y+3+\left (1-x +2 y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2846

\[ {}2 x +y+\left (4 x -2 y+1\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2847

\[ {}x +y+\left (x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2848

\[ {}3 x +y+\left (x +3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2849

\[ {}a_{1} x +b_{1} y+c_{1} +\left (b_{1} x +b_{2} y+c_{2} \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2852

\[ {}2 y x -\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2855

\[ {}y \,{\mathrm e}^{x}-2 x +{\mathrm e}^{x} y^{\prime } = 0 \]

[[_linear, ‘class A‘]]

2858

\[ {}\frac {2}{y}-\frac {y}{x^{2}}+\left (\frac {1}{x}-\frac {2 x}{y^{2}}\right ) y^{\prime } = 0 \]

[_separable]

2860

\[ {}\frac {y \left (2+x^{3} y\right )}{x^{3}} = \frac {\left (1-2 x^{3} y\right ) y^{\prime }}{x^{2}} \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2862

\[ {}\frac {2 y}{x^{3}}+\frac {2 x}{y^{2}} = \left (\frac {1}{x^{2}}+\frac {2 x^{2}}{y^{3}}\right ) y^{\prime } \]

[[_homogeneous, ‘class G‘], _exact, _rational]

2867

\[ {}\frac {x^{2}+3 y^{2}}{x \left (3 x^{2}+4 y^{2}\right )}+\frac {\left (2 x^{2}+y^{2}\right ) y^{\prime }}{y \left (3 x^{2}+4 y^{2}\right )} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

2868

\[ {}\frac {x^{2}-y^{2}}{x \left (2 x^{2}+y^{2}\right )}+\frac {\left (x^{2}+2 y^{2}\right ) y^{\prime }}{\left (2 x^{2}+y^{2}\right ) y} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

2870

\[ {}y^{\prime } x +\ln \left (x \right )-y = 0 \]

[_linear]

2871

\[ {}y x +\left (y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2872

\[ {}\left (x -2 y x \right ) y^{\prime }+2 y = 0 \]

[_separable]

2873

\[ {}x^{2} y+y^{2}+x^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2874

\[ {}x y^{3}-1+x^{2} y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2875

\[ {}\left (x^{3} y^{3}-1\right ) y^{\prime }+x^{2} y^{4} = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2876

\[ {}y \left (y-x^{2}\right )+x^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2877

\[ {}y+x y^{2}+\left (x -x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2879

\[ {}2 y x +\left (y-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2880

\[ {}y = x \left (x^{2} y-1\right ) y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2881

\[ {}{\mathrm e}^{x} y^{\prime } = 2 x y^{2}+y \,{\mathrm e}^{x} \]

[_Bernoulli]

2883

\[ {}\left (2 x +3 x^{2} y\right ) y^{\prime }+y+2 x y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2885

\[ {}y \left (1-x^{4} y^{2}\right )+y^{\prime } x = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2886

\[ {}y \left (x^{2}-1\right )+x \left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

2887

\[ {}x^{2} y^{2}-y+\left (2 x^{3} y+x \right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2890

\[ {}y \left (x +y^{2}\right )+x \left (x -y^{2}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational]

2891

\[ {}y^{\prime } x +2 y = x^{2} \]

[_linear]

2893

\[ {}y^{\prime }+2 y x = 2 x \,{\mathrm e}^{-x^{2}} \]

[_linear]

2894

\[ {}y^{\prime } = y+3 x^{2} {\mathrm e}^{x} \]

[[_linear, ‘class A‘]]

2895

\[ {}x^{\prime }+x = {\mathrm e}^{-y} \]

[[_linear, ‘class A‘]]

2897

\[ {}y+\left (2 x -3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2898

\[ {}y^{\prime } x -2 x^{4}-2 y = 0 \]

[_linear]

2899

\[ {}1 = \left ({\mathrm e}^{y}+x \right ) y^{\prime } \]

[[_1st_order, _with_exponential_symmetries]]

2900

\[ {}y^{2} x^{\prime }+\left (y^{2}+2 y \right ) x = 1 \]

[_linear]

2901

\[ {}y^{\prime } x = 5 y+x +1 \]

[_linear]

2902

\[ {}x^{2} y^{\prime }+y-2 y x -2 x^{2} = 0 \]

[_linear]

2905

\[ {}2 y = \left (y^{4}+x \right ) y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational]

2908

\[ {}y x^{\prime } = 2 y \,{\mathrm e}^{3 y}+x \left (3 y +2\right ) \]

[_linear]

2913

\[ {}y+2 \left (x -2 y^{2}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational]

2919

\[ {}x y y^{\prime } = x^{2}-y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2921

\[ {}t x^{\prime }+x \left (1-x^{2} t^{4}\right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2922

\[ {}x^{2} y^{\prime }+y^{2} = y x \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2925

\[ {}y^{\prime } x +y = y^{2} x^{2} \cos \left (x \right ) \]

[_Bernoulli]

2927

\[ {}y^{\prime } x +2 y = 3 x^{3} y^{{4}/{3}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2933

\[ {}y^{\prime } = x \left (1-{\mathrm e}^{2 y-x^{2}}\right ) \]
i.c.

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2934

\[ {}2 y = \left (x^{2} y^{4}+x \right ) y^{\prime } \]
i.c.

[[_homogeneous, ‘class G‘], _rational]

2937

\[ {}\left (1-x \right ) y^{\prime }-1-y = 0 \]

[_separable]

2938

\[ {}y^{2}+\left (x^{2}+y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2939

\[ {}2 x +y-\left (x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2941

\[ {}x -2 y+1+\left (y-2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2943

\[ {}2 \,{\mathrm e}^{x}-t^{2}+t \,{\mathrm e}^{x} x^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries]]

2944

\[ {}6+2 y = x y y^{\prime } \]

[_separable]

2945

\[ {}x -3 y = \left (3 y-x +2\right ) y^{\prime } \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2947

\[ {}x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2948

\[ {}y-y^{\prime } x = 2 y^{\prime }+2 y^{2} \]

[_separable]

2949

\[ {}\tan \left (y\right ) = \left (3 x +4\right ) y^{\prime } \]

[_separable]

2951

\[ {}2 y x +y^{4}+\left (x y^{3}-2 x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2952

\[ {}y+\left (3 x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2953

\[ {}r^{\prime } = r \cot \left (\theta \right ) \]

[_separable]

2954

\[ {}\left (3 x +4 y\right ) y^{\prime }+2 x +y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2956

\[ {}y^{\prime } x -y-\sqrt {x^{2}+y^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2958

\[ {}x +y+\left (2 x +3 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2959

\[ {}1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

2963

\[ {}2 y^{\prime } x -y+\frac {x^{2}}{y^{2}} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2964

\[ {}y^{\prime } x +y \left (1+y^{2}\right ) = 0 \]

[_separable]

2965

\[ {}y \sqrt {x^{2}+y^{2}}+y x = x^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _dAlembert]

2969

\[ {}y \cos \left (\frac {x}{y}\right )-\left (y+x \cos \left (\frac {x}{y}\right )\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2970

\[ {}y \left (3 x^{2}+y\right )-x \left (x^{2}-y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2971

\[ {}x +\left (2 x +3 y+2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

2972

\[ {}y^{\prime } x -5 y-x \sqrt {y} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2974

\[ {}y x -y^{2}-x^{2} y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2977

\[ {}y^{\prime } x -2 y-2 x^{4} y^{3} = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2978

\[ {}\left (-2 x^{2}-3 y x \right ) y^{\prime }+y^{2} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2979

\[ {}y^{\prime } x = x^{4}+4 y \]
i.c.

[_linear]

2980

\[ {}y^{\prime } x +y = x^{3} y^{6} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2981

\[ {}x^{\prime } = x+x^{2} {\mathrm e}^{\theta } \]
i.c.

[[_1st_order, _with_linear_symmetries], _Bernoulli]

2982

\[ {}x^{2}+y^{2} = 2 x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2983

\[ {}3 y x +\left (3 x^{2}+y^{2}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2984

\[ {}y^{\prime }+2 y = 3 \,{\mathrm e}^{2 x} \]
i.c.

[[_linear, ‘class A‘]]

2985

\[ {}4 x y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

2986

\[ {}x -2 y+3 = \left (x -2 y+1\right ) y^{\prime } \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2987

\[ {}y^{2}+\left (x^{3}-2 y x \right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2989

\[ {}y^{3}+2 x^{2} y+\left (-3 x^{3}-2 x y^{2}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2990

\[ {}2 \left (x^{2}+1\right ) y^{\prime } = \left (2 y^{2}-1\right ) x y \]
i.c.

[_separable]

3218

\[ {}4 y^{2} = x^{2} {y^{\prime }}^{2} \]

[_separable]

3224

\[ {}y^{2} {y^{\prime }}^{2}+x y y^{\prime }-2 x^{2} = 0 \]

[_separable]

3226

\[ {}{y^{\prime }}^{3}+\left (x +y-2 y x \right ) {y^{\prime }}^{2}-2 y^{\prime } x y \left (x +y\right ) = 0 \]

[_quadrature]

3229

\[ {}y = x +3 \ln \left (y^{\prime }\right ) \]

[_separable]

3243

\[ {}x = y-{y^{\prime }}^{3} \]

[[_homogeneous, ‘class C‘], _dAlembert]

3253

\[ {}{y^{\prime }}^{3}+x y y^{\prime } = 2 y^{2} \]

[[_1st_order, _with_linear_symmetries]]

3261

\[ {}y = y^{\prime } x +\ln \left (y^{\prime }\right ) \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

3264

\[ {}y = y^{\prime } x +{\mathrm e}^{y^{\prime }} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

3267

\[ {}y^{2}-2 x y y^{\prime }+{y^{\prime }}^{2} \left (x^{2}-1\right ) = 0 \]

[_separable]

3342

\[ {}y^{\prime } = y x \]

[_separable]

3343

\[ {}y^{\prime } = x^{2} y^{2} \]

[_separable]

3344

\[ {}y^{\prime } = -x \,{\mathrm e}^{y} \]

[_separable]

3346

\[ {}y^{\prime } x = \sqrt {1-y^{2}} \]

[_separable]

3360

\[ {}y^{\prime } = \frac {{\mathrm e}^{t}}{y} \]
i.c.

[_separable]

3364

\[ {}y^{\prime } = \frac {y}{t} \]

[_separable]

3365

\[ {}y^{\prime } = -\frac {t}{y} \]

[_separable]

3371

\[ {}y^{\prime } = \left (t^{2}+1\right ) y \]

[_separable]

3373

\[ {}y^{\prime } = 2 y+{\mathrm e}^{-3 t} \]

[[_linear, ‘class A‘]]

3374

\[ {}y^{\prime } = 2 y+{\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

3375

\[ {}y^{\prime } = t -y \]

[[_linear, ‘class A‘]]

3378

\[ {}y^{\prime } = \frac {2 t y}{t^{2}+1}+t +1 \]

[_linear]

3382

\[ {}t y^{\prime } = y+t^{3} \]
i.c.

[_linear]

3384

\[ {}y^{\prime } = \frac {2 y}{1+t} \]
i.c.

[_separable]

3385

\[ {}t y^{\prime } = -y+t^{3} \]
i.c.

[_linear]

3386

\[ {}y^{\prime }+4 \tan \left (2 t \right ) y = \tan \left (2 t \right ) \]
i.c.

[_separable]

3390

\[ {}y^{\prime }-x y^{3} = 0 \]

[_separable]

3391

\[ {}\frac {y^{\prime }}{\tan \left (x \right )}-\frac {y}{x^{2}+1} = 0 \]

[_separable]

3392

\[ {}x^{2} y^{\prime }+x y^{2} = 4 y^{2} \]

[_separable]

3394

\[ {}2 y^{\prime } x +3 x +y = 0 \]

[_linear]

3396

\[ {}\left (-x^{2}+1\right ) y^{\prime }+4 y x = \left (-x^{2}+1\right )^{{3}/{2}} \]

[_linear]

3398

\[ {}\left (x +y^{3}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class G‘], _rational]

3400

\[ {}\left (-x +y\right ) y^{\prime }+2 x +3 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3401

\[ {}y^{\prime } = \frac {1}{x +2 y+1} \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

3402

\[ {}y^{\prime } = -\frac {x +y}{3 x +3 y-4} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3404

\[ {}x \left (1-2 x^{2} y\right ) y^{\prime }+y = 3 x^{2} y^{2} \]
i.c.

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3405

\[ {}y^{\prime }+\frac {x y}{a^{2}+x^{2}} = x \]

[_linear]

3406

\[ {}y^{\prime } = \frac {4 y^{2}}{x^{2}}-y^{2} \]

[_separable]

3407

\[ {}y^{\prime }-\frac {y}{x} = 1 \]
i.c.

[_linear]

3409

\[ {}y^{\prime }-\frac {y^{2}}{x^{2}} = {\frac {1}{4}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3410

\[ {}y^{\prime }-\frac {y^{2}}{x^{2}} = {\frac {1}{4}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3412

\[ {}\left (5 x +y-7\right ) y^{\prime } = 3 x +3 y+3 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3413

\[ {}y^{\prime } x +y-\frac {y^{2}}{x^{{3}/{2}}} = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3448

\[ {}y^{\prime } = 2 y x \]

[_separable]

3449

\[ {}y^{\prime } = \frac {y^{2}}{x^{2}+1} \]

[_separable]

3450

\[ {}{\mathrm e}^{x +y} y^{\prime }-1 = 0 \]

[_separable]

3451

\[ {}y^{\prime } = \frac {y}{x \ln \left (x \right )} \]

[_separable]

3452

\[ {}y-\left (x -2\right ) y^{\prime } = 0 \]

[_separable]

3453

\[ {}y^{\prime } = \frac {2 x \left (-1+y\right )}{x^{2}+3} \]

[_separable]

3454

\[ {}y-y^{\prime } x = 3-2 x^{2} y^{\prime } \]

[_separable]

3456

\[ {}y^{\prime } = \frac {x \left (-1+y^{2}\right )}{2 \left (x -2\right ) \left (x -1\right )} \]

[_separable]

3458

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }-y+c = 0 \]

[_separable]

3459

\[ {}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1 \]
i.c.

[_separable]

3460

\[ {}\left (-x^{2}+1\right ) y^{\prime }+y x = a x \]
i.c.

[_separable]

3462

\[ {}y^{\prime } = y^{3} \sin \left (x \right ) \]

[_separable]

3463

\[ {}y^{\prime }-y = {\mathrm e}^{2 x} \]

[[_linear, ‘class A‘]]

3465

\[ {}y^{\prime }+2 y x = 2 x^{3} \]

[_linear]

3466

\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = 4 x \]

[_linear]

3467

\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = \frac {4}{\left (x^{2}+1\right )^{2}} \]

[_linear]

3474

\[ {}y^{\prime }-\frac {y}{x} = 2 x^{2} \ln \left (x \right ) \]

[_linear]

3475

\[ {}y^{\prime }+\alpha y = {\mathrm e}^{\beta x} \]

[[_linear, ‘class A‘]]

3477

\[ {}\left (3 x -y\right ) y^{\prime } = 3 y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3478

\[ {}y^{\prime } = \frac {\left (x +y\right )^{2}}{2 x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3479

\[ {}\sin \left (\frac {y}{x}\right ) \left (-y+y^{\prime } x \right ) = x \cos \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3480

\[ {}y^{\prime } x = \sqrt {16 x^{2}-y^{2}}+y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3481

\[ {}-y+y^{\prime } x = \sqrt {9 x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3482

\[ {}x \left (x^{2}-y^{2}\right )-x \left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3483

\[ {}y^{\prime } x +y \ln \left (x \right ) = y \ln \left (y\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3484

\[ {}y^{\prime } = \frac {y^{2}+2 y x -2 x^{2}}{x^{2}-y x +y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3485

\[ {}2 x y y^{\prime }-2 y^{2}-x^{2} {\mathrm e}^{-\frac {y^{2}}{x^{2}}} = 0 \]

[[_homogeneous, ‘class A‘]]

3486

\[ {}x^{2} y^{\prime } = y^{2}+3 y x +x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3487

\[ {}y y^{\prime } = \sqrt {x^{2}+y^{2}}-x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3488

\[ {}2 x \left (2 x +y\right ) y^{\prime } = y \left (4 x -y\right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3489

\[ {}y^{\prime } x = x \tan \left (\frac {y}{x}\right )+y \]

[[_homogeneous, ‘class A‘], _dAlembert]

3490

\[ {}y^{\prime } = \frac {x \sqrt {x^{2}+y^{2}}+y^{2}}{y x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

3495

\[ {}y^{\prime } = \frac {y}{2 x} \]

[_separable]

3526

\[ {}y^{\prime } = 2 y x \]

[_separable]

3527

\[ {}y^{\prime } = \frac {y^{2}}{x^{2}+1} \]

[_separable]

3528

\[ {}{\mathrm e}^{x +y} y^{\prime }-1 = 0 \]

[_separable]

3529

\[ {}y^{\prime } = \frac {y}{x \ln \left (x \right )} \]

[_separable]

3530

\[ {}y-\left (x -1\right ) y^{\prime } = 0 \]

[_separable]

3531

\[ {}y^{\prime } = \frac {2 x \left (-1+y\right )}{x^{2}+3} \]

[_separable]

3532

\[ {}y-y^{\prime } x = 3-2 x^{2} y^{\prime } \]

[_separable]

3534

\[ {}y^{\prime } = \frac {x \left (-1+y^{2}\right )}{2 \left (x -2\right ) \left (x -1\right )} \]

[_separable]

3535

\[ {}y^{\prime } = \frac {x^{2} y-32}{-x^{2}+16}+2 \]

[_separable]

3536

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }-y+c = 0 \]

[_separable]

3537

\[ {}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1 \]
i.c.

[_separable]

3538

\[ {}\left (-x^{2}+1\right ) y^{\prime }+y x = a x \]
i.c.

[_separable]

3540

\[ {}y^{\prime } = y^{3} \sin \left (x \right ) \]
i.c.

[_separable]

3560

\[ {}x^{\prime }+\frac {2 x}{4-t} = 5 \]
i.c.

[_linear]

3561

\[ {}y-{\mathrm e}^{x}+y^{\prime } = 0 \]
i.c.

[[_linear, ‘class A‘]]

3566

\[ {}y^{\prime }+y = {\mathrm e}^{-2 x} \]

[[_linear, ‘class A‘]]

3568

\[ {}-y+y^{\prime } x = x^{2} \ln \left (x \right ) \]

[_linear]

3569

\[ {}y^{\prime } = \frac {x^{2}+y x +y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3570

\[ {}\left (3 x -y\right ) y^{\prime } = 3 y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3571

\[ {}y^{\prime } = \frac {\left (x +y\right )^{2}}{2 x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3572

\[ {}\sin \left (\frac {y}{x}\right ) \left (-y+y^{\prime } x \right ) = x \cos \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3573

\[ {}y^{\prime } x = \sqrt {16 x^{2}-y^{2}}+y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3574

\[ {}-y+y^{\prime } x = \sqrt {9 x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3575

\[ {}y \left (x^{2}-y^{2}\right )-x \left (x^{2}-y^{2}\right ) y^{\prime } = 0 \]

[_separable]

3576

\[ {}y^{\prime } x +y \ln \left (x \right ) = y \ln \left (y\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3577

\[ {}y^{\prime } = \frac {y^{2}+2 y x -2 x^{2}}{x^{2}-y x +y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3578

\[ {}2 x y y^{\prime }-2 y^{2}-x^{2} {\mathrm e}^{-\frac {y^{2}}{x^{2}}} = 0 \]

[[_homogeneous, ‘class A‘]]

3579

\[ {}x^{2} y^{\prime } = y^{2}+3 y x +x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3580

\[ {}y y^{\prime } = \sqrt {x^{2}+y^{2}}-x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3581

\[ {}2 x \left (2 x +y\right ) y^{\prime } = y \left (4 x -y\right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3582

\[ {}y^{\prime } x = x \tan \left (\frac {y}{x}\right )+y \]

[[_homogeneous, ‘class A‘], _dAlembert]

3583

\[ {}y^{\prime } = \frac {x \sqrt {x^{2}+y^{2}}+y^{2}}{y x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

3584

\[ {}y^{\prime } = \frac {-2 x +4 y}{x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3585

\[ {}y^{\prime } = \frac {2 x -y}{x +4 y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3586

\[ {}y^{\prime } = \frac {y-\sqrt {x^{2}+y^{2}}}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

3587

\[ {}-y+y^{\prime } x = \sqrt {4 x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3588

\[ {}y^{\prime } = \frac {x +a y}{a x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3589

\[ {}y^{\prime } = \frac {x +\frac {y}{2}}{\frac {x}{2}-y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3594

\[ {}y^{\prime }+\frac {2 y}{x} = 6 x^{4} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3595

\[ {}2 x \left (y^{\prime }+y^{3} x^{2}\right )+y = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3600

\[ {}y^{\prime }-\frac {y}{\left (\pi -1\right ) x} = \frac {3 x y^{\pi }}{1-\pi } \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3605

\[ {}y^{\prime } = \left (9 x -y\right )^{2} \]
i.c.

[[_homogeneous, ‘class C‘], _Riccati]

3606

\[ {}y^{\prime } = \left (4 x +y+2\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

3607

\[ {}y^{\prime } = \sin \left (3 x -3 y+1\right )^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

3608

\[ {}y^{\prime } = \frac {y \left (\ln \left (y x \right )-1\right )}{x} \]

[[_homogeneous, ‘class G‘]]

3609

\[ {}y^{\prime } = 2 x \left (x +y\right )^{2}-1 \]
i.c.

[[_1st_order, _with_linear_symmetries], _Riccati]

3610

\[ {}y^{\prime } = \frac {x +2 y-1}{2 x -y+3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3612

\[ {}y^{\prime }+\frac {2 y}{x}-y^{2} = -\frac {2}{x^{2}} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

3613

\[ {}y^{\prime }+\frac {7 y}{x}-3 y^{2} = \frac {3}{x^{2}} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

3615

\[ {}\frac {y^{\prime }}{y}-\frac {2 \ln \left (y\right )}{x} = \frac {1-2 \ln \left (x \right )}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

3895

\[ {}4 x y^{2}+6 y+\left (5 x^{2} y+8 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3896

\[ {}5 x +2 y+1+\left (2 x +y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3897

\[ {}3 x -y+1-\left (6 x -2 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3898

\[ {}x -2 y-3+\left (2 x +y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3899

\[ {}6 x +4 y+1+\left (4 x +2 y+2\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3900

\[ {}3 x -y-6+\left (x +y+2\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3901

\[ {}2 x +3 y+1+\left (4 x +6 y+1\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3905

\[ {}x^{2} y^{\prime } = x \left (-1+y\right )+\left (-1+y\right )^{2} \]

[[_homogeneous, ‘class C‘], _rational, _Riccati]

3908

\[ {}3 y-2 x +\left (3 x -2\right ) y^{\prime } = 0 \]

[_linear]

3910

\[ {}{\mathrm e}^{2 y}+\left (x +1\right ) y^{\prime } = 0 \]

[_separable]

3911

\[ {}\left (x +1\right ) y^{\prime }-x^{2} y^{2} = 0 \]

[_separable]

3912

\[ {}y^{\prime } = \frac {y-2 x}{x} \]

[_linear]

3913

\[ {}x^{3}+y^{3}-x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3915

\[ {}y^{\prime }+y = x^{2}+2 \]

[[_linear, ‘class A‘]]

3917

\[ {}y^{\prime } = {\mathrm e}^{x -2 y} \]
i.c.

[_separable]

3918

\[ {}y^{\prime } = \frac {x^{2}+y^{2}}{2 x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3919

\[ {}y^{\prime } x = x +y \]
i.c.

[_linear]

3920

\[ {}{\mathrm e}^{-y}+\left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

3927

\[ {}y^{\prime } = \frac {2 x -y}{2 x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3928

\[ {}y^{\prime } = \frac {3 x -y+1}{3 y-x +5} \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3929

\[ {}3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3933

\[ {}y y^{\prime } = x \]

[_separable]

3934

\[ {}y^{\prime }-y = x^{3} \]

[[_linear, ‘class A‘]]

3939

\[ {}y^{\prime } x +y = x \]

[_linear]

3940

\[ {}-y+y^{\prime } x = x^{3} \]

[_linear]

3941

\[ {}y^{\prime } x +n y = x^{n} \]

[_linear]

3942

\[ {}y^{\prime } x -n y = x^{n} \]

[_linear]

3943

\[ {}\left (x^{3}+x \right ) y^{\prime }+y = x \]

[_linear]

3956

\[ {}3 y^{2} y^{\prime } = 2 x -1 \]

[_separable]

3957

\[ {}y^{\prime } = 6 x y^{2} \]

[_separable]

3959

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

3962

\[ {}y^{\prime } x = y \]

[_separable]

3963

\[ {}\left (1-x \right ) y^{\prime } = y \]

[_separable]

3964

\[ {}y^{\prime } = \frac {4 x y}{x^{2}+1} \]

[_separable]

3965

\[ {}y^{\prime } = \frac {2 y}{x^{2}-1} \]

[_separable]

3966

\[ {}x^{2} y^{\prime }-y^{2} = 0 \]
i.c.

[_separable]

3967

\[ {}y^{\prime }+2 y x = 0 \]
i.c.

[_separable]

3968

\[ {}\cot \left (x \right ) y^{\prime } = y \]
i.c.

[_separable]

3969

\[ {}y^{\prime } = x \,{\mathrm e}^{-2 y} \]
i.c.

[_separable]

3970

\[ {}y^{\prime }-2 y x = 2 x \]
i.c.

[_separable]

3971

\[ {}y^{\prime } x = y x +y \]
i.c.

[_separable]

3973

\[ {}x \cos \left (y\right ) y^{\prime } = 1+\sin \left (y\right ) \]
i.c.

[_separable]

3974

\[ {}y^{\prime } x = 2 y \left (-1+y\right ) \]
i.c.

[_separable]

3975

\[ {}2 y^{\prime } x = 1-y^{2} \]
i.c.

[_separable]

3976

\[ {}\left (1-x \right ) y^{\prime } = y x \]

[_separable]

3977

\[ {}\left (x^{2}-1\right ) y^{\prime } = \left (x^{2}+1\right ) y \]

[_separable]

3978

\[ {}y^{\prime } = {\mathrm e}^{x} \left (1+y^{2}\right ) \]

[_separable]

3981

\[ {}x y y^{\prime } = \sqrt {y^{2}-9} \]
i.c.

[_separable]

3982

\[ {}\left (x +y-1\right ) y^{\prime } = x -y+1 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3983

\[ {}x y y^{\prime } = 2 x^{2}-y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3984

\[ {}x^{2}-y^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3985

\[ {}x^{2} y^{\prime }-2 y x -2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3987

\[ {}x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )+x \]

[[_homogeneous, ‘class A‘], _dAlembert]

3988

\[ {}y^{\prime } x = y+2 \,{\mathrm e}^{-\frac {y}{x}} \]

[[_homogeneous, ‘class D‘]]

3989

\[ {}y^{\prime } = \left (x +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

3990

\[ {}y^{\prime } = \sin \left (x -y+1\right )^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

3991

\[ {}y^{\prime } = \frac {x +y+4}{x -y-6} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3992

\[ {}y^{\prime } = \frac {x +y+4}{x +y-6} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3993

\[ {}\left (x +\frac {2}{y}\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3997

\[ {}y+y \cos \left (y x \right )+\left (x +x \cos \left (y x \right )\right ) y^{\prime } = 0 \]

[_separable]

4000

\[ {}-\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0 \]

[_separable]

4001

\[ {}1+y+\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

4004

\[ {}\left (3 x^{2}-y^{2}\right ) y^{\prime }-2 y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4006

\[ {}\left (x +3 x^{3} y^{4}\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4007

\[ {}\left (x -1-y^{2}\right ) y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

4008

\[ {}y-\left (x +x y^{3}\right ) y^{\prime } = 0 \]

[_separable]

4010

\[ {}\left (x +y\right ) y^{\prime } = -x +y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4012

\[ {}y^{\prime } x -3 y = x^{4} \]

[_linear]

4015

\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x}+x^{2} \]

[[_linear, ‘class A‘]]

4017

\[ {}2 y-x^{3} = y^{\prime } x \]

[_linear]

4018

\[ {}\left (1-y x \right ) y^{\prime } = y^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4019

\[ {}2 x +3 y+1+\left (2 y-3 x +5\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4020

\[ {}y^{\prime } x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4021

\[ {}y^{2} = \left (x^{3}-y x \right ) y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4022

\[ {}y^{3} x^{2}+y = \left (x^{3} y^{2}-x \right ) y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational]

4024

\[ {}\left (y x -x^{2}\right ) y^{\prime } = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4026

\[ {}y+x^{2} = y^{\prime } x \]

[_linear]

4028

\[ {}6 x +4 y+3+\left (3 x +2 y+2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4029

\[ {}\cos \left (x +y\right )-x \sin \left (x +y\right ) = x \sin \left (x +y\right ) y^{\prime } \]

[[_1st_order, _with_linear_symmetries], _exact]

4031

\[ {}y^{\prime } \ln \left (x -y\right ) = 1+\ln \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

4032

\[ {}y^{\prime }+2 y x = {\mathrm e}^{-x^{2}} \]

[_linear]

4033

\[ {}y^{2}-3 y x -2 x^{2} = \left (x^{2}-y x \right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4034

\[ {}\left (x^{2}+1\right ) y^{\prime }+2 y x = 4 x^{3} \]

[_linear]

4038

\[ {}2 y x +x^{2} y^{\prime } = 0 \]

[_separable]

4043

\[ {}\frac {x}{x^{2}+y^{2}}+\frac {y}{x^{2}}+\left (\frac {y}{x^{2}+y^{2}}-\frac {1}{x}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4045

\[ {}x \left (x -1\right ) y^{\prime } = \cot \left (y\right ) \]

[_separable]

4047

\[ {}\sqrt {x^{2}+1}\, y^{\prime }+\sqrt {1+y^{2}} = 0 \]

[_separable]

4048

\[ {}y^{\prime } = \frac {x \left (1+y^{2}\right )}{y \left (x^{2}+1\right )} \]
i.c.

[_separable]

4054

\[ {}x y^{3}+{\mathrm e}^{x^{2}} y^{\prime } = 0 \]

[_separable]

4057

\[ {}y^{\prime }+\frac {x}{y}+2 = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4058

\[ {}-y+y^{\prime } x = x \cot \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4059

\[ {}x \cos \left (\frac {y}{x}\right )^{2}-y+y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4060

\[ {}y^{\prime } x = y \left (1+\ln \left (y\right )-\ln \left (x \right )\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4061

\[ {}y x +\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4062

\[ {}\left (1-{\mathrm e}^{-\frac {y}{x}}\right ) y^{\prime }+1-\frac {y}{x} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4063

\[ {}x^{2}-y x +y^{2}-x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4064

\[ {}\left (3+2 x +4 y\right ) y^{\prime } = x +2 y+1 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4065

\[ {}y^{\prime } = \frac {2 x +y-1}{x -y-2} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4066

\[ {}2+y = \left (2 x +y-4\right ) y^{\prime } \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4067

\[ {}y^{\prime } = \sin \left (x -y\right )^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

4068

\[ {}y^{\prime } = \left (x +1\right )^{2}+\left (4 y+1\right )^{2}+8 y x +1 \]

[[_homogeneous, ‘class C‘], _Riccati]

4073

\[ {}x^{2}+\ln \left (y\right )+\frac {x y^{\prime }}{y} = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4076

\[ {}2 y x +\left (x^{2}+2 y x +y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4080

\[ {}y+x \left (y^{2}+\ln \left (x \right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

4082

\[ {}y^{2}+\left (y x +y^{2}-1\right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

4084

\[ {}2 y \left (x +y+2\right )+\left (y^{2}-x^{2}-4 x -1\right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

4090

\[ {}x -\sqrt {x^{2}+y^{2}}+\left (y-\sqrt {x^{2}+y^{2}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _dAlembert]

4092

\[ {}y^{2}-\left (y x +x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4094

\[ {}2 x^{2} y^{2}+y+\left (x^{3} y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4095

\[ {}y^{2}+\left (y x +\tan \left (y x \right )\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘]]

4096

\[ {}2 x^{2} y^{4}-y+\left (4 x^{3} y^{3}-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4098

\[ {}y \left (1+y^{2}\right )+x \left (y^{2}-x +1\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

4099

\[ {}y^{2}+\left ({\mathrm e}^{x}-y\right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class A‘]]

4100

\[ {}x^{2} y^{2}-2 y+\left (x^{3} y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4101

\[ {}2 x^{3} y+y^{3}-\left (x^{4}+2 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4104

\[ {}1-\left (y-2 y x \right ) y^{\prime } = 0 \]

[_separable]

4106

\[ {}\left (y^{3}+\frac {x}{y}\right ) y^{\prime } = 1 \]

[[_homogeneous, ‘class G‘], _rational]

4107

\[ {}1+\left (x -y^{2}\right ) y^{\prime } = 0 \]

[[_1st_order, _with_exponential_symmetries]]

4108

\[ {}y^{2}+\left (y x +y^{2}-1\right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

4111

\[ {}y+\left (y^{2} {\mathrm e}^{y}-x \right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries]]

4116

\[ {}1+y+\left (x -y \left (1+y\right )^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

4119

\[ {}y^{\prime } = \frac {4 x^{3} y^{2}}{x^{4} y+2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4125

\[ {}6 y^{2}-x \left (2 x^{3}+y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4132

\[ {}y = 2 y^{\prime } x +y^{2} {y^{\prime }}^{3} \]

[[_1st_order, _with_linear_symmetries]]

4133

\[ {}{y^{\prime }}^{3}+y^{2} = x y y^{\prime } \]

[[_1st_order, _with_linear_symmetries]]

4135

\[ {}y = y^{\prime } x -x^{2} {y^{\prime }}^{3} \]

[[_1st_order, _with_linear_symmetries]]

4136

\[ {}y \left (y-2 y^{\prime } x \right )^{3} = {y^{\prime }}^{2} \]

[[_homogeneous, ‘class G‘]]

4138

\[ {}2 y^{\prime } x -y = \ln \left (y^{\prime }\right ) \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

4139

\[ {}x y^{2} \left (y^{\prime } x +y\right ) = 1 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4141

\[ {}y^{\prime } = \frac {2+y}{x +1} \]

[_separable]

4142

\[ {}y^{\prime } x = y-x \,{\mathrm e}^{\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

4144

\[ {}2 \sqrt {y x}-y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4145

\[ {}y^{\prime } = {\mathrm e}^{\frac {x y^{\prime }}{y}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

4171

\[ {}y^{\prime } = a +b x +c y \]

[[_linear, ‘class A‘]]

4174

\[ {}y^{\prime } = a +b \,{\mathrm e}^{k x}+c y \]

[[_linear, ‘class A‘]]

4175

\[ {}y^{\prime } = x \left (x^{2}-y\right ) \]

[_linear]

4177

\[ {}y^{\prime } = x^{2} \left (a \,x^{3}+b y\right ) \]

[_linear]

4178

\[ {}y^{\prime } = a \,x^{n} y \]

[_separable]

4181

\[ {}y^{\prime } = y \cot \left (x \right ) \]

[_separable]

4184

\[ {}y^{\prime } = \left (2 \csc \left (2 x \right )+\cot \left (x \right )\right ) y \]

[_separable]

4192

\[ {}y^{\prime } = y \sec \left (x \right ) \]

[_separable]

4194

\[ {}y^{\prime } = y \tan \left (x \right ) \]

[_separable]

4203

\[ {}y^{\prime } = \left (a +\cos \left (\ln \left (x \right )\right )+\sin \left (\ln \left (x \right )\right )\right ) y \]

[_separable]

4210

\[ {}y^{\prime } = \left (x +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

4211

\[ {}y^{\prime } = \left (x -y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

4212

\[ {}y^{\prime } = 3-3 x +3 y+\left (x -y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

4214

\[ {}y^{\prime } = x \left (x^{3}+2\right )-\left (2 x^{2}-y\right ) y \]

[[_1st_order, _with_linear_symmetries], _Riccati]

4215

\[ {}y^{\prime } = 1+x \left (-x^{3}+2\right )+\left (2 x^{2}-y\right ) y \]

[[_1st_order, _with_linear_symmetries], _Riccati]

4219

\[ {}y^{\prime } = \left (3+x -4 y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

4220

\[ {}y^{\prime } = \left (1+4 x +9 y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

4231

\[ {}y^{\prime } = x y \left (3+y\right ) \]

[_separable]

4232

\[ {}y^{\prime } = 1-x -x^{3}+\left (2 x^{2}+1\right ) y-x y^{2} \]

[_Riccati]

4234

\[ {}y^{\prime } = x +\left (1-2 x \right ) y-\left (1-x \right ) y^{2} \]

[_Riccati]

4235

\[ {}y^{\prime } = a x y^{2} \]

[_separable]

4236

\[ {}y^{\prime } = x^{n} \left (a +b y^{2}\right ) \]

[_separable]

4242

\[ {}y^{\prime }+\tan \left (x \right ) \left (1-y^{2}\right ) = 0 \]

[_separable]

4244

\[ {}y^{\prime } = \left (a +b y+c y^{2}\right ) f \left (x \right ) \]

[_separable]

4250

\[ {}y^{\prime } = x y^{3} \]

[_separable]

4251

\[ {}y^{\prime }+y \left (1-x y^{2}\right ) = 0 \]

[_Bernoulli]

4252

\[ {}y^{\prime } = \left (a +b x y\right ) y^{2} \]

[[_homogeneous, ‘class G‘], _Abel]

4255

\[ {}y^{\prime }+y^{3} \sec \left (x \right ) \tan \left (x \right ) = 0 \]

[_separable]

4257

\[ {}y^{\prime } = a \,x^{\frac {n}{1-n}}+b y^{n} \]

[[_homogeneous, ‘class G‘], _Chini]

4262

\[ {}y^{\prime } = a x +b \sqrt {y} \]

[[_homogeneous, ‘class G‘], _Chini]

4263

\[ {}y^{\prime }+x^{3} = x \sqrt {x^{4}+4 y} \]

[[_1st_order, _with_linear_symmetries]]

4291

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

4296

\[ {}y^{\prime } = f \left (a +b x +c y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

4300

\[ {}2 y^{\prime }+a x = \sqrt {a^{2} x^{2}-4 b \,x^{2}-4 c y} \]

[[_homogeneous, ‘class G‘]]

4301

\[ {}3 y^{\prime } = x +\sqrt {x^{2}-3 y} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

4303

\[ {}y^{\prime } x +x +y = 0 \]

[_linear]

4304

\[ {}y^{\prime } x +x^{2}-y = 0 \]

[_linear]

4305

\[ {}y^{\prime } x = x^{3}-y \]

[_linear]

4306

\[ {}y^{\prime } x = 1+x^{3}+y \]

[_linear]

4307

\[ {}y^{\prime } x = x^{m}+y \]

[_linear]

4309

\[ {}y^{\prime } x = \sin \left (x \right ) x^{2}+y \]

[_linear]

4312

\[ {}y^{\prime } x = a y \]

[_separable]

4313

\[ {}y^{\prime } x = 1+x +a y \]

[_linear]

4314

\[ {}y^{\prime } x = a x +b y \]

[_linear]

4315

\[ {}y^{\prime } x = a \,x^{2}+b y \]

[_linear]

4316

\[ {}y^{\prime } x = a +b \,x^{n}+c y \]

[_linear]

4319

\[ {}y^{\prime } x +\left (b x +a \right ) y = 0 \]

[_separable]

4320

\[ {}y^{\prime } x = x^{3}+\left (-2 x^{2}+1\right ) y \]

[_linear]

4326

\[ {}y^{\prime } x = a +b y^{2} \]

[_separable]

4332

\[ {}y^{\prime } x +\left (1-y x \right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4333

\[ {}y^{\prime } x = \left (1-y x \right ) y \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4334

\[ {}y^{\prime } x = \left (1+y x \right ) y \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4336

\[ {}y^{\prime } x = x^{3}+\left (2 x^{2}+1\right ) y+x y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

4337

\[ {}y^{\prime } x = y \left (1+2 y x \right ) \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4342

\[ {}y^{\prime } x +\left (a +b \,x^{n} y\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4344

\[ {}y^{\prime } x = 2 x -y+a \,x^{n} \left (x -y\right )^{2} \]

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

4345

\[ {}y^{\prime } x +\left (1-a y \ln \left (x \right )\right ) y = 0 \]

[_Bernoulli]

4347

\[ {}y^{\prime } x = y \left (1+y^{2}\right ) \]

[_separable]

4348

\[ {}y^{\prime } x +y \left (1-x y^{2}\right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4349

\[ {}y^{\prime } x +y = a \left (x^{2}+1\right ) y^{3} \]

[_rational, _Bernoulli]

4350

\[ {}y^{\prime } x = a y+b \left (x^{2}+1\right ) y^{3} \]

[_rational, _Bernoulli]

4352

\[ {}y^{\prime } x = 4 y-4 \sqrt {y} \]

[_separable]

4353

\[ {}y^{\prime } x +2 y = \sqrt {1+y^{2}} \]

[_separable]

4354

\[ {}y^{\prime } x = y+\sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4355

\[ {}y^{\prime } x = y+\sqrt {x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4358

\[ {}y^{\prime } x = y+a \sqrt {y^{2}+b^{2} x^{2}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

4360

\[ {}y^{\prime } x +x -y+x \cos \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4361

\[ {}y^{\prime } x = y-x \cos \left (\frac {y}{x}\right )^{2} \]

[[_homogeneous, ‘class A‘], _dAlembert]

4363

\[ {}y^{\prime } x = y-\cot \left (y\right )^{2} \]

[_separable]

4365

\[ {}y^{\prime } x -y+x \sec \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4366

\[ {}y^{\prime } x = y+x \sec \left (\frac {y}{x}\right )^{2} \]

[[_homogeneous, ‘class A‘], _dAlembert]

4368

\[ {}y^{\prime } x = y+x \sin \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4369

\[ {}y^{\prime } x +\tan \left (y\right ) = 0 \]

[_separable]

4370

\[ {}y^{\prime } x +x +\tan \left (x +y\right ) = 0 \]

[[_1st_order, _with_linear_symmetries]]

4371

\[ {}y^{\prime } x = y-x \tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4372

\[ {}y^{\prime } x = \left (1+y^{2}\right ) \left (x^{2}+\arctan \left (y\right )\right ) \]

[‘y=_G(x,y’)‘]

4373

\[ {}y^{\prime } x = y+x \,{\mathrm e}^{\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

4374

\[ {}y^{\prime } x = x +y+x \,{\mathrm e}^{\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

4375

\[ {}y^{\prime } x = y \ln \left (y\right ) \]

[_separable]

4376

\[ {}y^{\prime } x = \left (1+\ln \left (x \right )-\ln \left (y\right )\right ) y \]

[[_homogeneous, ‘class A‘], _dAlembert]

4377

\[ {}y^{\prime } x +\left (1-\ln \left (x \right )-\ln \left (y\right )\right ) y = 0 \]

[[_homogeneous, ‘class G‘]]

4378

\[ {}y^{\prime } x = y-2 x \tanh \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4380

\[ {}y^{\prime } x = y f \left (x^{m} y^{n}\right ) \]

[[_homogeneous, ‘class G‘]]

4381

\[ {}\left (x +1\right ) y^{\prime } = x^{3} \left (3 x +4\right )+y \]

[_linear]

4382

\[ {}\left (x +1\right ) y^{\prime } = \left (x +1\right )^{4}+2 y \]

[_linear]

4384

\[ {}\left (x +1\right ) y^{\prime } = a y+b x y^{2} \]

[_rational, _Bernoulli]

4385

\[ {}\left (x +1\right ) y^{\prime }+y+\left (x +1\right )^{4} y^{3} = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

4387

\[ {}\left (x +1\right ) y^{\prime } = 1+y+\left (x +1\right ) \sqrt {1+y} \]

[[_1st_order, _with_linear_symmetries]]

4389

\[ {}\left (x +a \right ) y^{\prime } = b x +y \]

[_linear]

4390

\[ {}\left (x +a \right ) y^{\prime }+b \,x^{2}+y = 0 \]

[_linear]

4391

\[ {}\left (x +a \right ) y^{\prime } = 2 \left (x +a \right )^{5}+3 y \]

[_linear]

4392

\[ {}\left (x +a \right ) y^{\prime } = b +c y \]

[_separable]

4393

\[ {}\left (x +a \right ) y^{\prime } = b x +c y \]

[_linear]

4394

\[ {}\left (x +a \right ) y^{\prime } = y \left (1-a y\right ) \]

[_separable]

4395

\[ {}\left (a -x \right ) y^{\prime } = y+\left (c x +b \right ) y^{3} \]

[_rational, _Bernoulli]

4396

\[ {}2 y^{\prime } x = 2 x^{3}-y \]

[_linear]

4398

\[ {}2 y^{\prime } x = y \left (1+y^{2}\right ) \]

[_separable]

4399

\[ {}2 y^{\prime } x +y \left (1+y^{2}\right ) = 0 \]

[_separable]

4401

\[ {}2 y^{\prime } x +4 y+a +\sqrt {a^{2}-4 b -4 c y} = 0 \]

[_separable]

4402

\[ {}\left (1-2 x \right ) y^{\prime } = 16+32 x -6 y \]

[_linear]

4403

\[ {}\left (2 x +1\right ) y^{\prime } = 4 \,{\mathrm e}^{-y}-2 \]

[_separable]

4405

\[ {}2 \left (x +1\right ) y^{\prime }+2 y+\left (x +1\right )^{4} y^{3} = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

4407

\[ {}3 y^{\prime } x = \left (2+x y^{3}\right ) y \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4409

\[ {}x^{2} y^{\prime } = -y+a \]

[_separable]

4410

\[ {}x^{2} y^{\prime } = a +b x +c \,x^{2}+y x \]

[_linear]

4411

\[ {}x^{2} y^{\prime } = a +b x +c \,x^{2}-y x \]

[_linear]

4412

\[ {}x^{2} y^{\prime }+\left (1-2 x \right ) y = x^{2} \]

[_linear]

4413

\[ {}x^{2} y^{\prime } = a +b x y \]

[_linear]

4414

\[ {}x^{2} y^{\prime } = \left (b x +a \right ) y \]

[_separable]

4417

\[ {}x^{2} y^{\prime }+x^{2}+y x +y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

4418

\[ {}x^{2} y^{\prime } = \left (1+2 x -y\right )^{2} \]

[[_homogeneous, ‘class C‘], _rational, _Riccati]

4419

\[ {}x^{2} y^{\prime } = a +b y^{2} \]

[_separable]

4420

\[ {}x^{2} y^{\prime } = \left (x +a y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4421

\[ {}x^{2} y^{\prime } = \left (a x +b y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4422

\[ {}x^{2} y^{\prime }+a \,x^{2}+b x y+c y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

4424

\[ {}x^{2} y^{\prime }+2+x y \left (4+y x \right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

4426

\[ {}x^{2} y^{\prime } = a +b \,x^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

4428

\[ {}x^{2} y^{\prime } = a +b x y+c \,x^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

4431

\[ {}x^{2} y^{\prime } = 2 y \left (x -y^{2}\right ) \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4434

\[ {}x^{2} y^{\prime } = \left (a x +b y^{3}\right ) y \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4435

\[ {}x^{2} y^{\prime }+y x +\sqrt {y} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4439

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 5-y x \]

[_linear]

4441

\[ {}\left (x^{2}+1\right ) y^{\prime }+a -y x = 0 \]

[_linear]

4443

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x +y x = 0 \]

[_separable]

4446

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \left (x^{2}+1\right )-y x \]

[_linear]

4447

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \left (3 x^{2}-y\right ) \]

[_linear]

4448

\[ {}\left (-x^{2}+1\right ) y^{\prime }+2 y x = 0 \]

[_separable]

4450

\[ {}\left (x^{2}+1\right ) y^{\prime } = 2 x \left (x^{2}+1\right )^{2}+2 y x \]

[_linear]

4454

\[ {}\left (x^{2}+1\right ) y^{\prime } = \left (2 b x +a \right ) y \]

[_separable]

4455

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

4456

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 1-y^{2} \]

[_separable]

4457

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 1-\left (2 x -y\right ) y \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

4459

\[ {}\left (x^{2}+1\right ) y^{\prime }+x y \left (1-y\right ) = 0 \]

[_separable]

4460

\[ {}\left (-x^{2}+1\right ) y^{\prime } = x y \left (1+a y\right ) \]

[_separable]

4465

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime } = b +y x \]

[_linear]

4466

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime } = \left (b +y\right ) \left (x +\sqrt {a^{2}+x^{2}}\right ) \]

[_separable]

4467

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime }+\left (x -y\right ) y = 0 \]

[_rational, _Bernoulli]

4468

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime } = a^{2}+3 y x -2 y^{2} \]

[_rational, _Riccati]

4469

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime }+y x +b x y^{2} = 0 \]

[_separable]

4473

\[ {}x \left (x +1\right ) y^{\prime } = \left (1-2 x \right ) y \]

[_separable]

4474

\[ {}x \left (1-x \right ) y^{\prime }+\left (2 x +1\right ) y = a \]

[_linear]

4475

\[ {}x \left (1-x \right ) y^{\prime } = a +2 \left (2-x \right ) y \]

[_linear]

4477

\[ {}x \left (x +1\right ) y^{\prime } = \left (x +1\right ) \left (x^{2}-1\right )+\left (x^{2}+x -1\right ) y \]

[_linear]

4479

\[ {}x \left (x +a \right ) y^{\prime } = \left (b +c y\right ) y \]

[_separable]

4480

\[ {}\left (x +a \right )^{2} y^{\prime } = 2 \left (x +a \right ) \left (b +y\right ) \]

[_separable]

4481

\[ {}\left (x -a \right )^{2} y^{\prime }+k \left (x +y-a \right )^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class C‘], _rational, _Riccati]

4482

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }+k y = 0 \]

[_separable]

4483

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime } = \left (x -a \right ) \left (x -b \right )+\left (2 x -a -b \right ) y \]

[_linear]

4484

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime } = c y^{2} \]

[_separable]

4485

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }+k \left (y-a \right ) \left (y-b \right ) = 0 \]

[_separable]

4486

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }+k \left (x +y-a \right ) \left (x +y-b \right )+y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

4487

\[ {}2 x^{2} y^{\prime } = y \]

[_separable]

4489

\[ {}2 x^{2} y^{\prime }+1+2 y x -x^{2} y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

4493

\[ {}x \left (1-2 x \right ) y^{\prime } = 4 x -\left (1+4 x \right ) y+y^{2} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

4496

\[ {}2 \left (x^{2}+x +1\right ) y^{\prime } = 1+8 x^{2}-\left (2 x +1\right ) y \]

[_linear]

4498

\[ {}a \,x^{2} y^{\prime } = x^{2}+a x y+b^{2} y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

4499

\[ {}\left (b \,x^{2}+a \right ) y^{\prime } = A +B y^{2} \]

[_separable]

4501

\[ {}x \left (a x +1\right ) y^{\prime }+a -y = 0 \]

[_separable]

4503

\[ {}x^{3} y^{\prime } = a +b \,x^{2} y \]

[_linear]

4504

\[ {}x^{3} y^{\prime } = 3-x^{2}+x^{2} y \]

[_linear]

4505

\[ {}x^{3} y^{\prime } = x^{4}+y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

4506

\[ {}x^{3} y^{\prime } = y \left (y+x^{2}\right ) \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4507

\[ {}x^{3} y^{\prime } = x^{2} \left (-1+y\right )+y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

4508

\[ {}x^{3} y^{\prime } = \left (x +1\right ) y^{2} \]

[_separable]

4509

\[ {}x^{3} y^{\prime }+20+x^{2} y \left (1-x^{2} y\right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

4511

\[ {}x^{3} y^{\prime } = \left (2 x^{2}+y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4515

\[ {}x \left (x^{2}+1\right ) y^{\prime } = a \,x^{3}+y \]

[_linear]

4517

\[ {}x \left (x^{2}+1\right ) y^{\prime } = \left (-x^{2}+1\right ) y \]

[_separable]

4518

\[ {}x \left (-x^{2}+1\right ) y^{\prime } = \left (x^{2}-x +1\right ) y \]

[_separable]

4519

\[ {}x \left (-x^{2}+1\right ) y^{\prime } = a \,x^{3}+\left (-2 x^{2}+1\right ) y \]

[_linear]

4520

\[ {}x \left (-x^{2}+1\right ) y^{\prime } = x^{3} \left (-x^{2}+1\right )+\left (-2 x^{2}+1\right ) y \]

[_linear]

4524

\[ {}x^{2} \left (1-x \right ) y^{\prime } = \left (2-x \right ) x y-y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4525

\[ {}2 x^{3} y^{\prime } = \left (x^{2}-y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4526

\[ {}2 x^{3} y^{\prime } = \left (3 x^{2}+a y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4529

\[ {}x^{4} y^{\prime } = \left (x^{3}+y\right ) y \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4530

\[ {}x^{4} y^{\prime }+a^{2}+x^{4} y^{2} = 0 \]

[_rational, [_Riccati, _special]]

4531

\[ {}x^{4} y^{\prime }+x^{3} y+\csc \left (y x \right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4532

\[ {}\left (-x^{4}+1\right ) y^{\prime } = 2 x \left (1-y^{2}\right ) \]

[_separable]

4536

\[ {}x \left (-2 x^{3}+1\right ) y^{\prime } = 2 \left (-x^{3}+1\right ) y \]

[_separable]

4537

\[ {}\left (c \,x^{2}+b x +a \right )^{2} \left (y^{\prime }+y^{2}\right )+A = 0 \]

[_rational, _Riccati]

4538

\[ {}x^{5} y^{\prime } = 1-3 x^{4} y \]

[_linear]

4541

\[ {}x^{n} y^{\prime } = a +b \,x^{n -1} y \]

[_linear]

4544

\[ {}x^{n} y^{\prime } = a^{2} x^{2 n -2}+b^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _Riccati]

4548

\[ {}y^{\prime } \sqrt {-x^{2}+1} = 1+y^{2} \]

[_separable]

4551

\[ {}y^{\prime } \sqrt {b^{2}+x^{2}} = \sqrt {y^{2}+a^{2}} \]

[_separable]

4569

\[ {}\left (1-4 \cos \left (x \right )^{2}\right ) y^{\prime } = \tan \left (x \right ) \left (1+4 \cos \left (x \right )^{2}\right ) y \]

[_separable]

4570

\[ {}\left (1-\sin \left (x \right )\right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

[_separable]

4571

\[ {}\left (\cos \left (x \right )-\sin \left (x \right )\right ) y^{\prime }+y \left (\cos \left (x \right )+\sin \left (x \right )\right ) = 0 \]

[_separable]

4574

\[ {}y^{\prime } x \ln \left (x \right ) = a x \left (1+\ln \left (x \right )\right )-y \]

[_linear]

4575

\[ {}y y^{\prime }+x = 0 \]

[_separable]

4578

\[ {}y y^{\prime }+a x +b y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4590

\[ {}\left (1+y\right ) y^{\prime } = x +y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4592

\[ {}\left (x +y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4593

\[ {}\left (x -y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4594

\[ {}\left (x +y\right ) y^{\prime }+x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4595

\[ {}\left (x +y\right ) y^{\prime } = x -y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4596

\[ {}1-y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

4599

\[ {}\left (x -y\right ) y^{\prime } = \left ({\mathrm e}^{-\frac {x}{y}}+1\right ) y \]

[[_homogeneous, ‘class A‘], _dAlembert]

4600

\[ {}\left (x +y+1\right ) y^{\prime }+1+4 x +3 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4601

\[ {}\left (x +y+2\right ) y^{\prime } = 1-x -y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4602

\[ {}\left (3-x -y\right ) y^{\prime } = 1+x -3 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4603

\[ {}\left (3-x +y\right ) y^{\prime } = 11-4 x +3 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4604

\[ {}\left (2 x +y\right ) y^{\prime }+x -2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4605

\[ {}\left (2+2 x -y\right ) y^{\prime }+3+6 x -3 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4606

\[ {}\left (2 x -y+3\right ) y^{\prime }+2 = 0 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

4607

\[ {}\left (4+2 x -y\right ) y^{\prime }+5+x -2 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4608

\[ {}\left (5-2 x -y\right ) y^{\prime }+4-x -2 y = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4609

\[ {}\left (1-3 x +y\right ) y^{\prime } = 2 x -2 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4610

\[ {}\left (2-3 x +y\right ) y^{\prime }+5-2 x -3 y = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4611

\[ {}\left (4 x -y\right ) y^{\prime }+2 x -5 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4612

\[ {}\left (6-4 x -y\right ) y^{\prime } = 2 x -y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4613

\[ {}\left (1+5 x -y\right ) y^{\prime }+5+x -5 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4614

\[ {}\left (a +b x +y\right ) y^{\prime }+a -b x -y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4616

\[ {}\left (x^{2}-y\right ) y^{\prime } = 4 y x \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4620

\[ {}\left (x -2 y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4621

\[ {}\left (x +2 y\right ) y^{\prime }+2 x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4622

\[ {}\left (x -2 y\right ) y^{\prime }+2 x +y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4623

\[ {}\left (1+x -2 y\right ) y^{\prime } = 1+2 x -y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4624

\[ {}\left (x +2 y+1\right ) y^{\prime }+1-x -2 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4625

\[ {}\left (x +2 y+1\right ) y^{\prime }+7+x -4 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4627

\[ {}\left (3+2 x -2 y\right ) y^{\prime } = 1+6 x -2 y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4628

\[ {}\left (1-4 x -2 y\right ) y^{\prime }+2 x +y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4629

\[ {}\left (6 x -2 y\right ) y^{\prime } = 2+3 x -y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4630

\[ {}\left (19+9 x +2 y\right ) y^{\prime }+18-2 x -6 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4633

\[ {}\left (x \,{\mathrm e}^{-x}-2 y\right ) y^{\prime } = 2 x \,{\mathrm e}^{-2 x}-\left ({\mathrm e}^{-x}+x \,{\mathrm e}^{-x}-2 y\right ) y \]

[[_Abel, ‘2nd type‘, ‘class B‘]]

4636

\[ {}\left (x -3 y\right ) y^{\prime }+4+3 x -y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4637

\[ {}\left (4-x -3 y\right ) y^{\prime }+3-x -3 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4638

\[ {}\left (2+2 x +3 y\right ) y^{\prime } = 1-2 x -3 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4639

\[ {}\left (5-2 x -3 y\right ) y^{\prime }+1-2 x -3 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4640

\[ {}\left (1+9 x -3 y\right ) y^{\prime }+2+3 x -y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4641

\[ {}\left (x +4 y\right ) y^{\prime }+4 x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4642

\[ {}\left (3+2 x +4 y\right ) y^{\prime } = x +2 y+1 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4643

\[ {}\left (5+2 x -4 y\right ) y^{\prime } = x -2 y+3 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4644

\[ {}\left (5+3 x -4 y\right ) y^{\prime } = 2+7 x -3 y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4645

\[ {}4 \left (1-x -y\right ) y^{\prime }+2-x = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

4646

\[ {}\left (11-11 x -4 y\right ) y^{\prime } = 62-8 x -25 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4647

\[ {}\left (6+3 x +5 y\right ) y^{\prime } = 2+x +7 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4648

\[ {}\left (7 x +5 y\right ) y^{\prime }+10 x +8 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4650

\[ {}\left (5-x +6 y\right ) y^{\prime } = 3-x +4 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4651

\[ {}3 \left (x +2 y\right ) y^{\prime } = 1-x -2 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4652

\[ {}\left (7 y-3 x +3\right ) y^{\prime }+7-7 x +3 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4653

\[ {}\left (1+x +9 y\right ) y^{\prime }+1+x +5 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4654

\[ {}\left (8+5 x -12 y\right ) y^{\prime } = 3+2 x -5 y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4655

\[ {}\left (140+7 x -16 y\right ) y^{\prime }+25+8 x +y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4656

\[ {}\left (3+9 x +21 y\right ) y^{\prime } = 45+7 x -5 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4657

\[ {}\left (a x +b y\right ) y^{\prime }+x = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

4658

\[ {}\left (a x +b y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4659

\[ {}\left (a x +b y\right ) y^{\prime }+b x +a y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4660

\[ {}\left (a x +b y\right ) y^{\prime } = b x +a y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4661

\[ {}x y y^{\prime }+1+y^{2} = 0 \]

[_separable]

4662

\[ {}x y y^{\prime } = x +y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4663

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4664

\[ {}x y y^{\prime }+x^{4}-y^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4666

\[ {}x y y^{\prime } = x^{2}-y x +y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4667

\[ {}x y y^{\prime }+2 x^{2}-2 y x -y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4668

\[ {}x y y^{\prime } = a +b y^{2} \]

[_separable]

4669

\[ {}x y y^{\prime } = a \,x^{n}+b y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4671

\[ {}x y y^{\prime }+x^{2} \operatorname {arccot}\left (\frac {y}{x}\right )-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4672

\[ {}x y y^{\prime }+x^{2} {\mathrm e}^{-\frac {2 y}{x}}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4673

\[ {}\left (1+y x \right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4679

\[ {}x \left (4+y\right ) y^{\prime } = 2 x +2 y+y^{2} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4682

\[ {}x \left (x +y\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4683

\[ {}x \left (x -y\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4684

\[ {}x \left (x +y\right ) y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4685

\[ {}x \left (x -y\right ) y^{\prime }+2 x^{2}+3 y x -y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4686

\[ {}x \left (x +y\right ) y^{\prime }-y \left (x +y\right )+x \sqrt {x^{2}-y^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4688

\[ {}x \left (2 x +y\right ) y^{\prime } = x^{2}+y x -y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4689

\[ {}x \left (4 x -y\right ) y^{\prime }+4 x^{2}-6 y x -y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4690

\[ {}x \left (x^{3}+y\right ) y^{\prime } = \left (x^{3}-y\right ) y \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4691

\[ {}x \left (2 x^{3}+y\right ) y^{\prime } = \left (2 x^{3}-y\right ) y \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4692

\[ {}x \left (2 x^{3}+y\right ) y^{\prime } = 6 y^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4694

\[ {}\left (x +a \right ) \left (x +b \right ) y^{\prime } = y x \]

[_separable]

4696

\[ {}2 x y y^{\prime }+a +y^{2} = 0 \]

[_separable]

4697

\[ {}2 x y y^{\prime } = a x +y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4698

\[ {}x^{2}+y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

4699

\[ {}2 x y y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4700

\[ {}2 x y y^{\prime } = 4 x^{2} \left (2 x +1\right )+y^{2} \]

[_rational, _Bernoulli]

4703

\[ {}x \left (x -2 y\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4704

\[ {}x \left (x +2 y\right ) y^{\prime }+\left (2 x -y\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4705

\[ {}x \left (x -2 y\right ) y^{\prime }+\left (2 x -y\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4708

\[ {}2 x \left (2 x^{2}+y\right ) y^{\prime }+\left (12 x^{2}+y\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4710

\[ {}x \left (2 x +3 y\right ) y^{\prime } = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4711

\[ {}x \left (2 x +3 y\right ) y^{\prime }+3 \left (x +y\right )^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4714

\[ {}a x y y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4715

\[ {}a x y y^{\prime }+x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4716

\[ {}x \left (a +b y\right ) y^{\prime } = c y \]

[_separable]

4717

\[ {}x \left (x -a y\right ) y^{\prime } = y \left (y-a x \right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4718

\[ {}x \left (x^{n}+a y\right ) y^{\prime }+\left (b +c y\right ) y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

4721

\[ {}x \left (1-y x \right ) y^{\prime }+\left (1+y x \right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4723

\[ {}x \left (2-y x \right ) y^{\prime }+2 y-x y^{2} \left (1+y x \right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

4724

\[ {}x \left (3-y x \right ) y^{\prime } = y \left (y x -1\right ) \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4727

\[ {}\left (x^{2}+1\right ) y y^{\prime }+x \left (1-y^{2}\right ) = 0 \]

[_separable]

4730

\[ {}x \left (1-2 y x \right ) y^{\prime }+y \left (1+2 y x \right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4731

\[ {}x \left (1+2 y x \right ) y^{\prime }+\left (2+3 y x \right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4732

\[ {}x \left (1+2 y x \right ) y^{\prime }+\left (1+2 y x -x^{2} y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

4733

\[ {}x^{2} \left (x -2 y\right ) y^{\prime } = 2 x^{3}-4 x y^{2}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

4734

\[ {}2 \left (x +1\right ) x y y^{\prime } = 1+y^{2} \]

[_separable]

4735

\[ {}3 x^{2} y y^{\prime }+1+2 x y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4736

\[ {}x^{2} \left (4 x -3 y\right ) y^{\prime } = \left (6 x^{2}-3 y x +2 y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

4737

\[ {}\left (1-x^{3} y\right ) y^{\prime } = x^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4738

\[ {}2 x^{3} y y^{\prime }+a +3 x^{2} y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

4740

\[ {}x \left (3+2 x^{2} y\right ) y^{\prime }+\left (4+3 x^{2} y\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4741

\[ {}8 x^{3} y y^{\prime }+3 x^{4}-6 x^{2} y^{2}-y^{4} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4742

\[ {}x y \left (b \,x^{2}+a \right ) y^{\prime } = A +B y^{2} \]

[_separable]

4743

\[ {}3 x^{4} y y^{\prime } = 1-2 x^{3} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4752

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime }+y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4753

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime } = y x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4754

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 y x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4755

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime }+x \left (x +2 y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4756

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (2 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4757

\[ {}\left (1-x^{2}+y^{2}\right ) y^{\prime } = 1+x^{2}-y^{2} \]

[[_1st_order, _with_linear_symmetries], _rational]

4761

\[ {}\left (3 x^{2}-y^{2}\right ) y^{\prime } = 2 y x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4762

\[ {}\left (x^{4}+y^{2}\right ) y^{\prime } = 4 x^{3} y \]

[[_homogeneous, ‘class G‘], _rational]

4767

\[ {}\left (1+y+y x +y^{2}\right ) y^{\prime }+1+y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

4768

\[ {}\left (x +y\right )^{2} y^{\prime } = a^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

4769

\[ {}\left (x -y\right )^{2} y^{\prime } = a^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

4770

\[ {}\left (x^{2}+2 y x -y^{2}\right ) y^{\prime }+x^{2}-2 y x +y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4771

\[ {}\left (x +y\right )^{2} y^{\prime } = x^{2}-2 y x +5 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4772

\[ {}\left (a +b +x +y\right )^{2} y^{\prime } = 2 \left (a +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _rational]

4773

\[ {}\left (2 x^{2}+4 y x -y^{2}\right ) y^{\prime } = x^{2}-4 y x -2 y^{2} \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4774

\[ {}\left (3 x +y\right )^{2} y^{\prime } = 4 \left (3 x +2 y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4775

\[ {}\left (1-3 x -y\right )^{2} y^{\prime } = \left (1-2 y\right ) \left (3-6 x -4 y\right ) \]

[[_homogeneous, ‘class C‘], _rational]

4779

\[ {}\left (2 x^{2}+3 y^{2}\right ) y^{\prime }+x \left (3 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4781

\[ {}\left (3 x^{2}+2 y x +4 y^{2}\right ) y^{\prime }+2 x^{2}+6 y x +y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4782

\[ {}\left (1-3 x +2 y\right )^{2} y^{\prime } = \left (4+2 x -3 y\right )^{2} \]

[[_homogeneous, ‘class C‘], _rational]

4785

\[ {}\left (x^{2}+a y^{2}\right ) y^{\prime } = y x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4786

\[ {}\left (x^{2}+y x +a y^{2}\right ) y^{\prime } = a \,x^{2}+y x +y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4787

\[ {}\left (a \,x^{2}+2 y x -a y^{2}\right ) y^{\prime }+x^{2}-2 a x y-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4788

\[ {}\left (a \,x^{2}+2 b x y+c y^{2}\right ) y^{\prime }+k \,x^{2}+2 a x y+b y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4790

\[ {}x \left (3 x -y^{2}\right ) y^{\prime }+\left (5 x -2 y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4792

\[ {}x \left (1-x^{2}+y^{2}\right ) y^{\prime }+\left (1+x^{2}-y^{2}\right ) y = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4793

\[ {}x \left (a -x^{2}-y^{2}\right ) y^{\prime }+\left (a +x^{2}+y^{2}\right ) y = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4794

\[ {}x \left (2 x^{2}+y^{2}\right ) y^{\prime } = \left (2 x^{2}+3 y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4795

\[ {}\left (x \left (a -x^{2}-y^{2}\right )+y\right ) y^{\prime }+x -\left (a -x^{2}-y^{2}\right ) y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

4796

\[ {}x \left (a +y\right )^{2} y^{\prime } = b y^{2} \]

[_separable]

4797

\[ {}x \left (x^{2}-y x +y^{2}\right ) y^{\prime }+\left (x^{2}+y x +y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4798

\[ {}x \left (x^{2}-y x -y^{2}\right ) y^{\prime } = \left (x^{2}+y x -y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4799

\[ {}x \left (x^{2}+a x y+y^{2}\right ) y^{\prime } = \left (x^{2}+b x y+y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4800

\[ {}x \left (x^{2}-2 y^{2}\right ) y^{\prime } = \left (2 x^{2}-y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4801

\[ {}x \left (x^{2}+2 y^{2}\right ) y^{\prime } = \left (2 x^{2}+3 y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4802

\[ {}2 x \left (5 x^{2}+y^{2}\right ) y^{\prime } = x^{2} y-y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4803

\[ {}x \left (x^{2}+a x y+2 y^{2}\right ) y^{\prime } = \left (a x +2 y\right ) y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4804

\[ {}3 x y^{2} y^{\prime } = 2 x -y^{3} \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

4806

\[ {}x \left (x -3 y^{2}\right ) y^{\prime }+\left (2 x -y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

4809

\[ {}6 x y^{2} y^{\prime }+x +2 y^{3} = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

4810

\[ {}x \left (x +6 y^{2}\right ) y^{\prime }+y x -3 y^{3} = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4811

\[ {}x \left (x^{2}-6 y^{2}\right ) y^{\prime } = 4 \left (x^{2}+3 y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4812

\[ {}x \left (3 x -7 y^{2}\right ) y^{\prime }+\left (5 x -3 y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4814

\[ {}\left (1-x^{2} y^{2}\right ) y^{\prime } = x y^{3} \]

[[_homogeneous, ‘class G‘], _rational]

4815

\[ {}\left (1-x^{2} y^{2}\right ) y^{\prime } = \left (1+y x \right ) y^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4816

\[ {}x \left (x y^{2}+1\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4817

\[ {}x \left (x y^{2}+1\right ) y^{\prime } = \left (2-3 x y^{2}\right ) y \]

[[_homogeneous, ‘class G‘], _rational]

4823

\[ {}x^{3} \left (1+y^{2}\right ) y^{\prime }+3 x^{2} y = 0 \]

[_separable]

4824

\[ {}x \left (1-y x \right )^{2} y^{\prime }+\left (1+x^{2} y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4825

\[ {}\left (1-x^{4} y^{2}\right ) y^{\prime } = x^{3} y^{3} \]

[[_homogeneous, ‘class G‘], _rational]

4827

\[ {}\left (x^{3}-y^{3}\right ) y^{\prime }+x^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4828

\[ {}\left (x^{3}+y^{3}\right ) y^{\prime }+x^{2} \left (a x +3 y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4832

\[ {}\left (3 x^{2}+y^{2}\right ) y y^{\prime }+x \left (x^{2}+3 y^{2}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4834

\[ {}2 y^{3} y^{\prime } = x^{3}-x y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4836

\[ {}\left (3 x^{2}+2 y^{2}\right ) y y^{\prime }+x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4837

\[ {}\left (5 x^{2}+2 y^{2}\right ) y y^{\prime }+x \left (x^{2}+5 y^{2}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4839

\[ {}\left (3 x^{3}+6 x^{2} y-3 x y^{2}+20 y^{3}\right ) y^{\prime }+4 x^{3}+9 x^{2} y+6 x y^{2}-y^{3} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4840

\[ {}\left (x^{3}+a y^{3}\right ) y^{\prime } = x^{2} y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4842

\[ {}x \left (x -y^{3}\right ) y^{\prime } = \left (3 x +y^{3}\right ) y \]

[[_homogeneous, ‘class G‘], _rational]

4843

\[ {}x \left (2 x^{3}+y^{3}\right ) y^{\prime } = \left (2 x^{3}-x^{2} y+y^{3}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4844

\[ {}x \left (2 x^{3}-y^{3}\right ) y^{\prime } = \left (x^{3}-2 y^{3}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4845

\[ {}x \left (x^{3}+3 x^{2} y+y^{3}\right ) y^{\prime } = \left (3 x^{2}+y^{2}\right ) y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4846

\[ {}x \left (x^{3}-2 y^{3}\right ) y^{\prime } = \left (2 x^{3}-y^{3}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4847

\[ {}x \left (x^{4}-2 y^{3}\right ) y^{\prime }+\left (2 x^{4}+y^{3}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4851

\[ {}x \left (2-x y^{2}-2 x y^{3}\right ) y^{\prime }+1+2 y = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

4855

\[ {}x \left (1-y x \right ) \left (1-x^{2} y^{2}\right ) y^{\prime }+\left (1+y x \right ) \left (1+x^{2} y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4856

\[ {}\left (x^{2}-y^{4}\right ) y^{\prime } = y x \]

[[_homogeneous, ‘class G‘], _rational]

4857

\[ {}\left (x^{3}-y^{4}\right ) y^{\prime } = 3 x^{2} y \]

[[_homogeneous, ‘class G‘], _rational]

4858

\[ {}\left (a^{2} x^{2}+\left (x^{2}+y^{2}\right )^{2}\right ) y^{\prime } = a^{2} x y \]

[_rational]

4859

\[ {}2 \left (x -y^{4}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class G‘], _rational]

4861

\[ {}\left (a \,x^{3}+\left (a x +b y\right )^{3}\right ) y y^{\prime }+x \left (\left (a x +b y\right )^{3}+b y^{3}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4863

\[ {}2 x \left (x^{3}+y^{4}\right ) y^{\prime } = \left (x^{3}+2 y^{4}\right ) y \]

[[_homogeneous, ‘class G‘], _rational]

4864

\[ {}x \left (1-x^{2} y^{4}\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4865

\[ {}\left (x^{2}-y^{5}\right ) y^{\prime } = 2 y x \]

[[_homogeneous, ‘class G‘], _rational]

4866

\[ {}x \left (x^{3}+y^{5}\right ) y^{\prime } = \left (x^{3}-y^{5}\right ) y \]

[[_homogeneous, ‘class G‘], _rational]

4868

\[ {}\left (1+a \left (x +y\right )\right )^{n} y^{\prime }+a \left (x +y\right )^{n} = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

4869

\[ {}x \left (a +x y^{n}\right ) y^{\prime }+b y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4873

\[ {}y^{\prime } \sqrt {y} = \sqrt {x} \]

[_separable]

4874

\[ {}\left (1+\sqrt {x +y}\right ) y^{\prime }+1 = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

4875

\[ {}y^{\prime } \sqrt {y x}+x -y = \sqrt {y x} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4876

\[ {}\left (x -2 \sqrt {y x}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _dAlembert]

4879

\[ {}\left (x -\sqrt {x^{2}+y^{2}}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4881

\[ {}x \left (x +\sqrt {x^{2}+y^{2}}\right ) y^{\prime }+y \sqrt {x^{2}+y^{2}} = 0 \]

[[_homogeneous, ‘class G‘], _dAlembert]

4882

\[ {}x y \left (x +\sqrt {x^{2}-y^{2}}\right ) y^{\prime } = x y^{2}-\left (x^{2}-y^{2}\right )^{{3}/{2}} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

4883

\[ {}\left (x \sqrt {1+x^{2}+y^{2}}-y \left (x^{2}+y^{2}\right )\right ) y^{\prime } = x \left (x^{2}+y^{2}\right )+y \sqrt {1+x^{2}+y^{2}} \]

[[_1st_order, _with_linear_symmetries]]

4887

\[ {}\left (1+\left (x +y\right ) \tan \left (y\right )\right ) y^{\prime }+1 = 0 \]

[[_1st_order, _with_linear_symmetries]]

4888

\[ {}x \left (x -y \tan \left (\frac {y}{x}\right )\right ) y^{\prime }+\left (x +y \tan \left (\frac {y}{x}\right )\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4890

\[ {}\left (1-2 x -\ln \left (y\right )\right ) y^{\prime }+2 y = 0 \]

[[_1st_order, _with_linear_symmetries]]

4905

\[ {}{y^{\prime }}^{2} = x^{2} y^{2} \]

[_separable]

4951

\[ {}{y^{\prime }}^{2}+y y^{\prime } = x \left (x +y\right ) \]

[_quadrature]

4952

\[ {}{y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0 \]

[[_1st_order, _with_linear_symmetries]]

4963

\[ {}{y^{\prime }}^{2}-x y y^{\prime }+y^{2} \ln \left (a y\right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

4964

\[ {}{y^{\prime }}^{2}-\left (1+2 y x \right ) y^{\prime }+2 y x = 0 \]

[_quadrature]

4966

\[ {}{y^{\prime }}^{2}-\left (x -y\right ) y y^{\prime }-x y^{3} = 0 \]

[_separable]

4969

\[ {}{y^{\prime }}^{2}-x y \left (x^{2}+y^{2}\right ) y^{\prime }+x^{4} y^{4} = 0 \]

[_separable]

4981

\[ {}4 {y^{\prime }}^{2}+2 x \,{\mathrm e}^{-2 y} y^{\prime }-{\mathrm e}^{-2 y} = 0 \]

[[_1st_order, _with_linear_symmetries]]

5011

\[ {}x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

[_quadrature]

5015

\[ {}x {y^{\prime }}^{2}+\left (1-x \right ) y y^{\prime }-y^{2} = 0 \]

[_quadrature]

5016

\[ {}x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-y x = 0 \]

[_quadrature]

5032

\[ {}x^{2} {y^{\prime }}^{2} = y^{2} \]

[_separable]

5034

\[ {}x^{2} {y^{\prime }}^{2} = \left (x -y\right )^{2} \]

[_linear]

5036

\[ {}x^{2} {y^{\prime }}^{2}-y^{\prime } x +y \left (1-y\right ) = 0 \]

[_separable]

5038

\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }-x +y \left (1+y\right ) = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

5043

\[ {}x^{2} {y^{\prime }}^{2}+2 x \left (2 x +y\right ) y^{\prime }-4 a +y^{2} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

5045

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

5047

\[ {}x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }-5 y^{2} = 0 \]

[_separable]

5049

\[ {}x^{2} {y^{\prime }}^{2}-5 x y y^{\prime }+6 y^{2} = 0 \]

[_separable]

5061

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}-2 x y y^{\prime }-y^{2} = 0 \]

[_separable]

5087

\[ {}y {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-x = 0 \]

[_quadrature]

5090

\[ {}y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-y x = 0 \]

[_quadrature]

5097

\[ {}\left (x^{2}-a y\right ) {y^{\prime }}^{2}-2 x y y^{\prime } = 0 \]

[_quadrature]

5099

\[ {}x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}\right ) y^{\prime }+y x = 0 \]

[_separable]

5100

\[ {}x y {y^{\prime }}^{2}+\left (x^{2}-y^{2}\right ) y^{\prime }-y x = 0 \]

[_separable]

5101

\[ {}x y {y^{\prime }}^{2}-\left (x^{2}-y^{2}\right ) y^{\prime }-y x = 0 \]

[_separable]

5103

\[ {}x y {y^{\prime }}^{2}-\left (a -b \,x^{2}+y^{2}\right ) y^{\prime }-b x y = 0 \]

[_rational]

5104

\[ {}x y {y^{\prime }}^{2}+\left (3 x^{2}-2 y^{2}\right ) y^{\prime }-6 y x = 0 \]

[_separable]

5112

\[ {}y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x = 0 \]

[_quadrature]

5124

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5125

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2}-\left (x^{2}-y x -2 y^{2}\right ) y^{\prime }-\left (x -y\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5129

\[ {}4 y^{2} {y^{\prime }}^{2}+2 \left (1+3 x \right ) x y y^{\prime }+3 x^{3} = 0 \]

[_separable]

5130

\[ {}\left (x^{2}-4 y^{2}\right ) {y^{\prime }}^{2}+6 x y y^{\prime }-4 x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5139

\[ {}4 x^{2} y^{2} {y^{\prime }}^{2} = \left (x^{2}+y^{2}\right )^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5146

\[ {}{y^{\prime }}^{3}+x -y = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

5162

\[ {}{y^{\prime }}^{3}-a x y y^{\prime }+2 a y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries]]

5163

\[ {}{y^{\prime }}^{3}-x y^{4} y^{\prime }-y^{5} = 0 \]

[[_1st_order, _with_linear_symmetries]]

5175

\[ {}{y^{\prime }}^{3}-\left (2 x +y^{2}\right ) {y^{\prime }}^{2}+\left (x^{2}-y^{2}+2 x y^{2}\right ) y^{\prime }-\left (x^{2}-y^{2}\right ) y^{2} = 0 \]

[_quadrature]

5176

\[ {}{y^{\prime }}^{3}-\left (x^{2}+y x +y^{2}\right ) {y^{\prime }}^{2}+x y \left (x^{2}+y x +y^{2}\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

5177

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y^{2}+y^{4}\right ) {y^{\prime }}^{2}+x y^{2} \left (x^{2}+x y^{2}+y^{4}\right ) y^{\prime }-x^{3} y^{6} = 0 \]

[_quadrature]

5180

\[ {}3 {y^{\prime }}^{3}-x^{4} y^{\prime }+2 x^{3} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

5184

\[ {}x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+y x \right ) y^{\prime }-y x = 0 \]

[_quadrature]

5185

\[ {}x {y^{\prime }}^{3}-2 y {y^{\prime }}^{2}+4 x^{2} = 0 \]

[[_1st_order, _with_linear_symmetries]]

5192

\[ {}2 x^{3} {y^{\prime }}^{3}+6 x^{2} y {y^{\prime }}^{2}-\left (1-6 y x \right ) y y^{\prime }+2 y^{3} = 0 \]

[[_homogeneous, ‘class G‘]]

5193

\[ {}x^{4} {y^{\prime }}^{3}-x^{3} y {y^{\prime }}^{2}-x^{2} y^{2} y^{\prime }+x y^{3} = 1 \]

[[_1st_order, _with_linear_symmetries]]

5194

\[ {}x^{6} {y^{\prime }}^{3}-y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries]]

5195

\[ {}y {y^{\prime }}^{3}-3 y^{\prime } x +3 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5197

\[ {}\left (x +2 y\right ) {y^{\prime }}^{3}+3 \left (x +y\right ) {y^{\prime }}^{2}+\left (2 x +y\right ) y^{\prime } = 0 \]

[_quadrature]

5198

\[ {}y^{2} {y^{\prime }}^{3}-y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries]]

5199

\[ {}y^{2} {y^{\prime }}^{3}+2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries]]

5200

\[ {}4 y^{2} {y^{\prime }}^{3}-2 y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries]]

5201

\[ {}16 y^{2} {y^{\prime }}^{3}+2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries]]

5204

\[ {}y^{4} {y^{\prime }}^{3}-6 y^{\prime } x +2 y = 0 \]

[[_1st_order, _with_linear_symmetries]]

5222

\[ {}2 \left (1+y\right )^{{3}/{2}}+3 y^{\prime } x -3 y = 0 \]

[_separable]

5240

\[ {}\ln \left (y^{\prime }\right )+y^{\prime } x +a = y \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5241

\[ {}\ln \left (y^{\prime }\right )+y^{\prime } x +a +b y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5242

\[ {}\ln \left (y^{\prime }\right )+4 y^{\prime } x -2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5243

\[ {}\ln \left (y^{\prime }\right )+a \left (-y+y^{\prime } x \right ) = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5245

\[ {}y \ln \left (y^{\prime }\right )+y^{\prime }-y \ln \left (y\right )-y x = 0 \]

[_separable]

5246

\[ {}y^{\prime } \ln \left (y^{\prime }\right )-\left (x +1\right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5249

\[ {}y^{\prime } = \frac {x y}{x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5250

\[ {}y^{\prime } = \frac {x +y-3}{x -y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5251

\[ {}y^{\prime } = \frac {2 x +y-1}{4 x +2 y+5} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5252

\[ {}y^{\prime }-\frac {2 y}{x +1} = \left (x +1\right )^{2} \]

[_linear]

5254

\[ {}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5255

\[ {}y+x y^{2}-y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5261

\[ {}x y \left (x^{2}+1\right ) y^{\prime }-1-y^{2} = 0 \]

[_separable]

5265

\[ {}\left (-x +y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5266

\[ {}\left (2 \sqrt {y x}-x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5267

\[ {}y^{\prime } x -y-\sqrt {x^{2}+y^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5268

\[ {}x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5269

\[ {}\left (7 x +5 y\right ) y^{\prime }+10 x +8 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5270

\[ {}2 x -y+1+\left (2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5271

\[ {}\left (7 y-3 x +3\right ) y^{\prime }+7-7 x +3 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5273

\[ {}x \left (-x^{2}+1\right ) y^{\prime }+\left (2 x^{2}-1\right ) y = a \,x^{3} \]

[_linear]

5276

\[ {}\left (x^{2}+1\right ) y^{\prime }+y = \arctan \left (x \right ) \]

[_linear]

5277

\[ {}\left (-x^{2}+1\right ) z^{\prime }-x z = a x z^{2} \]

[_separable]

5281

\[ {}y^{\prime } x +y = y^{2} \ln \left (x \right ) \]

[_Bernoulli]

5293

\[ {}-y+y^{\prime } x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5294

\[ {}\left (7 x +5 y\right ) y^{\prime }+10 x +8 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5295

\[ {}x^{2}+2 y x -y^{2}+\left (y^{2}+2 y x -x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5296

\[ {}y^{2}+\left (x^{2}+y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5298

\[ {}\left (x^{2} y^{2}+y x \right ) y+\left (x^{2} y^{2}-1\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5299

\[ {}\left (x^{3} y^{3}+x^{2} y^{2}+y x +1\right ) y+\left (x^{3} y^{3}-x^{2} y^{2}-y x +1\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5323

\[ {}y = y^{\prime } x +x \sqrt {1+{y^{\prime }}^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5331

\[ {}2 y x +\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5332

\[ {}\left (x +\sqrt {y^{2}-y x}\right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5333

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5334

\[ {}y^{\prime } x -y-x \sin \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5335

\[ {}2 x^{2} y+y^{3}+\left (x y^{2}-2 x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5336

\[ {}y^{2}+\left (x \sqrt {y^{2}-x^{2}}-y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _dAlembert]

5337

\[ {}\frac {y \cos \left (\frac {y}{x}\right )}{x}-\left (\frac {x \sin \left (\frac {y}{x}\right )}{y}+\cos \left (\frac {y}{x}\right )\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5338

\[ {}y+x \ln \left (\frac {y}{x}\right ) y^{\prime }-2 y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5339

\[ {}2 y \,{\mathrm e}^{\frac {x}{y}}+\left (y-2 x \,{\mathrm e}^{\frac {x}{y}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5340

\[ {}x \,{\mathrm e}^{\frac {y}{x}}-y \sin \left (\frac {y}{x}\right )+x \sin \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5341

\[ {}x^{2}+y^{2} = 2 x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5342

\[ {}x \,{\mathrm e}^{\frac {y}{x}}+y = y^{\prime } x \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

5343

\[ {}y^{\prime }-\frac {y}{x}+\csc \left (\frac {y}{x}\right ) = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

5344

\[ {}y x -y^{2}-x^{2} y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5345

\[ {}x +2 y-4-\left (2 x -4 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5346

\[ {}3 x +2 y+1-\left (3 x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5348

\[ {}x +y-1+\left (2 x +2 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5349

\[ {}x +y-1-\left (x -y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5350

\[ {}x +y+\left (2 x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5351

\[ {}7 y-3+\left (2 x +1\right ) y^{\prime } = 0 \]

[_separable]

5352

\[ {}x +2 y+\left (3 x +6 y+3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5353

\[ {}x +2 y+\left (-1+y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5354

\[ {}3 x -2 y+4-\left (2 x +7 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5356

\[ {}3 x +2 y+3-\left (x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5357

\[ {}y+7+\left (2 x +y+3\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5358

\[ {}x +y+2-\left (x -y-4\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5379

\[ {}y \left (2 y^{3} x^{2}+3\right )+x \left (y^{3} x^{2}-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5385

\[ {}x^{2}-y^{2}-y-\left (x^{2}-y^{2}-x \right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

5399

\[ {}y^{\prime } x +y = x^{3} \]

[_linear]

5401

\[ {}y^{\prime } x +y = y^{2} \ln \left (x \right ) \]

[_Bernoulli]

5402

\[ {}x^{\prime }+2 x y = {\mathrm e}^{-y^{2}} \]

[_linear]

5404

\[ {}y^{\prime }-\frac {2 x y}{x^{2}+1} = 1 \]

[_linear]

5408

\[ {}y^{\prime }+2 y = 3 \,{\mathrm e}^{-2 x} \]

[[_linear, ‘class A‘]]

5409

\[ {}y^{\prime }+2 y = \frac {3 \,{\mathrm e}^{-2 x}}{4} \]

[[_linear, ‘class A‘]]

5414

\[ {}-y+y^{\prime } x = x^{2} \sin \left (x \right ) \]

[_linear]

5415

\[ {}y^{\prime } x +x y^{2}-y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5416

\[ {}y^{\prime } x -y \left (2 y \ln \left (x \right )-1\right ) = 0 \]

[_Bernoulli]

5417

\[ {}x^{2} \left (x -1\right ) y^{\prime }-y^{2}-x \left (x -2\right ) y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5418

\[ {}y^{\prime }-y = {\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

5424

\[ {}y^{\prime } = \frac {1}{x^{2}}-\frac {y}{x}-y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

5425

\[ {}y^{\prime } = 1+\frac {y}{x}-\frac {y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

5428

\[ {}\left (x +1\right ) y^{\prime }-1-y = \left (x +1\right ) \sqrt {1+y} \]

[[_1st_order, _with_linear_symmetries]]

5429

\[ {}{\mathrm e}^{y} \left (y^{\prime }+1\right ) = {\mathrm e}^{x} \]

[[_homogeneous, ‘class C‘], _dAlembert]

5431

\[ {}\left (x -y\right )^{2} y^{\prime } = 4 \]

[[_homogeneous, ‘class C‘], _dAlembert]

5432

\[ {}-y+y^{\prime } x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5433

\[ {}\left (3 x +2 y+1\right ) y^{\prime }+4 x +3 y+2 = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5434

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 y x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5435

\[ {}y+\left (1+y^{2} {\mathrm e}^{2 x}\right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries]]

5436

\[ {}x^{2} y+y^{2}+x^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

5438

\[ {}y^{\prime } = \left (x^{2}+2 y-1\right )^{{2}/{3}}-x \]

[[_1st_order, _with_linear_symmetries]]

5439

\[ {}y^{\prime } x +y = x^{2} \left (1+{\mathrm e}^{x}\right ) y^{2} \]

[_Bernoulli]

5440

\[ {}2 y-x y \ln \left (x \right )-2 y^{\prime } x \ln \left (x \right ) = 0 \]

[_separable]

5441

\[ {}y^{\prime }+a y = k \,{\mathrm e}^{b x} \]

[[_linear, ‘class A‘]]

5442

\[ {}y^{\prime } = \left (x +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

5446

\[ {}y^{\prime } x -y^{2}+1 = 0 \]

[_separable]

5448

\[ {}y^{\prime } x = x \,{\mathrm e}^{\frac {y}{x}}+x +y \]

[[_homogeneous, ‘class A‘], _dAlembert]

5450

\[ {}y^{\prime } x -y \left (\ln \left (y x \right )-1\right ) = 0 \]

[[_homogeneous, ‘class G‘]]

5451

\[ {}x^{3} y^{\prime }-y^{2}-x^{2} y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5452

\[ {}y^{\prime } x +a y+b \,x^{n} = 0 \]

[_linear]

5453

\[ {}y^{\prime } x -y-x \sin \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5454

\[ {}\left (y x -x^{2}\right ) y^{\prime }+y^{2}-3 y x -2 x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5456

\[ {}x^{2} y^{\prime }+y^{2}+y x +x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

5459

\[ {}\left (x^{2}-1\right ) y^{\prime }+y x -3 x y^{2} = 0 \]

[_separable]

5460

\[ {}\left (x^{2}-1\right ) y^{\prime }-2 x y \ln \left (y\right ) = 0 \]

[_separable]

5463

\[ {}\left (2 y x +4 x^{3}\right ) y^{\prime }+y^{2}+12 x^{2} y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5465

\[ {}\left (x^{2}-y\right ) y^{\prime }-4 y x = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5466

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5467

\[ {}2 x y y^{\prime }+3 x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5468

\[ {}\left (2 x y^{3}-x^{4}\right ) y^{\prime }+2 x^{3} y-y^{4} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5469

\[ {}\left (y x -1\right )^{2} x y^{\prime }+\left (1+x^{2} y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5470

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (2 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5471

\[ {}3 x y^{2} y^{\prime }+y^{3}-2 x = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

5472

\[ {}2 y^{3} y^{\prime }+x y^{2}-x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5579

\[ {}-a y^{3}-\frac {b}{x^{{3}/{2}}}+y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Abel]

5580

\[ {}a x y^{3}+b y^{2}+y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _Abel]

5585

\[ {}y^{\prime }+y \tan \left (x \right ) = 0 \]

[_separable]

5589

\[ {}y^{\prime } = {\mathrm e}^{a x}+a y \]

[[_linear, ‘class A‘]]

5592

\[ {}y^{\prime } = a x y^{2} \]

[_separable]

5594

\[ {}x y \left (x^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

5597

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

5599

\[ {}a x y^{\prime }+2 y = x y y^{\prime } \]

[_separable]

5635

\[ {}y^{\prime }+y^{2} = \frac {a^{2}}{x^{4}} \]

[_rational, _Riccati]

5653

\[ {}y^{\prime } x = y \]
i.c.

[_separable]

5656

\[ {}x y y^{\prime }+1+y^{2} = 0 \]
i.c.

[_separable]

5660

\[ {}y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

5662

\[ {}y^{\prime }-y x = x \]
i.c.

[_separable]

5664

\[ {}\left (x +y x \right ) y^{\prime }+y = 0 \]
i.c.

[_separable]

5680

\[ {}y^{\prime }+\frac {y}{x} = 2 x^{{3}/{2}} \sqrt {y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

5681

\[ {}3 x y^{2} y^{\prime }+3 y^{3} = 1 \]

[_separable]

5683

\[ {}\left (x -y\right ) y^{\prime }+x +y+1 = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5685

\[ {}x^{2} y^{\prime }+y^{2}-y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5686

\[ {}y y^{\prime } = -x +\sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5687

\[ {}y x +\left (y^{2}-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5688

\[ {}y^{2}-y x +\left (x^{2}+y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5689

\[ {}y^{\prime } = \cos \left (x +y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

5690

\[ {}y^{\prime } = \frac {y}{x}-\tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

5691

\[ {}\left (x -1\right ) y^{\prime }+y-\frac {1}{x^{2}}+\frac {2}{x^{3}} = 0 \]

[_linear]

5692

\[ {}y^{\prime } = x y^{2}-\frac {2 y}{x}-\frac {1}{x^{3}} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

5694

\[ {}y^{\prime } = {\mathrm e}^{-x} y^{2}+y-{\mathrm e}^{x} \]

[[_1st_order, _with_linear_symmetries], _Riccati]

5768

\[ {}x^{2} y^{\prime }-y x = \frac {1}{x} \]

[_linear]

5774

\[ {}3 x^{3} y^{2} y^{\prime }-y^{3} x^{2} = 1 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

5776

\[ {}y^{\prime }-2 y-y^{2} {\mathrm e}^{3 x} = 0 \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

5778

\[ {}y+2 x -y^{\prime } x = 0 \]

[_linear]

5784

\[ {}\left (2 x +y\right ) y^{\prime }-x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5786

\[ {}\sin \left (x \right )^{2} y^{\prime }+\sin \left (x \right )^{2}+\left (x +y\right ) \sin \left (2 x \right ) = 0 \]

[_linear]

5792

\[ {}3 x^{2} y+x^{3} y^{\prime } = 0 \]
i.c.

[_separable]

5793

\[ {}-y+y^{\prime } x = x^{2} \]
i.c.

[_linear]

5797

\[ {}y^{\prime } x = y x +y \]

[_separable]

5799

\[ {}y^{\prime } = 3 x^{2} y \]

[_separable]

5801

\[ {}y^{\prime } x = y \]

[_separable]

5816

\[ {}y^{\prime }-\sin \left (x +y\right ) = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

5822

\[ {}y^{\prime } x = \frac {1}{y^{3}} \]

[_separable]

5823

\[ {}x^{\prime } = 3 x t^{2} \]

[_separable]

5826

\[ {}x v^{\prime } = \frac {1-4 v^{2}}{3 v} \]

[_separable]

5827

\[ {}y^{\prime } = \frac {\sec \left (y\right )^{2}}{x^{2}+1} \]

[_separable]

5828

\[ {}y^{\prime } = 3 x^{2} \left (1+y^{2}\right )^{{3}/{2}} \]

[_separable]

5831

\[ {}\frac {y^{\prime }}{y}+y \,{\mathrm e}^{\cos \left (x \right )} \sin \left (x \right ) = 0 \]

[_separable]

5832

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (x \right ) \]
i.c.

[_separable]

5833

\[ {}y^{\prime } = x^{3} \left (1-y\right ) \]
i.c.

[_separable]

5837

\[ {}x^{2}+2 y y^{\prime } = 0 \]
i.c.

[_separable]

5839

\[ {}y^{\prime } = 8 x^{3} {\mathrm e}^{-2 y} \]
i.c.

[_separable]

5840

\[ {}y^{\prime } = x^{2} \left (1+y\right ) \]
i.c.

[_separable]

5844

\[ {}y^{\prime } = \sqrt {1+\sin \left (x \right )}\, \left (1+y^{2}\right ) \]
i.c.

[_separable]

5845

\[ {}y^{\prime } = 2 y-2 t y \]
i.c.

[_separable]

5848

\[ {}y^{\prime } = \left (x -3\right ) \left (1+y\right )^{{2}/{3}} \]

[_separable]

5849

\[ {}y^{\prime } = x y^{3} \]

[_separable]

5850

\[ {}y^{\prime } = x y^{3} \]
i.c.

[_separable]

5851

\[ {}y^{\prime } = x y^{3} \]
i.c.

[_separable]

5852

\[ {}y^{\prime } = x y^{3} \]
i.c.

[_separable]

5856

\[ {}\left (t^{2}+1\right ) y^{\prime } = t y-y \]

[_separable]

5859

\[ {}3 r = r^{\prime }-\theta ^{3} \]

[[_linear, ‘class A‘]]

5860

\[ {}y^{\prime }-y-{\mathrm e}^{3 x} = 0 \]

[[_linear, ‘class A‘]]

5861

\[ {}y^{\prime } = \frac {y}{x}+2 x +1 \]

[_linear]

5863

\[ {}y^{\prime } x +2 y = \frac {1}{x^{3}} \]

[_linear]

5864

\[ {}t +y+1-y^{\prime } = 0 \]

[[_linear, ‘class A‘]]

5865

\[ {}y^{\prime } = x^{2} {\mathrm e}^{-4 x}-4 y \]

[[_linear, ‘class A‘]]

5866

\[ {}y x^{\prime }+2 x = 5 y^{3} \]

[_linear]

5868

\[ {}\left (x^{2}+1\right ) y^{\prime }+y x -x = 0 \]

[_separable]

5870

\[ {}y^{\prime }-\frac {y}{x} = x \,{\mathrm e}^{x} \]
i.c.

[_linear]

5871

\[ {}y^{\prime }+4 y-{\mathrm e}^{-x} = 0 \]
i.c.

[[_linear, ‘class A‘]]

5873

\[ {}y^{\prime }+\frac {3 y}{x}+2 = 3 x \]
i.c.

[_linear]

5877

\[ {}\left ({\mathrm e}^{4 y}+2 x \right ) y^{\prime }-1 = 0 \]

[[_1st_order, _with_exponential_symmetries]]

5879

\[ {}y^{\prime }+\frac {3 y}{x} = x^{2} \]

[_linear]

5882

\[ {}x^{2} y+x^{4} \cos \left (x \right )-x^{3} y^{\prime } = 0 \]

[_linear]

5883

\[ {}x^{{10}/{3}}-2 y+y^{\prime } x = 0 \]

[_linear]

5884

\[ {}\sqrt {-2 y-y^{2}}+\left (-x^{2}+2 x +3\right ) y^{\prime } = 0 \]

[_separable]

5901

\[ {}y^{\prime }-4 y = 32 x^{2} \]

[[_linear, ‘class A‘]]

5903

\[ {}y^{\prime }+\frac {3 y}{x} = x^{2}-4 x +3 \]

[_linear]

5904

\[ {}2 x y^{3}-\left (-x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

5905

\[ {}t^{3} y^{2}+\frac {t^{4} y^{\prime }}{y^{6}} = 0 \]

[_separable]

5959

\[ {}y^{\prime }-y = {\mathrm e}^{2 x} \]

[[_linear, ‘class A‘]]

5960

\[ {}x^{2} y^{\prime }+2 y x -x +1 = 0 \]
i.c.

[_linear]

5961

\[ {}y^{\prime }+y = \left (x +1\right )^{2} \]
i.c.

[[_linear, ‘class A‘]]

5963

\[ {}y^{\prime }+\frac {y}{1-x}+2 x -x^{2} = 0 \]

[_linear]

5964

\[ {}y^{\prime }+\frac {y}{1-x}+x -x^{2} = 0 \]

[_linear]

5965

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1+y x \]

[_linear]

5966

\[ {}y^{\prime }+y x = x y^{2} \]

[_separable]

5967

\[ {}3 y^{\prime } x +y+x^{2} y^{4} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

5976

\[ {}y^{\prime }-\frac {2 y}{x}-x^{2} = 0 \]

[_linear]

5977

\[ {}y^{\prime }+\frac {2 y}{x}-x^{3} = 0 \]

[_linear]

5980

\[ {}\left (x +1\right )^{2} y^{\prime } = 1+y^{2} \]

[_separable]

5981

\[ {}y^{\prime }+2 y = {\mathrm e}^{3 x} \]

[[_linear, ‘class A‘]]

5982

\[ {}-y+y^{\prime } x = x^{2} \]

[_linear]

5984

\[ {}x \cos \left (y\right ) y^{\prime }-\sin \left (y\right ) = 0 \]

[_separable]

5985

\[ {}\left (x^{3}+x y^{2}\right ) y^{\prime } = 2 y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5986

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 y x = x \]

[_separable]

5988

\[ {}y^{\prime } x -2 y = x^{3} \cos \left (x \right ) \]

[_linear]

5989

\[ {}y^{\prime }+\frac {y}{x} = y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

5990

\[ {}y^{\prime } x +3 y = x^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

5991

\[ {}x \left (y-3\right ) y^{\prime } = 4 y \]

[_separable]

5992

\[ {}\left (x^{3}+1\right ) y^{\prime } = x^{2} y \]
i.c.

[_separable]

5993

\[ {}x^{3}+\left (1+y\right )^{2} y^{\prime } = 0 \]

[_separable]

5996

\[ {}\left (2 y-x \right ) y^{\prime } = 2 x +y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5997

\[ {}y x +y^{2}+\left (x^{2}-y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5998

\[ {}x^{3}+y^{3} = 3 x y^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5999

\[ {}y-3 x +\left (3 x +4 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6000

\[ {}\left (x^{3}+3 x y^{2}\right ) y^{\prime } = y^{3}+3 x^{2} y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6006

\[ {}\left (3 x +3 y-4\right ) y^{\prime } = -x -y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6008

\[ {}x -y-1+\left (4 y+x -1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6009

\[ {}\left (7 y-3 x +3\right ) y^{\prime }+7-7 x +3 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6010

\[ {}y \left (1+y x \right )+x \left (1+y x +x^{2} y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

6018

\[ {}x^{2}-2 y x +5 y^{2} = \left (x^{2}+2 y x +y^{2}\right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6020

\[ {}y+\left (x^{2}-4 x \right ) y^{\prime } = 0 \]

[_separable]

6022

\[ {}y^{\prime } = \frac {y^{2}+2 y x}{x^{2}+2 y x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6023

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \left (1+y\right ) \]

[_separable]

6024

\[ {}y^{\prime } x +2 y = 3 x -1 \]
i.c.

[_linear]

6025

\[ {}x^{2} y^{\prime } = y^{2}-x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6026

\[ {}y^{\prime } = {\mathrm e}^{3 x -2 y} \]
i.c.

[_separable]

6028

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6029

\[ {}2 x y y^{\prime } = x^{2}-y^{2} \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

6030

\[ {}y^{\prime } = \frac {1+x -2 y}{2 x -4 y} \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6031

\[ {}\left (-x^{3}+1\right ) y^{\prime }+x^{2} y = x^{2} \left (-x^{3}+1\right ) \]

[_linear]

6033

\[ {}y^{\prime }+x +x y^{2} = 0 \]
i.c.

[_separable]

6036

\[ {}x \left (1+y^{2}\right )-\left (x^{2}+1\right ) y y^{\prime } = 0 \]

[_separable]

6039

\[ {}y^{\prime }+\frac {y}{x} = x y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6077

\[ {}y^{\prime }-5 y = 3 \,{\mathrm e}^{x}-2 x +1 \]

[[_linear, ‘class A‘]]

6084

\[ {}y^{\prime }-y = {\mathrm e}^{x} \]

[[_linear, ‘class A‘]]

6094

\[ {}y^{\prime }+\frac {4 y}{x} = x^{4} \]

[_linear]

6103

\[ {}y^{\prime }-\frac {y}{x} = x^{2} \]

[_linear]

6130

\[ {}y^{\prime } x = 2 y \]

[_separable]

6131

\[ {}y y^{\prime }+x = 0 \]

[_separable]

6133

\[ {}2 x^{3} y^{\prime } = y \left (3 x^{2}+y^{2}\right ) \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6140

\[ {}4 y+y^{\prime } x = 0 \]

[_separable]

6141

\[ {}1+2 y+\left (-x^{2}+4\right ) y^{\prime } = 0 \]

[_separable]

6142

\[ {}y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

6143

\[ {}1+y-\left (x +1\right ) y^{\prime } = 0 \]

[_separable]

6144

\[ {}x y^{2}+y+\left (x^{2} y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6145

\[ {}x \sin \left (\frac {y}{x}\right )-y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

6147

\[ {}y \sqrt {x^{2}+y^{2}}-x \left (x +\sqrt {x^{2}+y^{2}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _dAlembert]

6148

\[ {}x +y+1+\left (2 x +2 y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6149

\[ {}1+2 y-\left (4-x \right ) y^{\prime } = 0 \]

[_separable]

6150

\[ {}y x +\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

6151

\[ {}x +2 y+\left (2 x +3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6152

\[ {}2 y^{\prime } x -2 y = \sqrt {x^{2}+4 y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6153

\[ {}\left (7 y-3 x +3\right ) y^{\prime }+7-7 x +3 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6155

\[ {}y^{2}-x^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6156

\[ {}y \left (1+2 y x \right )+x \left (1-y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6157

\[ {}1+\left (-x^{2}+1\right ) \cot \left (y\right ) y^{\prime } = 0 \]

[_separable]

6158

\[ {}x^{3}+y^{3}+3 x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

6159

\[ {}3 x +2 y+1-\left (3 x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6160

\[ {}y^{\prime } x +2 y = 0 \]
i.c.

[_separable]

6161

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6164

\[ {}y^{\prime } = -2 \left (2 x +3 y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

6176

\[ {}y \left (x -2 y\right )-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6177

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6178

\[ {}x^{2}+y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

6180

\[ {}x +y+1-\left (x -y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6193

\[ {}1+y^{2} = \left (x^{2}+x \right ) y^{\prime } \]

[_separable]

6202

\[ {}y^{\prime }+y = 2+2 x \]

[[_linear, ‘class A‘]]

6203

\[ {}y^{\prime }-y = y x \]

[_separable]

6204

\[ {}-3 y-\left (x -2\right ) {\mathrm e}^{x}+y^{\prime } x = 0 \]

[_linear]

6206

\[ {}y^{\prime }+y = y^{2} {\mathrm e}^{x} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

6209

\[ {}y^{\prime } x +y-x^{3} y^{6} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6216

\[ {}2+y^{2}-\left (y x +2 y+y^{3}\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

6218

\[ {}2 x y^{5}-y+2 y^{\prime } x = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6220

\[ {}y^{\prime } x = 2 y+x^{3} {\mathrm e}^{x} \]
i.c.

[_linear]

6227

\[ {}x^{2} {y^{\prime }}^{2}+x y y^{\prime }-6 y^{2} = 0 \]

[_separable]

6228

\[ {}x {y^{\prime }}^{2}+\left (y-1-x^{2}\right ) y^{\prime }-x \left (-1+y\right ) = 0 \]

[_quadrature]

6237

\[ {}y = 2 y^{\prime } x +y^{2} {y^{\prime }}^{3} \]

[[_1st_order, _with_linear_symmetries]]

6250

\[ {}{y^{\prime }}^{3}-4 x^{4} y^{\prime }+8 x^{3} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

6355

\[ {}y^{\prime } x = 1-x +2 y \]

[_linear]

6618

\[ {}y^{\prime } = \frac {x^{2}}{y} \]

[_separable]

6620

\[ {}y^{\prime } = y \sin \left (x \right ) \]

[_separable]

6621

\[ {}y^{\prime } x = \sqrt {1-y^{2}} \]

[_separable]

6623

\[ {}x y y^{\prime } = \sqrt {1+y^{2}} \]

[_separable]

6624

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

6626

\[ {}y^{\prime } x +y = y^{2} \]
i.c.

[_separable]

6627

\[ {}2 x^{2} y y^{\prime }+y^{2} = 2 \]

[_separable]

6628

\[ {}y^{\prime }-x y^{2} = 2 y x \]

[_separable]

6632

\[ {}\frac {y}{x -1}+\frac {x y^{\prime }}{1+y} = 0 \]

[_separable]

6634

\[ {}\frac {1}{\sqrt {x}}+\frac {y^{\prime }}{\sqrt {y}} = 0 \]

[_separable]

6635

\[ {}\frac {1}{\sqrt {-x^{2}+1}}+\frac {y^{\prime }}{\sqrt {1-y^{2}}} = 0 \]

[_separable]

6637

\[ {}y^{\prime } = \left (-1+y\right ) \left (x +1\right ) \]

[_separable]

6638

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

6639

\[ {}y^{\prime } = \frac {\sqrt {y}}{\sqrt {x}} \]

[_separable]

6640

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]

[_separable]

6641

\[ {}z^{\prime } = 10^{x +z} \]

[_separable]

6643

\[ {}y^{\prime } = \cos \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

6644

\[ {}y^{\prime }-y = 2 x -3 \]

[[_linear, ‘class A‘]]

6646

\[ {}y^{\prime }+y = 2 x +1 \]

[[_linear, ‘class A‘]]

6647

\[ {}y^{\prime } = \cos \left (x -y-1\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

6648

\[ {}y^{\prime }+\sin \left (x +y\right )^{2} = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

6649

\[ {}y^{\prime } = 2 \sqrt {2 x +y+1} \]

[[_homogeneous, ‘class C‘], _dAlembert]

6650

\[ {}y^{\prime } = \left (x +y+1\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

6653

\[ {}x -y+\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6654

\[ {}y-2 y x +x^{2} y^{\prime } = 0 \]

[_separable]

6656

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6657

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime } = 2 y x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6658

\[ {}-y+y^{\prime } x = x \tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

6659

\[ {}y^{\prime } x = y-x \,{\mathrm e}^{\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

6660

\[ {}-y+y^{\prime } x = \left (x +y\right ) \ln \left (\frac {x +y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

6661

\[ {}y^{\prime } x = y \cos \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

6662

\[ {}y+\sqrt {y x}-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6663

\[ {}y^{\prime } x -\sqrt {x^{2}-y^{2}}-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6664

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6666

\[ {}-y+y^{\prime } x = y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6667

\[ {}y^{2}+\left (x^{2}-y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6668

\[ {}x^{2}+y x +y^{2} = x^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

6669

\[ {}\frac {1}{x^{2}-y x +y^{2}} = \frac {y^{\prime }}{2 y^{2}-y x} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6670

\[ {}y^{\prime } = \frac {2 x y}{3 x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6671

\[ {}y^{\prime } = \frac {x}{y}+\frac {y}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6672

\[ {}y^{\prime } x = y+\sqrt {y^{2}-x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6673

\[ {}\left (2 \sqrt {y x}-x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

6674

\[ {}y^{\prime } x = y \ln \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

6675

\[ {}y^{\prime } \left (y^{\prime }+y\right ) = x \left (x +y\right ) \]
i.c.

[_quadrature]

6677

\[ {}x^{2} {y^{\prime }}^{2}-3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

6678

\[ {}-y+y^{\prime } x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6680

\[ {}y^{\prime }+\frac {x +2 y}{x} = 0 \]

[_linear]

6681

\[ {}y^{\prime } = \frac {y}{x +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6683

\[ {}y^{\prime } = \frac {x +y-2}{y-x -4} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6684

\[ {}2 x -4 y+6+\left (x +y-2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6685

\[ {}y^{\prime } = \frac {2 y-x +5}{2 x -y-4} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6686

\[ {}y^{\prime } = -\frac {4 x +3 y+15}{2 x +y+7} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6687

\[ {}y^{\prime } = \frac {x +3 y-5}{x -y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6688

\[ {}y^{\prime } = \frac {2 \left (2+y\right )^{2}}{\left (x +y+1\right )^{2}} \]

[[_homogeneous, ‘class C‘], _rational]

6689

\[ {}2 x +y+1-\left (4 x +2 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6690

\[ {}x -y-1+\left (y-x +2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6691

\[ {}\left (x +4 y\right ) y^{\prime } = 2 x +3 y-5 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6692

\[ {}2+y = \left (2 x +y-4\right ) y^{\prime } \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6693

\[ {}\left (y^{\prime }+1\right ) \ln \left (\frac {x +y}{x +3}\right ) = \frac {x +y}{x +3} \]

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

6694

\[ {}y^{\prime } = \frac {x -2 y+5}{y-2 x -4} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6695

\[ {}y^{\prime } = \frac {3 x -y+1}{2 x +y+4} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6696

\[ {}2 y^{\prime } x +\left (x^{2} y^{4}+1\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6712

\[ {}2 x +3+\left (2 y-2\right ) y^{\prime } = 0 \]

[_separable]

6713

\[ {}2 x +4 y+\left (2 x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6738

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

[_separable]

6741

\[ {}y^{\prime } x -2 \sqrt {y x} = y \]

[[_homogeneous, ‘class A‘], _dAlembert]

6742

\[ {}y^{\prime } = \frac {x +y-1}{x -y+3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6745

\[ {}x^{2} y^{\prime }+y^{2}-y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6746

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6747

\[ {}y^{\prime } = \frac {y}{2 x}+\frac {x^{2}}{2 y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6748

\[ {}y^{\prime } = -\frac {2}{t}+\frac {y}{t}+\frac {y^{2}}{t} \]

[_separable]

6779

\[ {}y+\sqrt {x^{2}+y^{2}}-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6783

\[ {}\left (1+x^{2} y^{2}\right ) y+\left (x^{2} y^{2}-1\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

6786

\[ {}\phi ^{\prime }-\frac {\phi ^{2}}{2}-\phi \cot \left (\theta \right ) = 0 \]

[_Bernoulli]

6791

\[ {}y \,{\mathrm e}^{y x}+x \,{\mathrm e}^{y x} y^{\prime } = 0 \]

[_separable]

6796

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6797

\[ {}x^{2}-y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6800

\[ {}x +y y^{\prime }+y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6819

\[ {}y^{\prime }+y \cos \left (x \right ) = 0 \]

[_separable]

6828

\[ {}y^{\prime }+y = {\mathrm e}^{x} \]

[[_linear, ‘class A‘]]

6829

\[ {}y^{\prime }-2 y = x^{2}+x \]

[[_linear, ‘class A‘]]

6830

\[ {}3 y^{\prime }+y = 2 \,{\mathrm e}^{-x} \]

[[_linear, ‘class A‘]]

6831

\[ {}y^{\prime }+3 y = {\mathrm e}^{i x} \]

[[_linear, ‘class A‘]]

6832

\[ {}y^{\prime }+i y = x \]

[[_linear, ‘class A‘]]

6835

\[ {}L y^{\prime }+R y = E \,{\mathrm e}^{i \omega x} \]
i.c.

[[_linear, ‘class A‘]]

6837

\[ {}y^{\prime }+2 y x = x \]

[_separable]

6838

\[ {}y^{\prime } x +y = 3 x^{3}-1 \]

[_linear]

6839

\[ {}y^{\prime }+y \,{\mathrm e}^{x} = 3 \,{\mathrm e}^{x} \]

[_separable]

6841

\[ {}y^{\prime }+2 y x = x \,{\mathrm e}^{-x^{2}} \]

[_linear]

6843

\[ {}x^{2} y^{\prime }+2 y x = 1 \]

[_linear]

6967

\[ {}y^{\prime } = x^{2} y \]

[_separable]

6968

\[ {}y y^{\prime } = x \]

[_separable]

6971

\[ {}y^{\prime } = x^{2} y^{2}-4 x^{2} \]

[_separable]

6975

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6976

\[ {}y^{\prime } = \frac {y^{2}}{x^{2}+y x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6977

\[ {}y^{\prime } = \frac {x^{2}+y x +y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

6978

\[ {}y^{\prime } = \frac {y+x \,{\mathrm e}^{-\frac {2 y}{x}}}{x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

6979

\[ {}y^{\prime } = \frac {x -y+2}{x +y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6980

\[ {}y^{\prime } = \frac {2 x +3 y+1}{x -2 y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6981

\[ {}y^{\prime } = \frac {x +y+1}{2 x +2 y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6982

\[ {}y^{\prime } = \frac {\left (x +y-1\right )^{2}}{2 \left (x +2\right )^{2}} \]

[[_homogeneous, ‘class C‘], _rational, _Riccati]

7010

\[ {}y^{\prime } x = 2 y \]

[_separable]

7011

\[ {}y y^{\prime } = {\mathrm e}^{2 x} \]

[_separable]

7017

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7018

\[ {}2 x y y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7020

\[ {}y^{\prime } = \frac {y^{2}}{y x -x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7021

\[ {}\left (y \cos \left (y\right )-\sin \left (y\right )+x \right ) y^{\prime } = y \]

[[_1st_order, _with_linear_symmetries]]

7041

\[ {}y^{\prime } = \frac {2 x y^{2}}{1-x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7043

\[ {}x^{5} y^{\prime }+y^{5} = 0 \]

[_separable]

7044

\[ {}y^{\prime } = 4 y x \]

[_separable]

7045

\[ {}y^{\prime }+y \tan \left (x \right ) = 0 \]

[_separable]

7046

\[ {}\left (x^{2}+1\right ) y^{\prime }+1+y^{2} = 0 \]

[_separable]

7047

\[ {}y \ln \left (y\right )-y^{\prime } x = 0 \]

[_separable]

7050

\[ {}y^{\prime }-y \tan \left (x \right ) = 0 \]

[_separable]

7051

\[ {}x y y^{\prime } = -1+y \]

[_separable]

7052

\[ {}x y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

7053

\[ {}y y^{\prime } = x +1 \]
i.c.

[_separable]

7056

\[ {}y^{2} y^{\prime } = x +2 \]
i.c.

[_separable]

7057

\[ {}y^{\prime } = x^{2} y^{2} \]
i.c.

[_separable]

7077

\[ {}y^{\prime } x +y = x^{4} y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7079

\[ {}y^{\prime } x +y = x y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7082

\[ {}y-y^{\prime } x = y^{\prime } y^{2} {\mathrm e}^{y} \]

[[_1st_order, _with_linear_symmetries]]

7083

\[ {}y^{\prime } x +2 = x^{3} \left (-1+y\right ) y^{\prime } \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

7084

\[ {}y^{\prime } x = 2 x^{2} y+y \ln \left (x \right ) \]

[_separable]

7086

\[ {}\left (x +\frac {2}{y}\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7090

\[ {}y+y \cos \left (y x \right )+\left (x +x \cos \left (y x \right )\right ) y^{\prime } = 0 \]

[_separable]

7094

\[ {}1+y+\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

7099

\[ {}2 x \left (1+\sqrt {x^{2}-y}\right ) = \sqrt {x^{2}-y}\, y^{\prime } \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

7105

\[ {}\frac {y-y^{\prime } x}{\left (x +y\right )^{2}}+y^{\prime } = 1 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

7107

\[ {}x^{2}-2 y^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7108

\[ {}x^{2} y^{\prime }-3 y x -2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7110

\[ {}x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )+x \]

[[_homogeneous, ‘class A‘], _dAlembert]

7111

\[ {}y^{\prime } x = y+2 x \,{\mathrm e}^{-\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

7112

\[ {}x -y-\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7113

\[ {}y^{\prime } x = 2 x -6 y \]

[_linear]

7114

\[ {}y^{\prime } x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7115

\[ {}x^{2} y^{\prime } = y^{2}+2 y x \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7116

\[ {}x^{3}+y^{3}-x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7117

\[ {}y^{\prime } = \frac {x +y+4}{x -y-6} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7118

\[ {}y^{\prime } = \frac {x +y+4}{x +y-6} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7119

\[ {}2 x -2 y+\left (-1+y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7120

\[ {}y^{\prime } = \frac {x +y-1}{x +4 y+2} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7121

\[ {}2 x +3 y-1-4 \left (x +1\right ) y^{\prime } = 0 \]

[_linear]

7122

\[ {}y^{\prime } = \frac {1-x y^{2}}{2 x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7123

\[ {}y^{\prime } = \frac {2+3 x y^{2}}{4 x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7124

\[ {}y^{\prime } = \frac {y-x y^{2}}{x +x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7125

\[ {}y^{\prime } = \sin \left (\frac {y}{x}\right )-\cos \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

7126

\[ {}{\mathrm e}^{\frac {x}{y}}-\frac {y y^{\prime }}{x} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

7127

\[ {}y^{\prime } = \frac {x^{2}-y x}{y^{2} \cos \left (\frac {x}{y}\right )} \]

[[_homogeneous, ‘class A‘], _dAlembert]

7128

\[ {}y^{\prime } = \frac {y \tan \left (\frac {y}{x}\right )}{x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

7140

\[ {}y^{\prime } = \frac {2 y}{x}+\frac {x^{3}}{y}+x \tan \left (\frac {y}{x^{2}}\right ) \]

[[_homogeneous, ‘class G‘]]

7153

\[ {}y^{\prime } x +y = x \]

[_linear]

7155

\[ {}x^{2} y^{\prime } = y \]

[_separable]

7157

\[ {}y^{\prime } = \frac {x^{2}+y^{2}}{x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7158

\[ {}y^{\prime } = \frac {x +2 y}{2 x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7159

\[ {}x^{2} y^{\prime }+2 y x = 0 \]

[_separable]

7161

\[ {}-y+y^{\prime } x = 2 x \]
i.c.

[_linear]

7163

\[ {}y^{2} y^{\prime } = x \]
i.c.

[_separable]

7165

\[ {}y^{\prime } = \frac {x +y}{x -y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7166

\[ {}y^{\prime } = \frac {x^{2}+2 y^{2}}{x^{2}-2 y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7167

\[ {}2 x \cos \left (y\right )-x^{2} \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

7168

\[ {}\frac {1}{y}-\frac {x y^{\prime }}{y^{2}} = 0 \]

[_separable]

7309

\[ {}y^{\prime } = 2 y x \]

[_separable]

7319

\[ {}y^{\prime }-y = x^{2} \]

[[_linear, ‘class A‘]]

7321

\[ {}y^{\prime } x = y \]

[_separable]

7323

\[ {}x^{2} y^{\prime } = y \]

[_separable]

7325

\[ {}y^{\prime }-\frac {y}{x} = x^{2} \]

[_linear]

7326

\[ {}y^{\prime }+\frac {y}{x} = x \]

[_linear]

7330

\[ {}y^{\prime } = x -y \]
i.c.

[[_linear, ‘class A‘]]

7451

\[ {}y^{\prime }-2 y = x^{2} \]
i.c.

[[_linear, ‘class A‘]]

7671

\[ {}x^{2} {y^{\prime }}^{2}-y^{2} = 0 \]

[_separable]

7672

\[ {}x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

[_quadrature]

7673

\[ {}x^{2} {y^{\prime }}^{2}-5 x y y^{\prime }+6 y^{2} = 0 \]

[_separable]

7674

\[ {}x^{2} {y^{\prime }}^{2}+y^{\prime } x -y^{2}-y = 0 \]

[_separable]

7675

\[ {}x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-y x = 0 \]

[_quadrature]

7676

\[ {}{y^{\prime }}^{2}-\left (x^{2} y+3\right ) y^{\prime }+3 x^{2} y = 0 \]

[_quadrature]

7678

\[ {}{y^{\prime }}^{2}-x^{2} y^{2} = 0 \]

[_separable]

7679

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7680

\[ {}y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-y x = 0 \]

[_quadrature]

7681

\[ {}{y^{\prime }}^{2}-x y \left (x +y\right ) y^{\prime }+x^{3} y^{3} = 0 \]

[_separable]

7682

\[ {}\left (4 x -y\right ) {y^{\prime }}^{2}+6 \left (x -y\right ) y^{\prime }+2 x -5 y = 0 \]

[_quadrature]

7683

\[ {}\left (x -y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7684

\[ {}x y {y^{\prime }}^{2}+\left (-1+x y^{2}\right ) y^{\prime }-y = 0 \]

[_quadrature]

7685

\[ {}\left (x^{2}+y^{2}\right )^{2} {y^{\prime }}^{2} = 4 x^{2} y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7686

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2}+\left (2 y^{2}+y x -x^{2}\right ) y^{\prime }+\left (-x +y\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7687

\[ {}x y \left (x^{2}+y^{2}\right ) \left (-1+{y^{\prime }}^{2}\right ) = y^{\prime } \left (x^{4}+x^{2} y^{2}+y^{4}\right ) \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7688

\[ {}x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+y x \right ) y^{\prime }-y x = 0 \]

[_quadrature]

7698

\[ {}y^{4} {y^{\prime }}^{3}-6 y^{\prime } x +2 y = 0 \]

[[_1st_order, _with_linear_symmetries]]

7701

\[ {}2 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}+x^{4} = 0 \]

[[_1st_order, _with_linear_symmetries]]

7710

\[ {}x^{6} {y^{\prime }}^{3}-3 y^{\prime } x -3 y = 0 \]

[[_1st_order, _with_linear_symmetries]]

7711

\[ {}y = x^{6} {y^{\prime }}^{3}-y^{\prime } x \]

[[_1st_order, _with_linear_symmetries]]

7770

\[ {}6 x {y^{\prime }}^{2}-\left (3 x +2 y\right ) y^{\prime }+y = 0 \]

[_quadrature]

7775

\[ {}y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x = 0 \]

[_quadrature]

7777

\[ {}4 y^{2} {y^{\prime }}^{3}-2 y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries]]

7786

\[ {}x^{2} {y^{\prime }}^{2} = \left (x -y\right )^{2} \]

[_linear]

7789

\[ {}x {y^{\prime }}^{2}+\left (1-x \right ) y y^{\prime }-y^{2} = 0 \]

[_quadrature]

7792

\[ {}x {y^{\prime }}^{3}-2 y {y^{\prime }}^{2}+4 x^{2} = 0 \]

[[_1st_order, _with_linear_symmetries]]

7933

\[ {}y^{\prime } = \frac {y}{x \ln \left (x \right )} \]

[_separable]

7934

\[ {}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1 \]
i.c.

[_separable]

7935

\[ {}y^{\prime }+\frac {2 y}{x} = 5 x^{2} \]

[_linear]

7937

\[ {}y^{\prime } = \frac {2 x -y}{x +4 y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7938

\[ {}y^{\prime }+\frac {2 y}{x} = 6 x^{4} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7960

\[ {}y^{\prime } = \frac {2 y}{x} \]
i.c.

[_separable]

7961

\[ {}y^{\prime } = \frac {2 y}{x} \]

[_separable]

7964

\[ {}y^{\prime } = \frac {-y x -1}{4 x^{3} y-2 x^{2}} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7969

\[ {}y^{\prime } = \sqrt {y}+x \]

[[_1st_order, _with_linear_symmetries], _Chini]

7970

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7978

\[ {}y^{\prime } = \frac {5 x^{2}-y x +y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

7979

\[ {}2 t +3 x+\left (x+2\right ) x^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7982

\[ {}y^{2}+\frac {2}{x}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

7987

\[ {}y y^{\prime }-y = x \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8006

\[ {}y^{\prime } = -4 \sin \left (x -y\right )-4 \]

[[_homogeneous, ‘class C‘], _dAlembert]

8007

\[ {}y^{\prime }+\sin \left (x -y\right ) = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

8028

\[ {}y^{\prime } = \frac {y \left (1+\frac {a^{2} x}{\sqrt {a^{2} \left (x^{2}+1\right )}}\right )}{\sqrt {a^{2} \left (x^{2}+1\right )}} \]

[_separable]

8122

\[ {}y^{\prime } = {\mathrm e}^{-\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

8216

\[ {}y^{\prime } = \frac {y}{2 y \ln \left (y\right )+y-x} \]

[[_1st_order, _with_linear_symmetries]]

8218

\[ {}x^{2} y^{\prime }+{\mathrm e}^{-y} = 0 \]

[_separable]

8226

\[ {}y^{\prime } = a x y \]

[_separable]

8227

\[ {}y^{\prime } = a x +y \]

[[_linear, ‘class A‘]]

8228

\[ {}y^{\prime } = a x +b y \]

[[_linear, ‘class A‘]]

8235

\[ {}c y^{\prime } = a x +y \]

[[_linear, ‘class A‘]]

8236

\[ {}c y^{\prime } = a x +b y \]

[[_linear, ‘class A‘]]

8248

\[ {}y^{\prime } = \cos \left (x \right )+\frac {y}{x} \]

[_linear]

8280

\[ {}y^{\prime } = \sqrt {1+6 x +y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

8281

\[ {}y^{\prime } = \left (1+6 x +y\right )^{{1}/{3}} \]

[[_homogeneous, ‘class C‘], _dAlembert]

8282

\[ {}y^{\prime } = \left (1+6 x +y\right )^{{1}/{4}} \]

[[_homogeneous, ‘class C‘], _dAlembert]

8283

\[ {}y^{\prime } = \left (a +b x +y\right )^{4} \]

[[_homogeneous, ‘class C‘], _dAlembert]

8284

\[ {}y^{\prime } = \left (\pi +x +7 y\right )^{{7}/{2}} \]

[[_homogeneous, ‘class C‘], _dAlembert]

8285

\[ {}y^{\prime } = \left (a +b x +c y\right )^{6} \]

[[_homogeneous, ‘class C‘], _dAlembert]

8286

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

8287

\[ {}y^{\prime } = 10+{\mathrm e}^{x +y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

8352

\[ {}y^{\prime } = \left (x +y\right )^{4} \]

[[_homogeneous, ‘class C‘], _dAlembert]

9238

\[ {}y^{\prime }+a y-c \,{\mathrm e}^{b x} = 0 \]

[[_linear, ‘class A‘]]

9240

\[ {}y^{\prime }+2 y x -x \,{\mathrm e}^{-x^{2}} = 0 \]

[_linear]

9245

\[ {}y^{\prime }-\left (a +\cos \left (\ln \left (x \right )\right )+\sin \left (\ln \left (x \right )\right )\right ) y = 0 \]

[_separable]

9251

\[ {}y^{\prime }+y^{2}-2 x^{2} y+x^{4}-2 x -1 = 0 \]

[[_1st_order, _with_linear_symmetries], _Riccati]

9255

\[ {}y^{\prime }-\left (x +y\right )^{2} = 0 \]

[[_homogeneous, ‘class C‘], _Riccati]

9265

\[ {}y^{\prime }-x y^{2}-3 y x = 0 \]

[_separable]

9267

\[ {}y^{\prime }-a \,x^{n} \left (1+y^{2}\right ) = 0 \]

[_separable]

9271

\[ {}y^{\prime }+f \left (x \right ) \left (y^{2}+2 a y+b \right ) = 0 \]

[_separable]

9274

\[ {}y^{\prime }-a y^{3}-\frac {b}{x^{{3}/{2}}} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Abel]

9277

\[ {}y^{\prime }+a x y^{3}+b y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _Abel]

9288

\[ {}y^{\prime }-a y^{n}-b \,x^{\frac {n}{1-n}} = 0 \]

[[_homogeneous, ‘class G‘], _Chini]

9294

\[ {}y^{\prime }-a \sqrt {y}-b x = 0 \]

[[_homogeneous, ‘class G‘], _Chini]

9296

\[ {}y^{\prime }-\frac {\sqrt {-1+y^{2}}}{\sqrt {x^{2}-1}} = 0 \]

[_separable]

9313

\[ {}y^{\prime }-\cos \left (b x +a y\right ) = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

9320

\[ {}y^{\prime }-f \left (a x +b y\right ) = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

9322

\[ {}y^{\prime }-\frac {y-x f \left (x^{2}+a y^{2}\right )}{x +a y f \left (x^{2}+a y^{2}\right )} = 0 \]

[[_1st_order, _with_linear_symmetries]]

9327

\[ {}y^{\prime } x -y-\frac {x}{\ln \left (x \right )} = 0 \]

[_linear]

9328

\[ {}y^{\prime } x -y-x^{2} \sin \left (x \right ) = 0 \]

[_linear]

9329

\[ {}y^{\prime } x -y-\frac {x \cos \left (\ln \left (\ln \left (x \right )\right )\right )}{\ln \left (x \right )} = 0 \]

[_linear]

9330

\[ {}y^{\prime } x +a y+b \,x^{n} = 0 \]

[_linear]

9332

\[ {}y^{\prime } x -y^{2}+1 = 0 \]

[_separable]

9337

\[ {}y^{\prime } x +x y^{2}-y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

9338

\[ {}y^{\prime } x +x y^{2}-y-a \,x^{3} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

9339

\[ {}y^{\prime } x +x y^{2}-\left (2 x^{2}+1\right ) y-x^{3} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

9344

\[ {}y^{\prime } x -y^{2} \ln \left (x \right )+y = 0 \]

[_Bernoulli]

9345

\[ {}y^{\prime } x -y \left (2 y \ln \left (x \right )-1\right ) = 0 \]

[_Bernoulli]

9348

\[ {}y^{\prime } x -\sqrt {x^{2}+y^{2}}-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9349

\[ {}y^{\prime } x +a \sqrt {x^{2}+y^{2}}-y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9352

\[ {}y^{\prime } x -x \,{\mathrm e}^{\frac {y}{x}}-y-x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9353

\[ {}y^{\prime } x -y \ln \left (y\right ) = 0 \]

[_separable]

9354

\[ {}y^{\prime } x -y \left (\ln \left (y x \right )-1\right ) = 0 \]

[[_homogeneous, ‘class G‘]]

9358

\[ {}y^{\prime } x -x \sin \left (\frac {y}{x}\right )-y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9359

\[ {}y^{\prime } x +x \cos \left (\frac {y}{x}\right )-y+x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9360

\[ {}y^{\prime } x +x \tan \left (\frac {y}{x}\right )-y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9361

\[ {}y^{\prime } x -y f \left (y x \right ) = 0 \]

[[_homogeneous, ‘class G‘]]

9362

\[ {}y^{\prime } x -y f \left (x^{a} y^{b}\right ) = 0 \]

[[_homogeneous, ‘class G‘]]

9365

\[ {}2 y^{\prime } x -y-2 x^{3} = 0 \]

[_linear]

9366

\[ {}\left (2 x +1\right ) y^{\prime }-4 \,{\mathrm e}^{-y}+2 = 0 \]

[_separable]

9370

\[ {}x^{2} y^{\prime }-\left (x -1\right ) y = 0 \]

[_separable]

9371

\[ {}x^{2} y^{\prime }+y^{2}+y x +x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

9372

\[ {}x^{2} y^{\prime }-y^{2}-y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

9373

\[ {}x^{2} y^{\prime }-y^{2}-y x -x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

9375

\[ {}x^{2} \left (y^{\prime }+y^{2}\right )+4 y x +2 = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

9376

\[ {}x^{2} \left (y^{\prime }+y^{2}\right )+a x y+b = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

9378

\[ {}x^{2} \left (y^{\prime }+a y^{2}\right )-b = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

9384

\[ {}\left (x^{2}+1\right ) y^{\prime }+y x -x \left (x^{2}+1\right ) = 0 \]

[_linear]

9388

\[ {}\left (x^{2}-1\right ) y^{\prime }-y x +a = 0 \]

[_linear]

9390

\[ {}\left (x^{2}-1\right ) y^{\prime }+y^{2}-2 y x +1 = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

9391

\[ {}\left (x^{2}-1\right ) y^{\prime }-\left (-x +y\right ) y = 0 \]

[_rational, _Bernoulli]

9393

\[ {}\left (x^{2}-1\right ) y^{\prime }+a x y^{2}+y x = 0 \]

[_separable]

9394

\[ {}\left (x^{2}-1\right ) y^{\prime }-2 x y \ln \left (y\right ) = 0 \]

[_separable]

9397

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }+y^{2}+k \left (y+x -a \right ) \left (y+x -b \right ) = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

9400

\[ {}x \left (2 x -1\right ) y^{\prime }+y^{2}-\left (4 x +1\right ) y+4 x = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

9402

\[ {}3 x^{2} y^{\prime }-7 y^{2}-3 y x -x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

9405

\[ {}x^{3} y^{\prime }-y^{2}-x^{4} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

9406

\[ {}x^{3} y^{\prime }-y^{2}-x^{2} y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

9407

\[ {}x^{3} y^{\prime }-x^{4} y^{2}+x^{2} y+20 = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

9409

\[ {}x \left (x^{2}+1\right ) y^{\prime }+x^{2} y = 0 \]

[_separable]

9410

\[ {}x \left (x^{2}-1\right ) y^{\prime }-\left (2 x^{2}-1\right ) y+a \,x^{3} = 0 \]

[_linear]

9412

\[ {}x^{2} \left (x -1\right ) y^{\prime }-y^{2}-x \left (x -2\right ) y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

9416

\[ {}x^{4} \left (y^{\prime }+y^{2}\right )+a = 0 \]

[_rational, [_Riccati, _special]]

9418

\[ {}\left (2 x^{4}-x \right ) y^{\prime }-2 \left (x^{3}-1\right ) y = 0 \]

[_separable]

9419

\[ {}\left (a \,x^{2}+b x +c \right )^{2} \left (y^{\prime }+y^{2}\right )+A = 0 \]

[_rational, _Riccati]

9421

\[ {}x^{n} y^{\prime }+y^{2}-\left (n -1\right ) x^{n -1} y+x^{2 n -2} = 0 \]

[[_homogeneous, ‘class G‘], _Riccati]

9422

\[ {}x^{n} y^{\prime }-a y^{2}-b \,x^{2 n -2} = 0 \]

[[_homogeneous, ‘class G‘], _Riccati]

9423

\[ {}x^{2 n +1} y^{\prime }-a y^{3}-b \,x^{3 n} = 0 \]

[[_homogeneous, ‘class G‘], _Abel]

9424

\[ {}x^{m \left (n -1\right )+n} y^{\prime }-a y^{n}-b \,x^{n \left (m +1\right )} = 0 \]

[[_homogeneous, ‘class G‘]]

9425

\[ {}\sqrt {x^{2}-1}\, y^{\prime }-\sqrt {-1+y^{2}} = 0 \]

[_separable]

9428

\[ {}x y^{\prime } \ln \left (x \right )+y-a x \left (1+\ln \left (x \right )\right ) = 0 \]

[_linear]

9439

\[ {}y y^{\prime }+a y+x = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9446

\[ {}y y^{\prime }-x \,{\mathrm e}^{\frac {x}{y}} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9448

\[ {}\left (1+y\right ) y^{\prime }-y-x = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9449

\[ {}\left (x +y-1\right ) y^{\prime }-y+2 x +3 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9450

\[ {}\left (y+2 x -2\right ) y^{\prime }-y+x +1 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9451

\[ {}\left (y-2 x +1\right ) y^{\prime }+y+x = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9453

\[ {}\left (y-x^{2}\right ) y^{\prime }+4 y x = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9456

\[ {}\left (x +2 y+1\right ) y^{\prime }-x -2 y+1 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9457

\[ {}\left (2 y+x +7\right ) y^{\prime }-y+2 x +4 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9458

\[ {}\left (2 y-x \right ) y^{\prime }-y-2 x = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9459

\[ {}\left (2 y-6 x \right ) y^{\prime }-y+3 x +2 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9460

\[ {}\left (4 y+2 x +3\right ) y^{\prime }-2 y-x -1 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9461

\[ {}\left (4 y-2 x -3\right ) y^{\prime }+2 y-x -1 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9462

\[ {}\left (4 y-3 x -5\right ) y^{\prime }-3 y+7 x +2 = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9463

\[ {}\left (4 y+11 x -11\right ) y^{\prime }-25 y-8 x +62 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9464

\[ {}\left (12 y-5 x -8\right ) y^{\prime }-5 y+2 x +3 = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9466

\[ {}\left (a y+b x +c \right ) y^{\prime }+\alpha y+\beta x +\gamma = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9467

\[ {}x y y^{\prime }+y^{2}+x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

9471

\[ {}x \left (y+4\right ) y^{\prime }-y^{2}-2 y-2 x = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

9473

\[ {}\left (x \left (x +y\right )+a \right ) y^{\prime }-y \left (x +y\right )-b = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

9474

\[ {}\left (y x -x^{2}\right ) y^{\prime }+y^{2}-3 y x -2 x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

9475

\[ {}2 x y y^{\prime }-y^{2}+a x = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

9476

\[ {}2 x y y^{\prime }-y^{2}+a \,x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

9477

\[ {}2 x y y^{\prime }+2 y^{2}+1 = 0 \]

[_separable]

9480

\[ {}\left (2 y x +4 x^{3}\right ) y^{\prime }+y^{2}+112 x^{2} y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

9481

\[ {}x \left (2 x +3 y\right ) y^{\prime }+3 \left (x +y\right )^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

9482

\[ {}\left (3 x +2\right ) \left (y-2 x -1\right ) y^{\prime }-y^{2}+y x -7 x^{2}-9 x -3 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

9484

\[ {}\left (a x y+b \,x^{n}\right ) y^{\prime }+\alpha y^{3}+\beta y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

9489

\[ {}x \left (y x -2\right ) y^{\prime }+y^{3} x^{2}+x y^{2}-2 y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

9490

\[ {}x \left (y x -3\right ) y^{\prime }+x y^{2}-y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

9495

\[ {}\left (2 x^{2} y+x \right ) y^{\prime }-y^{3} x^{2}+2 x y^{2}+y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

9496

\[ {}\left (2 x^{2} y-x \right ) y^{\prime }-2 x y^{2}-y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

9497

\[ {}\left (2 x^{2} y-x^{3}\right ) y^{\prime }+y^{3}-4 x y^{2}+2 x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

9499

\[ {}2 x \left (x^{3} y+1\right ) y^{\prime }+\left (3 x^{3} y-1\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

9501

\[ {}\left (-x +y\right ) \sqrt {x^{2}+1}\, y^{\prime }-a \sqrt {\left (1+y^{2}\right )^{3}} = 0 \]

[‘x=_G(y,y’)‘]

9506

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (2 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

9507

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime }-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9511

\[ {}\left (y^{2}-x^{2}\right ) y^{\prime }+2 y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9512

\[ {}\left (x^{4}+y^{2}\right ) y^{\prime }-4 x^{3} y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

9515

\[ {}\left (x +y\right )^{2} y^{\prime }-a^{2} = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

9516

\[ {}\left (y^{2}+2 y x -x^{2}\right ) y^{\prime }-y^{2}+2 y x +x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9517

\[ {}\left (y+3 x -1\right )^{2} y^{\prime }-\left (2 y-1\right ) \left (4 y+6 x -3\right ) = 0 \]

[[_homogeneous, ‘class C‘], _rational]

9519

\[ {}\left (x^{2}+4 y^{2}\right ) y^{\prime }-y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9520

\[ {}\left (4 y^{2}+2 y x +3 x^{2}\right ) y^{\prime }+y^{2}+6 y x +2 x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

9521

\[ {}\left (1-3 x +2 y\right )^{2} y^{\prime }-\left (3 y-2 x -4\right )^{2} = 0 \]

[[_homogeneous, ‘class C‘], _rational]

9522

\[ {}\left (2 y-4 x +1\right )^{2} y^{\prime }-\left (y-2 x \right )^{2} = 0 \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

9525

\[ {}\left (a y^{2}+2 b x y+c \,x^{2}\right ) y^{\prime }+b y^{2}+2 c x y+d \,x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

9526

\[ {}\left (b \left (\beta y+\alpha x \right )^{2}-\beta \left (a x +b y\right )\right ) y^{\prime }+a \left (\beta y+\alpha x \right )^{2}-\alpha \left (a x +b y\right ) = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

9527

\[ {}\left (a y+b x +c \right )^{2} y^{\prime }+\left (\alpha y+\beta x +\gamma \right )^{2} = 0 \]

[[_homogeneous, ‘class C‘], _rational]

9528

\[ {}x \left (y^{2}-3 x \right ) y^{\prime }+2 y^{3}-5 y x = 0 \]

[[_homogeneous, ‘class G‘], _rational]

9529

\[ {}x \left (y^{2}+x^{2}-a \right ) y^{\prime }-y \left (y^{2}+x^{2}+a \right ) = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9530

\[ {}x \left (y^{2}+y x -x^{2}\right ) y^{\prime }-y^{3}+x y^{2}+x^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9531

\[ {}x \left (y^{2}+x^{2} y+x^{2}\right ) y^{\prime }-2 y^{3}-2 x^{2} y^{2}+x^{4} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9532

\[ {}2 x \left (5 x^{2}+y^{2}\right ) y^{\prime }+y^{3}-x^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9533

\[ {}3 x y^{2} y^{\prime }+y^{3}-2 x = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

9534

\[ {}\left (3 x y^{2}-x^{2}\right ) y^{\prime }+y^{3}-2 y x = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

9535

\[ {}6 x y^{2} y^{\prime }+2 y^{3}+x = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

9536

\[ {}\left (6 x y^{2}+x^{2}\right ) y^{\prime }-y \left (3 y^{2}-x \right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational]

9537

\[ {}\left (x^{2} y^{2}+x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

9538

\[ {}\left (y x -1\right )^{2} x y^{\prime }+\left (1+x^{2} y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

9539

\[ {}\left (10 x^{3} y^{2}+x^{2} y+2 x \right ) y^{\prime }+5 y^{3} x^{2}+x y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational]

9541

\[ {}\left (y^{3}-x^{3}\right ) y^{\prime }-x^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9543

\[ {}2 y^{3} y^{\prime }+x y^{2} = 0 \]

[_separable]

9545

\[ {}\left (2 y^{3}+5 x^{2} y\right ) y^{\prime }+5 x y^{2}+x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

9546

\[ {}\left (20 y^{3}-3 x y^{2}+6 x^{2} y+3 x^{3}\right ) y^{\prime }-y^{3}+6 x y^{2}+9 x^{2} y+4 x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

9550

\[ {}\left (2 x y^{3}-x^{4}\right ) y^{\prime }-y^{4}+2 x^{3} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9556

\[ {}\left (2 y^{3} x^{2}+x^{2} y^{2}-2 x \right ) y^{\prime }-2 y-1 = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

9560

\[ {}y \left (y^{3}-2 x^{3}\right ) y^{\prime }+\left (2 y^{3}-x^{3}\right ) x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9561

\[ {}y \left (\left (b x +a y\right )^{3}+b \,x^{3}\right ) y^{\prime }+x \left (\left (b x +a y\right )^{3}+a y^{3}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9563

\[ {}a \,x^{2} y^{n} y^{\prime }-2 y^{\prime } x +y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

9564

\[ {}y^{m} x^{n} \left (a x y^{\prime }+b y\right )+\alpha x y^{\prime }+\beta y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

9565

\[ {}\left (f \left (x +y\right )+1\right ) y^{\prime }+f \left (x +y\right ) = 0 \]

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

9567

\[ {}\left (\sqrt {y x}-1\right ) x y^{\prime }-\left (\sqrt {y x}+1\right ) y = 0 \]

[[_homogeneous, ‘class G‘]]

9568

\[ {}\left (2 x^{{5}/{2}} y^{{3}/{2}}+x^{2} y-x \right ) y^{\prime }-x^{{3}/{2}} y^{{5}/{2}}+x y^{2}-y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

9569

\[ {}\left (1+\sqrt {x +y}\right ) y^{\prime }+1 = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

9572

\[ {}\left (x +\sqrt {x^{2}+y^{2}}\right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9573

\[ {}\left (y \sqrt {x^{2}+y^{2}}+\left (y^{2}-x^{2}\right ) \sin \left (\alpha \right )-2 x y \cos \left (\alpha \right )\right ) y^{\prime }+x \sqrt {x^{2}+y^{2}}+2 x y \sin \left (\alpha \right )+\left (y^{2}-x^{2}\right ) \cos \left (\alpha \right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9574

\[ {}\left (x \sqrt {1+x^{2}+y^{2}}-y \left (x^{2}+y^{2}\right )\right ) y^{\prime }-y \sqrt {1+x^{2}+y^{2}}-x \left (x^{2}+y^{2}\right ) = 0 \]

[[_1st_order, _with_linear_symmetries]]

9577

\[ {}x \left (3 \,{\mathrm e}^{y x}+2 \,{\mathrm e}^{-y x}\right ) \left (y^{\prime } x +y\right )+1 = 0 \]

[[_homogeneous, ‘class G‘]]

9579

\[ {}\left (\ln \left (y\right )+2 x -1\right ) y^{\prime }-2 y = 0 \]

[[_1st_order, _with_linear_symmetries]]

9584

\[ {}x y^{\prime } \cot \left (\frac {y}{x}\right )+2 x \sin \left (\frac {y}{x}\right )-y \cot \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘]]

9588

\[ {}x \cos \left (y\right ) y^{\prime }+\sin \left (y\right ) = 0 \]

[_separable]

9597

\[ {}\left (x^{2} y \sin \left (y x \right )-4 x \right ) y^{\prime }+x y^{2} \sin \left (y x \right )-y = 0 \]

[[_homogeneous, ‘class G‘]]

9598

\[ {}\left (-y+y^{\prime } x \right ) \cos \left (\frac {y}{x}\right )^{2}+x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9599

\[ {}\left (y \sin \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right )\right ) x y^{\prime }-\left (x \cos \left (\frac {y}{x}\right )+y \sin \left (\frac {y}{x}\right )\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9600

\[ {}\left (y f \left (x^{2}+y^{2}\right )-x \right ) y^{\prime }+y+x f \left (x^{2}+y^{2}\right ) = 0 \]

[[_1st_order, _with_linear_symmetries]]

9622

\[ {}{y^{\prime }}^{2}+\left (y^{\prime }-y\right ) {\mathrm e}^{x} = 0 \]

[[_1st_order, _with_linear_symmetries]]

9627

\[ {}{y^{\prime }}^{2}-x y y^{\prime }+y^{2} \ln \left (a y\right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

9630

\[ {}{y^{\prime }}^{2}+y \left (-x +y\right ) y^{\prime }-x y^{3} = 0 \]

[_separable]

9667

\[ {}\left (y^{\prime } x +y+2 x \right )^{2}-4 y x -4 x^{2}-4 a = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

9669

\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }-x +y \left (1+y\right ) = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

9672

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

9674

\[ {}x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }-5 y^{2} = 0 \]

[_separable]

9676

\[ {}x^{2} {y^{\prime }}^{2}+\left (x^{2} y-2 y x +x^{3}\right ) y^{\prime }+\left (y^{2}-x^{2} y\right ) \left (1-x \right ) = 0 \]

[_linear]

9682

\[ {}\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+y^{2} = 0 \]

[_separable]

9704

\[ {}y {y^{\prime }}^{2}-\left (-x +y\right ) y^{\prime }-x = 0 \]

[_quadrature]

9714

\[ {}x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}\right ) y^{\prime }+y x = 0 \]

[_separable]

9718

\[ {}a x y {y^{\prime }}^{2}-\left (a y^{2}+b \,x^{2}+c \right ) y^{\prime }+b x y = 0 \]

[_rational]

9738

\[ {}x y^{2} {y^{\prime }}^{2}-2 y^{3} y^{\prime }+2 x y^{2}-x^{3} = 0 \]

[_separable]

9759

\[ {}{y^{\prime }}^{3}-\left (x^{2}+y x +y^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

9760

\[ {}{y^{\prime }}^{3}-x y^{4} y^{\prime }-y^{5} = 0 \]

[[_1st_order, _with_linear_symmetries]]

9770

\[ {}x^{3} {y^{\prime }}^{3}-3 x^{2} y {y^{\prime }}^{2}+\left (3 x y^{2}+x^{6}\right ) y^{\prime }-y^{3}-2 x^{5} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

9771

\[ {}2 \left (y^{\prime } x +y\right )^{3}-y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘]]

9774

\[ {}y^{2} {y^{\prime }}^{3}+2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries]]

9775

\[ {}16 y^{2} {y^{\prime }}^{3}+2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries]]

9777

\[ {}x^{7} y^{2} {y^{\prime }}^{3}-\left (3 x^{6} y^{3}-1\right ) {y^{\prime }}^{2}+3 x^{5} y^{4} y^{\prime }-x^{4} y^{5} = 0 \]

[[_homogeneous, ‘class G‘]]

9790

\[ {}x \left (\sqrt {1+{y^{\prime }}^{2}}+y^{\prime }\right )-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

9793

\[ {}a y \sqrt {1+{y^{\prime }}^{2}}-2 x y y^{\prime }+y^{2}-x^{2} = 0 \]

[‘y=_G(x,y’)‘]

9796

\[ {}\ln \left (y^{\prime }\right )+y^{\prime } x +a y+b = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

9797

\[ {}\ln \left (y^{\prime }\right )+a \left (-y+y^{\prime } x \right ) = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

9798

\[ {}y \ln \left (y^{\prime }\right )+y^{\prime }-y \ln \left (y\right )-y x = 0 \]

[_separable]

9810

\[ {}y^{\prime } = F \left (\frac {y}{x +a}\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

9811

\[ {}y^{\prime } = 2 x +F \left (y-x^{2}\right ) \]

[[_1st_order, _with_linear_symmetries]]

9812

\[ {}y^{\prime } = -\frac {a x}{2}+F \left (y+\frac {a \,x^{2}}{4}+\frac {b x}{2}\right ) \]

[[_1st_order, _with_linear_symmetries]]

9813

\[ {}y^{\prime } = F \left (y \,{\mathrm e}^{-b x}\right ) {\mathrm e}^{b x} \]

[[_1st_order, _with_linear_symmetries]]

9817

\[ {}y^{\prime } = \frac {2 a}{y+2 F \left (y^{2}-4 a x \right ) a} \]

[[_1st_order, _with_linear_symmetries]]

9822

\[ {}y^{\prime } = \frac {F \left (-\frac {-1+y \ln \left (x \right )}{y}\right ) y^{2}}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

9829

\[ {}y^{\prime } = \frac {-2 x^{2}+x +F \left (y+x^{2}-x \right )}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

9830

\[ {}y^{\prime } = \frac {2 a}{x^{2} \left (-y+2 F \left (\frac {x y^{2}-4 a}{x}\right ) a \right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

9831

\[ {}y^{\prime } = \frac {y+F \left (\frac {y}{x}\right )}{x -1} \]

[[_homogeneous, ‘class D‘]]

9833

\[ {}y^{\prime } = \frac {F \left (-\frac {2 y \ln \left (x \right )-1}{y}\right ) y^{2}}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

9838

\[ {}y^{\prime } = -\frac {y^{2} \left (2 x -F \left (-\frac {y x -2}{2 y}\right )\right )}{4 x} \]

[NONE]

9841

\[ {}y^{\prime } = \frac {\sqrt {y}}{\sqrt {y}+F \left (\frac {x -y}{\sqrt {y}}\right )} \]

[[_1st_order, _with_linear_symmetries]]

9845

\[ {}y^{\prime } = \frac {\left (y \,{\mathrm e}^{-\frac {x^{2}}{4}} x +2 F \left (y \,{\mathrm e}^{-\frac {x^{2}}{4}}\right )\right ) {\mathrm e}^{\frac {x^{2}}{4}}}{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

9849

\[ {}y^{\prime } = -\frac {-x^{2}+2 x^{3} y-F \left (\left (y x -1\right ) x \right )}{x^{4}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9853

\[ {}y^{\prime } = \frac {y^{2}+2 y x +x^{2}+{\mathrm e}^{2 F \left (-\left (x -y\right ) \left (x +y\right )\right )}}{y^{2}+2 y x +x^{2}-{\mathrm e}^{2 F \left (-\left (x -y\right ) \left (x +y\right )\right )}} \]

[[_1st_order, _with_linear_symmetries]]

9854

\[ {}y^{\prime } = \frac {1}{y+\sqrt {x}} \]

[[_homogeneous, ‘class G‘], [_Abel, ‘2nd type‘, ‘class C‘]]

9855

\[ {}y^{\prime } = \frac {1}{y+2+\sqrt {1+3 x}} \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

9856

\[ {}y^{\prime } = \frac {x^{2}}{y+x^{{3}/{2}}} \]

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

9857

\[ {}y^{\prime } = \frac {x^{{5}/{3}}}{y+x^{{4}/{3}}} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

9860

\[ {}y^{\prime } = \frac {\left (-1+y \ln \left (x \right )\right )^{2}}{x} \]

[_Riccati]

9861

\[ {}y^{\prime } = \frac {x \left (-2+3 \sqrt {x^{2}+3 y}\right )}{3} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

9862

\[ {}y^{\prime } = \frac {\left (2 y \ln \left (x \right )-1\right )^{2}}{x} \]

[_Riccati]

9863

\[ {}y^{\prime } = \frac {{\mathrm e}^{b x}}{y \,{\mathrm e}^{-b x}+1} \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

9864

\[ {}y^{\prime } = \frac {x^{2} \left (1+2 \sqrt {x^{3}-6 y}\right )}{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

9865

\[ {}y^{\prime } = \frac {{\mathrm e}^{x}}{y \,{\mathrm e}^{-x}+1} \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

9866

\[ {}y^{\prime } = \frac {{\mathrm e}^{\frac {2 x}{3}}}{y \,{\mathrm e}^{-\frac {2 x}{3}}+1} \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

9868

\[ {}y^{\prime } = \frac {x \left (x +2 \sqrt {x^{3}-6 y}\right )}{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

9869

\[ {}y^{\prime } = \left (-\ln \left (y\right )+x^{2}\right ) y \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9876

\[ {}y^{\prime } = \frac {x \left (-2+3 x \sqrt {x^{2}+3 y}\right )}{3} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

9878

\[ {}y^{\prime } = \left (-\ln \left (y\right )+x \right ) y \]

[[_1st_order, _with_linear_symmetries]]

9879

\[ {}y^{\prime } = \frac {x^{3}+x^{2}+2 \sqrt {x^{3}-6 y}}{2 x +2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

9882

\[ {}y^{\prime } = -\frac {x}{4}+\frac {1}{4}+x \sqrt {x^{2}-2 x +1+8 y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

9883

\[ {}y^{\prime } = -\frac {x}{2}-\frac {a}{2}+x \sqrt {x^{2}+2 a x +a^{2}+4 y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

9884

\[ {}y^{\prime } = \frac {\left (\ln \left (y\right )+x^{2}\right ) y}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9886

\[ {}y^{\prime } = -\frac {x}{2}+1+x \sqrt {x^{2}-4 x +4 y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

9887

\[ {}y^{\prime } = -\frac {2 x^{2}+2 x -3 \sqrt {x^{2}+3 y}}{3 \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

9888

\[ {}y^{\prime } = \frac {y^{3} {\mathrm e}^{-\frac {4 x}{3}}}{y \,{\mathrm e}^{-\frac {2 x}{3}}+1} \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

9889

\[ {}y^{\prime } = \frac {\left (\ln \left (y\right )+x^{3}\right ) y}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9890

\[ {}y^{\prime } = -\frac {x}{4}+\frac {1}{4}+x^{2} \sqrt {x^{2}-2 x +1+8 y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

9891

\[ {}y^{\prime } = -\frac {x^{2}-1-4 \sqrt {x^{2}-2 x +1+8 y}}{4 \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

9892

\[ {}y^{\prime } = -\frac {a x}{2}-\frac {b}{2}+x \sqrt {a^{2} x^{2}+2 a b x +b^{2}+4 a y-4 c} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

9893

\[ {}y^{\prime } = -\frac {x}{2}-\frac {a}{2}+x^{2} \sqrt {x^{2}+2 a x +a^{2}+4 y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

9894

\[ {}y^{\prime } = -\frac {a x}{2}-\frac {b}{2}+x^{2} \sqrt {a^{2} x^{2}+2 a b x +b^{2}+4 a y-4 c} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

9895

\[ {}y^{\prime } = \frac {x}{2}+\frac {1}{2}+x^{2} \sqrt {x^{2}+2 x +1-4 y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

9897

\[ {}y^{\prime } = -\frac {x}{2}+1+x^{2} \sqrt {x^{2}-4 x +4 y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

9899

\[ {}y^{\prime } = \left (-\ln \left (y\right )+1+x^{2}+x^{3}\right ) y \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9900

\[ {}y^{\prime } = \frac {y^{3} {\mathrm e}^{-2 b x}}{y \,{\mathrm e}^{-b x}+1} \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

9901

\[ {}y^{\prime } = \frac {y^{3} {\mathrm e}^{-2 x}}{y \,{\mathrm e}^{-x}+1} \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

9907

\[ {}y^{\prime } = -\frac {x^{2}-x -2-2 \sqrt {x^{2}-4 x +4 y}}{2 \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

9913

\[ {}y^{\prime } = \frac {x^{2}+2 x +1+2 \sqrt {x^{2}+2 x +1-4 y}}{2 x +2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

9915

\[ {}y^{\prime } = \frac {2 a}{x \left (-y x +2 a x y^{2}-8 a^{2}\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

9916

\[ {}y^{\prime } = \frac {y \left (-1+\ln \left (\left (x +1\right ) x \right ) y x^{4}-\ln \left (\left (x +1\right ) x \right ) x^{3}\right )}{x} \]

[_Bernoulli]

9926

\[ {}y^{\prime } = \left (1+y^{2} {\mathrm e}^{-2 b x}+y^{3} {\mathrm e}^{-3 b x}\right ) {\mathrm e}^{b x} \]

[[_1st_order, _with_linear_symmetries], _Abel]

9930

\[ {}y^{\prime } = \left (1+y^{2} {\mathrm e}^{-\frac {4 x}{3}}+y^{3} {\mathrm e}^{-2 x}\right ) {\mathrm e}^{\frac {2 x}{3}} \]

[[_1st_order, _with_linear_symmetries], _Abel]

9931

\[ {}y^{\prime } = \left (1+y^{2} {\mathrm e}^{-2 x}+y^{3} {\mathrm e}^{-3 x}\right ) {\mathrm e}^{x} \]

[[_1st_order, _with_linear_symmetries], _Abel]

9936

\[ {}y^{\prime } = \frac {y \left (1-x +y x^{2} \ln \left (x \right )+x^{3} y-x \ln \left (x \right )-x^{2}\right )}{\left (x -1\right ) x} \]

[_Bernoulli]

9938

\[ {}y^{\prime } = \frac {\left (\ln \left (y\right )+x +x^{3}+x^{4}\right ) y}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9943

\[ {}y^{\prime } = \frac {-\ln \left (x \right )+{\mathrm e}^{\frac {1}{x}}+4 x^{2} y+2 x +2 x y^{2}+2 x^{3}}{\ln \left (x \right )-{\mathrm e}^{\frac {1}{x}}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

9946

\[ {}y^{\prime } = \frac {-b y a +b^{2}+a b +b^{2} x -b a \sqrt {x}-a^{2}}{a \left (-a y+b +a +b x -a \sqrt {x}\right )} \]

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9947

\[ {}y^{\prime } = -\frac {y \left (-\ln \left (\frac {1}{x}\right )+{\mathrm e}^{x}+y x^{2} \ln \left (x \right )+x^{3} y-x \ln \left (x \right )-x^{2}\right )}{\left (-\ln \left (\frac {1}{x}\right )+{\mathrm e}^{x}\right ) x} \]

[_Bernoulli]

9950

\[ {}y^{\prime } = -\frac {x^{2}+x +a x +a -2 \sqrt {x^{2}+2 a x +a^{2}+4 y}}{2 \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

9952

\[ {}y^{\prime } = \frac {y \left (-{\mathrm e}^{x}+\ln \left (2 x \right ) x^{2} y-\ln \left (2 x \right ) x \right ) {\mathrm e}^{-x}}{x} \]

[_Bernoulli]

9954

\[ {}y^{\prime } = \frac {\left (18 x^{{3}/{2}}+36 y^{2}-12 x^{3} y+x^{6}\right ) \sqrt {x}}{36} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

9955

\[ {}y^{\prime } = -\frac {y^{3}}{\left (-1+2 y \ln \left (x \right )-y\right ) x} \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

9956

\[ {}y^{\prime } = \frac {2 a}{y+2 a y^{4}-16 a^{2} x y^{2}+32 a^{3} x^{2}} \]

[[_1st_order, _with_linear_symmetries]]

9957

\[ {}y^{\prime } = -\frac {y^{3}}{\left (-1+y \ln \left (x \right )-y\right ) x} \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

9958

\[ {}y^{\prime } = \frac {-\ln \left (x \right )+2 \ln \left (2 x \right ) x y+\ln \left (2 x \right )+\ln \left (2 x \right ) y^{2}+\ln \left (2 x \right ) x^{2}}{\ln \left (x \right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

9959

\[ {}y^{\prime } = -\frac {b y a -b c +b^{2} x +b a \sqrt {x}-a^{2}}{a \left (a y-c +b x +a \sqrt {x}\right )} \]

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9964

\[ {}y^{\prime } = \frac {1+2 y}{x \left (-2+x y^{2}+2 x y^{3}\right )} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

9968

\[ {}y^{\prime } = \frac {\left (2 y \ln \left (x \right )-1\right )^{3}}{\left (-1+2 y \ln \left (x \right )-y\right ) x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

9969

\[ {}y^{\prime } = \frac {2 x^{2}+2 x +x^{4}-2 x^{2} y-1+y^{2}}{x +1} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

9971

\[ {}y^{\prime } = \frac {2 a}{-x^{2} y+2 a y^{4} x^{2}-16 a^{2} x y^{2}+32 a^{3}} \]

[‘y=_G(x,y’)‘]

9972

\[ {}y^{\prime } = \frac {1+2 y}{x \left (-2+y x +2 x y^{2}\right )} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

9978

\[ {}y^{\prime } = \frac {\left (-1+y \ln \left (x \right )\right )^{3}}{\left (-1+y \ln \left (x \right )-y\right ) x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

9980

\[ {}y^{\prime } = -\frac {y \left (\tan \left (x \right )+\ln \left (2 x \right ) x -\ln \left (2 x \right ) x^{2} y\right )}{x \tan \left (x \right )} \]

[_Bernoulli]

9984

\[ {}y^{\prime } = \frac {\left (\ln \left (y\right ) x +\ln \left (y\right )+x^{4}\right ) y}{x \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9988

\[ {}y^{\prime } = \frac {y^{{3}/{2}}}{y^{{3}/{2}}+x^{2}-2 y x +y^{2}} \]

[[_1st_order, _with_linear_symmetries], _rational]

9990

\[ {}y^{\prime } = \frac {-4 y x +x^{3}+2 x^{2}-4 x -8}{-8 y+2 x^{2}+4 x -8} \]

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9994

\[ {}y^{\prime } = \frac {-4 y x -x^{3}+4 x^{2}-4 x +8}{8 y+2 x^{2}-8 x +8} \]

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9996

\[ {}y^{\prime } = \frac {\left (\ln \left (y\right ) x +\ln \left (y\right )+x \right ) y}{x \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9999

\[ {}y^{\prime } = \frac {y \left (-\ln \left (x \right )-x \ln \left (\frac {\left (x -1\right ) \left (x +1\right )}{x}\right )+\ln \left (\frac {\left (x -1\right ) \left (x +1\right )}{x}\right ) x^{2} y\right )}{x \ln \left (x \right )} \]

[_Bernoulli]

10000

\[ {}y^{\prime } = \frac {-8 y x -x^{3}+2 x^{2}-8 x +32}{32 y+4 x^{2}-8 x +32} \]

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10001

\[ {}y^{\prime } = \frac {y \left (1+y\right )}{x \left (-y-1+y x \right )} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

10004

\[ {}y^{\prime } = \frac {-4 a x y-a^{2} x^{3}-2 a \,x^{2} b -4 a x +8}{8 y+2 a \,x^{2}+4 b x +8} \]

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10006

\[ {}y^{\prime } = \frac {y x +x +y^{2}}{\left (x -1\right ) \left (x +y\right )} \]

[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

10007

\[ {}y^{\prime } = \frac {-4 y x -x^{3}-2 a \,x^{2}-4 x +8}{8 y+2 x^{2}+4 a x +8} \]

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10008

\[ {}y^{\prime } = \frac {x -y+\sqrt {y}}{x -y+\sqrt {y}+1} \]

[[_1st_order, _with_linear_symmetries], _rational]

10009

\[ {}y^{\prime } = \frac {y \left (-\ln \left (\frac {1}{x}\right )-\ln \left (\frac {x^{2}+1}{x}\right ) x +\ln \left (\frac {x^{2}+1}{x}\right ) x^{2} y\right )}{x \ln \left (\frac {1}{x}\right )} \]

[_Bernoulli]

10010

\[ {}y^{\prime } = \frac {y \left (1+y\right )}{x \left (-y-1+x y^{4}\right )} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

10012

\[ {}y^{\prime } = \frac {x^{3} y+x^{3}+x y^{2}+y^{3}}{\left (x -1\right ) x^{3}} \]

[[_homogeneous, ‘class D‘], _rational, _Abel]

10015

\[ {}y^{\prime } = \frac {y \left (-\tanh \left (\frac {1}{x}\right )-\ln \left (\frac {x^{2}+1}{x}\right ) x +\ln \left (\frac {x^{2}+1}{x}\right ) x^{2} y\right )}{x \tanh \left (\frac {1}{x}\right )} \]

[_Bernoulli]

10016

\[ {}y^{\prime } = -\frac {y \left (\tanh \left (x \right )+\ln \left (2 x \right ) x -\ln \left (2 x \right ) x^{2} y\right )}{x \tanh \left (x \right )} \]

[_Bernoulli]

10017

\[ {}y^{\prime } = \frac {-\sinh \left (x \right )+x^{2} \ln \left (x \right )+2 y \ln \left (x \right ) x +\ln \left (x \right )+y^{2} \ln \left (x \right )}{\sinh \left (x \right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

10018

\[ {}y^{\prime } = -\frac {\ln \left (x \right )-\sinh \left (x \right ) x^{2}-2 \sinh \left (x \right ) x y-\sinh \left (x \right )-\sinh \left (x \right ) y^{2}}{\ln \left (x \right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

10021

\[ {}y^{\prime } = -\frac {y \left (\ln \left (x -1\right )+\coth \left (x +1\right ) x -\coth \left (x +1\right ) x^{2} y\right )}{x \ln \left (x -1\right )} \]

[_Bernoulli]

10022

\[ {}y^{\prime } = -\frac {\ln \left (x -1\right )-\coth \left (x +1\right ) x^{2}-2 \coth \left (x +1\right ) x y-\coth \left (x +1\right )-\coth \left (x +1\right ) y^{2}}{\ln \left (x -1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

10025

\[ {}y^{\prime } = \frac {y \left (-\cosh \left (\frac {1}{x +1}\right ) x +\cosh \left (\frac {1}{x +1}\right )-x +x^{2} y-x^{2}+x^{3} y\right )}{x \left (x -1\right ) \cosh \left (\frac {1}{x +1}\right )} \]

[_Bernoulli]

10026

\[ {}y^{\prime } = -\frac {y \left (1+y x \right )}{x \left (y x +1-y\right )} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

10028

\[ {}y^{\prime } = \frac {x^{3}+3 a \,x^{2}+3 a^{2} x +a^{3}+x y^{2}+a y^{2}+y^{3}}{\left (x +a \right )^{3}} \]

[[_homogeneous, ‘class C‘], _rational, _Abel]

10030

\[ {}y^{\prime } = \frac {y \left (-1-\cosh \left (\frac {x +1}{x -1}\right ) x +\cosh \left (\frac {x +1}{x -1}\right ) x^{2} y-\cosh \left (\frac {x +1}{x -1}\right ) x^{2}+\cosh \left (\frac {x +1}{x -1}\right ) x^{3} y\right )}{x} \]

[_Bernoulli]

10032

\[ {}y^{\prime } = \frac {y \left (-1-x \,{\mathrm e}^{\frac {x +1}{x -1}}+x^{2} {\mathrm e}^{\frac {x +1}{x -1}} y-x^{2} {\mathrm e}^{\frac {x +1}{x -1}}+x^{3} {\mathrm e}^{\frac {x +1}{x -1}} y\right )}{x} \]

[_Bernoulli]

10033

\[ {}y^{\prime } = \frac {-b^{3}+6 b^{2} x -12 b \,x^{2}+8 x^{3}-4 b y^{2}+8 x y^{2}+8 y^{3}}{\left (2 x -b \right )^{3}} \]

[[_homogeneous, ‘class C‘], _rational, _Abel]

10034

\[ {}y^{\prime } = \frac {\left (y \,{\mathrm e}^{-\frac {x^{2}}{4}} x +2+2 y^{2} {\mathrm e}^{-\frac {x^{2}}{2}}+2 y^{3} {\mathrm e}^{-\frac {3 x^{2}}{4}}\right ) {\mathrm e}^{\frac {x^{2}}{4}}}{2} \]

[_Abel]

10041

\[ {}y^{\prime } = \frac {\left (1+2 y\right ) \left (1+y\right )}{x \left (-2 y-2+x +2 y x \right )} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

10042

\[ {}y^{\prime } = \frac {-125+300 x -240 x^{2}+64 x^{3}-80 y^{2}+64 x y^{2}+64 y^{3}}{\left (4 x -5\right )^{3}} \]

[[_homogeneous, ‘class C‘], _rational, _Abel]

10051

\[ {}y^{\prime } = \frac {y}{x \left (-1+y x +x y^{3}+x y^{4}\right )} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

10057

\[ {}y^{\prime } = \frac {y \left (x^{3}+x^{2} y+y^{2}\right )}{x^{2} \left (x -1\right ) \left (x +y\right )} \]

[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

10061

\[ {}y^{\prime } = \frac {\left (1+2 y\right ) \left (1+y\right )}{x \left (-2 y-2+x y^{3}+2 x y^{4}\right )} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

10072

\[ {}y^{\prime } = \frac {\left ({\mathrm e}^{-\frac {y}{x}} y+x \,{\mathrm e}^{-\frac {y}{x}}+x^{2}\right ) {\mathrm e}^{\frac {y}{x}}}{x} \]

[[_1st_order, _with_linear_symmetries]]

10073

\[ {}y^{\prime } = \frac {\left ({\mathrm e}^{-\frac {y}{x}} y+x \,{\mathrm e}^{-\frac {y}{x}}+x^{3}\right ) {\mathrm e}^{\frac {y}{x}}}{x} \]

[[_1st_order, _with_linear_symmetries]]

10084

\[ {}y^{\prime } = \frac {b^{3}+y^{2} b^{3}+2 y b^{2} a x +x^{2} b \,a^{2}+y^{3} b^{3}+3 y^{2} b^{2} a x +3 y b \,a^{2} x^{2}+a^{3} x^{3}}{b^{3}} \]

[[_homogeneous, ‘class C‘], _Abel]

10085

\[ {}y^{\prime } = \frac {\alpha ^{3}+y^{2} \alpha ^{3}+2 y \alpha ^{2} \beta x +\alpha \,\beta ^{2} x^{2}+y^{3} \alpha ^{3}+3 y^{2} \alpha ^{2} \beta x +3 y \alpha \,\beta ^{2} x^{2}+\beta ^{3} x^{3}}{\alpha ^{3}} \]

[[_homogeneous, ‘class C‘], _Abel]

10091

\[ {}y^{\prime } = \frac {a^{3}+y^{2} a^{3}+2 y a^{2} b x +a \,b^{2} x^{2}+y^{3} a^{3}+3 y^{2} a^{2} b x +3 y a \,b^{2} x^{2}+b^{3} x^{3}}{a^{3}} \]

[[_homogeneous, ‘class C‘], _Abel]

10096

\[ {}y^{\prime } = \frac {y \left ({\mathrm e}^{-\frac {x^{2}}{2}} x y+{\mathrm e}^{-\frac {x^{2}}{4}} x +2 y^{2} {\mathrm e}^{-\frac {3 x^{2}}{4}}\right ) {\mathrm e}^{\frac {x^{2}}{4}}}{2 y \,{\mathrm e}^{-\frac {x^{2}}{4}}+2} \]

[[_Abel, ‘2nd type‘, ‘class C‘], [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10099

\[ {}y^{\prime } = -\frac {2 x}{3}+1+y^{2}+\frac {2 x^{2} y}{3}+\frac {x^{4}}{9}+y^{3}+x^{2} y^{2}+\frac {y x^{4}}{3}+\frac {x^{6}}{27} \]

[[_1st_order, _with_linear_symmetries], _Abel]

10100

\[ {}y^{\prime } = 2 x +1+y^{2}-2 x^{2} y+x^{4}+y^{3}-3 x^{2} y^{2}+3 y x^{4}-x^{6} \]

[[_1st_order, _with_linear_symmetries], _Abel]

10105

\[ {}y^{\prime } = \frac {1+2 y}{x \left (-2+x +x y^{2}+3 x y^{3}+2 y x +2 x y^{4}\right )} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

10108

\[ {}y^{\prime } = -\frac {y^{2} \left (x^{2} y-2 x -2 y x +y\right )}{2 \left (-2+y x -2 y\right ) x} \]

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

10109

\[ {}y^{\prime } = \frac {-2 y x +2 x^{3}-2 x -y^{3}+3 x^{2} y^{2}-3 y x^{4}+x^{6}}{-y+x^{2}-1} \]

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

10112

\[ {}y^{\prime } = -\frac {2 a}{-y-2 a -2 a y^{4}+16 a^{2} x y^{2}-32 a^{3} x^{2}-2 a y^{6}+24 y^{4} a^{2} x -96 y^{2} a^{3} x^{2}+128 a^{4} x^{3}} \]

[[_1st_order, _with_linear_symmetries]]

10113

\[ {}y^{\prime } = \frac {-18 y x -6 x^{3}-18 x +27 y^{3}+27 x^{2} y^{2}+9 y x^{4}+x^{6}}{27 y+9 x^{2}+27} \]

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

10118

\[ {}y^{\prime } = \frac {2 x^{2}-4 x^{3} y+1+x^{4} y^{2}+x^{6} y^{3}-3 y^{2} x^{5}+3 y x^{4}-x^{3}}{x^{4}} \]

[_rational, _Abel]

10120

\[ {}y^{\prime } = \frac {6 x^{2} y-2 x +1-5 x^{3} y^{2}-2 y x +x^{4} y^{3}}{x^{2} \left (x^{2} y-x +1\right )} \]

[_rational, [_Abel, ‘2nd type‘, ‘class C‘], [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10124

\[ {}y^{\prime } = \frac {y^{2}+2 y x +x^{2}+{\mathrm e}^{-\frac {2}{-y^{2}+x^{2}-1}}}{y^{2}+2 y x +x^{2}-{\mathrm e}^{-\frac {2}{-y^{2}+x^{2}-1}}} \]

[[_1st_order, _with_linear_symmetries]]

10132

\[ {}y^{\prime } = \frac {2 a \left (-y^{2}+4 a x -1\right )}{-y^{3}+4 a x y-y-2 a y^{6}+24 y^{4} a^{2} x -96 y^{2} a^{3} x^{2}+128 a^{4} x^{3}} \]

[[_1st_order, _with_linear_symmetries], _rational]

10144

\[ {}y^{\prime } = \frac {2 a x}{-x^{3} y+2 a \,x^{3}+2 a y^{4} x^{3}-16 y^{2} a^{2} x^{2}+32 a^{3} x +2 a y^{6} x^{3}-24 y^{4} a^{2} x^{2}+96 y^{2} x \,a^{3}-128 a^{4}} \]

[_rational]

10145

\[ {}y^{\prime } = -\frac {-y^{3}-y+2 y^{2} \ln \left (x \right )-\ln \left (x \right )^{2} y^{3}-1+3 y \ln \left (x \right )-3 \ln \left (x \right )^{2} y^{2}+\ln \left (x \right )^{3} y^{3}}{y x} \]

[[_Abel, ‘2nd type‘, ‘class C‘]]

10146

\[ {}y^{\prime } = \frac {2 a \left (x y^{2}-4 a +x \right )}{-x^{3} y^{3}+4 a \,x^{2} y-x^{3} y+2 a y^{6} x^{3}-24 y^{4} a^{2} x^{2}+96 y^{2} x \,a^{3}-128 a^{4}} \]

[_rational]

10147

\[ {}y^{\prime } = -\frac {-y^{3}-y+4 y^{2} \ln \left (x \right )-4 \ln \left (x \right )^{2} y^{3}-1+6 y \ln \left (x \right )-12 \ln \left (x \right )^{2} y^{2}+8 \ln \left (x \right )^{3} y^{3}}{y x} \]

[[_Abel, ‘2nd type‘, ‘class C‘]]

10151

\[ {}y^{\prime } = \frac {y^{{3}/{2}} \left (x -y+\sqrt {y}\right )}{y^{{3}/{2}} x -y^{{5}/{2}}+y^{2}+x^{3}-3 x^{2} y+3 x y^{2}-y^{3}} \]

[[_1st_order, _with_linear_symmetries], _rational]

10154

\[ {}y^{\prime } = \frac {y^{2}}{y^{2}+y^{{3}/{2}}+\sqrt {y}\, x^{2}-2 y^{{3}/{2}} x +y^{{5}/{2}}+x^{3}-3 x^{2} y+3 x y^{2}-y^{3}} \]

[[_1st_order, _with_linear_symmetries], _rational]

10155

\[ {}y^{\prime } = \frac {y^{2}+2 y x +x^{2}+{\mathrm e}^{-2 \left (x -y\right ) \left (x +y\right )}}{y^{2}+2 y x +x^{2}-{\mathrm e}^{-2 \left (x -y\right ) \left (x +y\right )}} \]

[[_1st_order, _with_linear_symmetries]]

10157

\[ {}y^{\prime } = \frac {y^{2}+2 y x +x^{2}+{\mathrm e}^{2 \left (x -y\right )^{2} \left (x +y\right )^{2}}}{y^{2}+2 y x +x^{2}-{\mathrm e}^{2 \left (x -y\right )^{2} \left (x +y\right )^{2}}} \]

[[_1st_order, _with_linear_symmetries]]

10158

\[ {}y^{\prime } = \frac {-8 y^{3} x^{2}+16 x y^{2}+16 x y^{3}-8+12 y x -6 x^{2} y^{2}+x^{3} y^{3}}{16 \left (-2+y x -2 y\right ) x} \]

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

10161

\[ {}y^{\prime } = -\frac {16 x y^{3}-8 y^{3}-8 y+8 x y^{2}-2 y^{3} x^{2}-8+12 y x -6 x^{2} y^{2}+x^{3} y^{3}}{32 y x} \]

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

10163

\[ {}y^{\prime } = \frac {-3 x^{2} y-2 x^{3}-2 x -x y^{2}-y+x^{3} y^{3}+3 x^{4} y^{2}+3 x^{5} y+x^{6}}{x \left (y x +x^{2}+1\right )} \]

[_rational, [_Abel, ‘2nd type‘, ‘class C‘], [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10166

\[ {}y^{\prime } = \frac {x}{2}+1+y^{2}+\frac {x^{2} y}{4}-y x -\frac {x^{4}}{8}+\frac {x^{3}}{8}+\frac {x^{2}}{4}+y^{3}-\frac {3 x^{2} y^{2}}{4}-\frac {3 x y^{2}}{2}+\frac {3 y x^{4}}{16}+\frac {3 x^{3} y}{4}-\frac {x^{6}}{64}-\frac {3 x^{5}}{32} \]

[[_1st_order, _with_linear_symmetries], _Abel]

10167

\[ {}y^{\prime } = -\frac {x}{2}+1+y^{2}+\frac {7 x^{2} y}{2}-2 y x +\frac {13 x^{4}}{16}-\frac {3 x^{3}}{2}+x^{2}+y^{3}+\frac {3 x^{2} y^{2}}{4}-3 x y^{2}+\frac {3 y x^{4}}{16}-\frac {3 x^{3} y}{2}+\frac {x^{6}}{64}-\frac {3 x^{5}}{16} \]

[[_1st_order, _with_linear_symmetries], _Abel]

10168

\[ {}y^{\prime } = -\frac {x}{4}+1+y^{2}+\frac {7 x^{2} y}{16}-\frac {y x}{2}+\frac {5 x^{4}}{128}-\frac {5 x^{3}}{64}+\frac {x^{2}}{16}+y^{3}+\frac {3 x^{2} y^{2}}{8}-\frac {3 x y^{2}}{4}+\frac {3 y x^{4}}{64}-\frac {3 x^{3} y}{16}+\frac {x^{6}}{512}-\frac {3 x^{5}}{256} \]

[[_1st_order, _with_linear_symmetries], _Abel]

10170

\[ {}y^{\prime } = \frac {-x^{2}+x +1+y^{2}+5 x^{2} y-2 y x +4 x^{4}-3 x^{3}+y^{3}+3 x^{2} y^{2}-3 x y^{2}+3 y x^{4}-6 x^{3} y+x^{6}-3 x^{5}}{x} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel]

10171

\[ {}y^{\prime } = \frac {-32 y x +16 x^{3}+16 x^{2}-32 x -64 y^{3}+48 x^{2} y^{2}+96 x y^{2}-12 y x^{4}-48 x^{3} y-48 x^{2} y+x^{6}+6 x^{5}+12 x^{4}}{-64 y+16 x^{2}+32 x -64} \]

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

10173

\[ {}y^{\prime } = \frac {-32 y x -72 x^{3}+32 x^{2}-32 x +64 y^{3}+48 x^{2} y^{2}-192 x y^{2}+12 y x^{4}-96 x^{3} y+192 x^{2} y+x^{6}-12 x^{5}+48 x^{4}}{64 y+16 x^{2}-64 x +64} \]

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

10174

\[ {}y^{\prime } = -\frac {y^{2}+2 y x +x^{2}+{\mathrm e}^{\frac {2 \left (x -y\right )^{3} \left (x +y\right )^{3}}{-y^{2}+x^{2}-1}}}{-y^{2}-2 y x -x^{2}+{\mathrm e}^{\frac {2 \left (x -y\right )^{3} \left (x +y\right )^{3}}{-y^{2}+x^{2}-1}}} \]

[[_1st_order, _with_linear_symmetries]]

10175

\[ {}y^{\prime } = \frac {-128 y x -24 x^{3}+32 x^{2}-128 x +512 y^{3}+192 x^{2} y^{2}-384 x y^{2}+24 y x^{4}-96 x^{3} y+96 x^{2} y+x^{6}-6 x^{5}+12 x^{4}}{512 y+64 x^{2}-128 x +512} \]

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

10176

\[ {}y^{\prime } = \frac {-32 a x y-8 a^{2} x^{3}-16 a \,x^{2} b -32 a x +64 y^{3}+48 x^{2} a y^{2}+96 y^{2} b x +12 y a^{2} x^{4}+48 y a \,x^{3} b +48 y b^{2} x^{2}+a^{3} x^{6}+6 a^{2} x^{5} b +12 a \,x^{4} b^{2}+8 b^{3} x^{3}}{64 y+16 a \,x^{2}+32 b x +64} \]

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

10177

\[ {}y^{\prime } = \frac {-32 y x -8 x^{3}-16 a \,x^{2}-32 x +64 y^{3}+48 x^{2} y^{2}+96 a x y^{2}+12 y x^{4}+48 y a \,x^{3}+48 a^{2} x^{2} y+x^{6}+6 x^{5} a +12 a^{2} x^{4}+8 a^{3} x^{3}}{64 y+16 x^{2}+32 a x +64} \]

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

10181

\[ {}y^{\prime } = \frac {x^{2} y+x^{4}+2 x^{3}-3 x^{2}+y x +x +y^{3}+3 x^{2} y^{2}-3 x y^{2}+3 y x^{4}-6 x^{3} y+x^{6}-3 x^{5}}{x \left (y+x^{2}-x +1\right )} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

10182

\[ {}y^{\prime } = -\frac {a x}{2}+1+y^{2}+\frac {a \,x^{2} y}{2}+b x y+\frac {a^{2} x^{4}}{16}+\frac {a \,x^{3} b}{4}+\frac {b^{2} x^{2}}{4}+y^{3}+\frac {3 x^{2} a y^{2}}{4}+\frac {3 y^{2} b x}{2}+\frac {3 y a^{2} x^{4}}{16}+\frac {3 y a \,x^{3} b}{4}+\frac {3 y b^{2} x^{2}}{4}+\frac {a^{3} x^{6}}{64}+\frac {3 a^{2} x^{5} b}{32}+\frac {3 a \,x^{4} b^{2}}{16}+\frac {b^{3} x^{3}}{8} \]

[[_1st_order, _with_linear_symmetries], _Abel]

10183

\[ {}y^{\prime } = -\frac {x}{2}+1+y^{2}+\frac {x^{2} y}{2}+a x y+\frac {x^{4}}{16}+\frac {a \,x^{3}}{4}+\frac {a^{2} x^{2}}{4}+y^{3}+\frac {3 x^{2} y^{2}}{4}+\frac {3 a x y^{2}}{2}+\frac {3 y x^{4}}{16}+\frac {3 y a \,x^{3}}{4}+\frac {3 a^{2} x^{2} y}{4}+\frac {x^{6}}{64}+\frac {3 x^{5} a}{32}+\frac {3 a^{2} x^{4}}{16}+\frac {a^{3} x^{3}}{8} \]

[[_1st_order, _with_linear_symmetries], _Abel]

10193

\[ {}y^{\prime } = \frac {y^{2}+2 y x +x^{2}+{\mathrm e}^{2+2 y^{4}-4 x^{2} y^{2}+2 x^{4}+2 y^{6}-6 x^{2} y^{4}+6 x^{4} y^{2}-2 x^{6}}}{y^{2}+2 y x +x^{2}-{\mathrm e}^{2+2 y^{4}-4 x^{2} y^{2}+2 x^{4}+2 y^{6}-6 x^{2} y^{4}+6 x^{4} y^{2}-2 x^{6}}} \]

[[_1st_order, _with_linear_symmetries]]

10201

\[ {}y^{\prime } = \frac {y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right ) x +y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x +y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )-\sin \left (\frac {y}{x}\right ) y x -y \sin \left (\frac {y}{x}\right )+2 \sin \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x}{2 \cos \left (\frac {y}{x}\right ) \sin \left (\frac {y}{2 x}\right ) x \cos \left (\frac {y}{2 x}\right ) \left (x +1\right )} \]

[[_homogeneous, ‘class D‘]]

10203

\[ {}y^{\prime } = \frac {\left (1+y x \right )^{3}}{x^{5}} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel]

10205

\[ {}y^{\prime } = y \left (y^{2}+y \,{\mathrm e}^{b x}+{\mathrm e}^{2 b x}\right ) {\mathrm e}^{-2 b x} \]

[[_1st_order, _with_linear_symmetries], _Abel]

10206

\[ {}y^{\prime } = y^{3}-3 x^{2} y^{2}+3 y x^{4}-x^{6}+2 x \]

[[_1st_order, _with_linear_symmetries], _Abel]

10207

\[ {}y^{\prime } = y^{3}+x^{2} y^{2}+\frac {y x^{4}}{3}+\frac {x^{6}}{27}-\frac {2 x}{3} \]

[[_1st_order, _with_linear_symmetries], _Abel]

10211

\[ {}y^{\prime } = \frac {y^{3}-3 x y^{2}+3 x^{2} y-x^{3}+x}{x} \]

[[_1st_order, _with_linear_symmetries], _rational, _Abel]

10214

\[ {}y^{\prime } = \frac {y \,{\mathrm e}^{-\frac {x^{2}}{2}} \left (2 y^{2}+2 y \,{\mathrm e}^{\frac {x^{2}}{4}}+2 \,{\mathrm e}^{\frac {x^{2}}{2}}+x \,{\mathrm e}^{\frac {x^{2}}{2}}\right )}{2} \]

[_Abel]

10215

\[ {}y^{\prime } = \frac {y^{3}-3 x y^{2}+3 x^{2} y-x^{3}+x^{2}}{\left (x -1\right ) \left (x +1\right )} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel]

10217

\[ {}y^{\prime } = \frac {\left (1+y x \right ) \left (x^{2} y^{2}+x^{2} y+2 y x +1+x +x^{2}\right )}{x^{5}} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel]

10231

\[ {}y^{\prime } = \frac {\left (y-x +\ln \left (x +1\right )\right )^{2}+x}{x +1} \]

[[_1st_order, _with_linear_symmetries], _Riccati]

11228

\[ {}y^{\prime } = f \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

11235

\[ {}y^{\prime } = a \,x^{n} y^{2}+b \,x^{-n -2} \]

[[_homogeneous, ‘class G‘], _Riccati]

11241

\[ {}x^{2} y^{\prime } = x^{2} a y^{2}+b \]

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

11246

\[ {}x^{4} y^{\prime } = -x^{4} y^{2}-a^{2} \]

[_rational, [_Riccati, _special]]

11248

\[ {}\left (a \,x^{2}+b x +c \right )^{2} \left (y^{\prime }+y^{2}\right )+A = 0 \]

[_rational, _Riccati]

11267

\[ {}y^{\prime } x = a \,x^{n} y^{2}+b y+c \,x^{-n} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

11274

\[ {}\left (a x +c \right ) y^{\prime } = \alpha \left (b x +a y\right )^{2}+\beta \left (b x +a y\right )-b x +\gamma \]

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

11277

\[ {}x^{2} y^{\prime } = x^{2} a y^{2}+b x y+c \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

11286

\[ {}\left (a \,x^{2}+b \right ) y^{\prime }+y^{2}-2 y x +\left (1-a \right ) x^{2}-b = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

11287

\[ {}\left (a \,x^{2}+b x +c \right ) y^{\prime } = y^{2}+\left (2 \lambda x +b \right ) y+\lambda \left (\lambda -a \right ) x^{2}+\mu \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

11291

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }+y^{2}+k \left (y+x -a \right ) \left (y+x -b \right ) = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

11317

\[ {}y^{\prime } = a \,{\mathrm e}^{\lambda x} y^{2}+b y+c \,{\mathrm e}^{-\lambda x} \]

[[_1st_order, _with_linear_symmetries], _Riccati]

11329

\[ {}y^{\prime } = a \,{\mathrm e}^{\lambda x} y^{2}+b \,{\mathrm e}^{-\lambda x} \]

[[_1st_order, _with_linear_symmetries], _Riccati]

11390

\[ {}y^{\prime } x = \left (a y+b \ln \left (x \right )\right )^{2} \]

[[_1st_order, _with_linear_symmetries], _Riccati]

11549

\[ {}y y^{\prime }-y = A x +B \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

11627

\[ {}y y^{\prime } = \frac {y}{\sqrt {a x +b}}+1 \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class B‘]]

11716

\[ {}\left (A y+B x +a \right ) y^{\prime }+B y+k x +b = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

11717

\[ {}\left (y+a x +b \right ) y^{\prime } = \alpha y+\beta x +\gamma \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12021

\[ {}\frac {y^{2}-2 x^{2}}{x y^{2}-x^{3}}+\frac {\left (2 y^{2}-x^{2}\right ) y^{\prime }}{y^{3}-x^{2} y} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

12022

\[ {}\frac {1}{\sqrt {x^{2}+y^{2}}}+\left (\frac {1}{y}-\frac {x}{y \sqrt {x^{2}+y^{2}}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

12023

\[ {}y+x +y^{\prime } x = 0 \]

[_linear]

12026

\[ {}\left (x +1\right ) y^{2}-x^{3} y^{\prime } = 0 \]

[_separable]

12029

\[ {}x \,{\mathrm e}^{\frac {y}{x}}+y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12030

\[ {}2 x^{2} y+3 y^{3}-\left (x^{3}+2 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12031

\[ {}y^{2}-y x +x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12032

\[ {}2 x^{2} y+y^{3}-x^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12033

\[ {}y^{3}+x^{3} y^{\prime } = 0 \]

[_separable]

12034

\[ {}x +y \cos \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12035

\[ {}4 x +3 y+1+\left (x +y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12036

\[ {}4 x -y+2+\left (x +y+3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12037

\[ {}2 x +y-\left (4 x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12038

\[ {}y+2 x y^{2}-y^{3} x^{2}+2 x^{2} y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

12039

\[ {}2 y+3 x y^{2}+\left (2 x^{2} y+x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12040

\[ {}y+x y^{2}+\left (x -x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12043

\[ {}y^{\prime }-\frac {2 y}{x +1} = \left (x +1\right )^{3} \]

[_linear]

12045

\[ {}x^{2} y^{\prime }+\left (1-2 x \right ) y = x^{2} \]

[_linear]

12050

\[ {}y^{\prime }-\frac {1+y}{x +1} = \sqrt {1+y} \]

[[_1st_order, _with_linear_symmetries]]

12051

\[ {}x^{4} y \left (3 y+2 y^{\prime } x \right )+x^{2} \left (4 y+3 y^{\prime } x \right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12052

\[ {}y^{2} \left (3 y-6 y^{\prime } x \right )-x \left (y-2 y^{\prime } x \right ) = 0 \]

[_separable]

12053

\[ {}2 x^{3} y-y^{2}-\left (2 x^{4}+y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12054

\[ {}y^{2}-y x +x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12056

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12057

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12058

\[ {}x -y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

12060

\[ {}3 x^{2}+6 y x +3 y^{2}+\left (2 x^{2}+3 y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12063

\[ {}x^{3} y-y^{4}+\left (x y^{3}-x^{4}\right ) y^{\prime } = 0 \]

[_separable]

12064

\[ {}y^{2}-x^{2}+2 m x y+\left (m y^{2}-m \,x^{2}-2 y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12065

\[ {}y^{\prime } x -y+2 x^{2} y-x^{3} = 0 \]

[_linear]

12066

\[ {}\left (x +y\right ) y^{\prime }-1 = 0 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

12067

\[ {}x +y y^{\prime }+y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12071

\[ {}y^{\prime }-x^{2} y = x^{5} \]

[_linear]

12072

\[ {}\left (-x +y\right )^{2} y^{\prime } = 1 \]

[[_homogeneous, ‘class C‘], _dAlembert]

12075

\[ {}\left (-x +y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12077

\[ {}-y+y^{\prime } x = \sqrt {x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12078

\[ {}x \sin \left (\frac {y}{x}\right )-y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12079

\[ {}x -2 y+5+\left (2 x -y+4\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12081

\[ {}\left (-x^{2}+1\right ) y^{\prime }-y x = a x y^{2} \]

[_separable]

12082

\[ {}x y^{2} \left (3 y+y^{\prime } x \right )-2 y+y^{\prime } x = 0 \]

[[_homogeneous, ‘class G‘], _rational]

12083

\[ {}\left (x^{2}+1\right ) y^{\prime }+y = \arctan \left (x \right ) \]

[_linear]

12084

\[ {}5 y x -3 y^{3}+\left (3 x^{2}-7 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

12086

\[ {}x y^{2}+y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

12088

\[ {}3 x^{2} y+\left (x^{3}+x^{3} y^{2}\right ) y^{\prime } = 0 \]

[_separable]

12090

\[ {}2 x +3 y-1+\left (2 x +3 y-5\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12091

\[ {}y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12093

\[ {}\left (x^{2}+y^{2}\right ) \left (x +y y^{\prime }\right )+\sqrt {1+x^{2}+y^{2}}\, \left (y-y^{\prime } x \right ) = 0 \]

[[_1st_order, _with_linear_symmetries]]

12094

\[ {}1+{\mathrm e}^{\frac {y}{x}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12095

\[ {}y^{\prime } x -y^{2} \ln \left (x \right )+y = 0 \]

[_Bernoulli]

12097

\[ {}\left (2 \sqrt {y x}-x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12103

\[ {}{y^{\prime }}^{3}-\left (2 x +y^{2}\right ) {y^{\prime }}^{2}+\left (x^{2}-y^{2}+2 x y^{2}\right ) y^{\prime }-\left (x^{2}-y^{2}\right ) y^{2} = 0 \]

[_quadrature]

12104

\[ {}2 y^{\prime } x -y+\ln \left (y^{\prime }\right ) = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

12107

\[ {}y^{\prime }+2 y x = x^{2}+y^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

12110

\[ {}x +y^{\prime } y \left (2 {y^{\prime }}^{2}+3\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12113

\[ {}{y^{\prime }}^{3}-4 x y y^{\prime }+8 y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries]]

12120

\[ {}y = 2 y^{\prime } x +y^{2} {y^{\prime }}^{3} \]

[[_1st_order, _with_linear_symmetries]]

12131

\[ {}x^{2} {y^{\prime }}^{2}-2 \left (y x +2 y^{\prime }\right ) y^{\prime }+y^{2} = 0 \]

[_separable]

12247

\[ {}x^{\prime } = \frac {2 x}{t} \]

[_separable]

12248

\[ {}x^{\prime } = -\frac {t}{x} \]

[_separable]

12252

\[ {}x^{\prime }+2 x = t^{2}+4 t +7 \]

[[_linear, ‘class A‘]]

12253

\[ {}2 t x^{\prime } = x \]

[_separable]

12274

\[ {}x^{\prime } = \frac {2 x}{1+t} \]

[_separable]

12276

\[ {}\left (2 u+1\right ) u^{\prime }-1-t = 0 \]

[_separable]

12277

\[ {}R^{\prime } = \left (1+t \right ) \left (1+R^{2}\right ) \]

[_separable]

12279

\[ {}\left (1+t \right ) x^{\prime }+x^{2} = 0 \]

[_separable]

12281

\[ {}x^{\prime } = \left (4 t -x\right )^{2} \]
i.c.

[[_homogeneous, ‘class C‘], _Riccati]

12282

\[ {}x^{\prime } = 2 t x^{2} \]
i.c.

[_separable]

12283

\[ {}x^{\prime } = t^{2} {\mathrm e}^{-x} \]
i.c.

[_separable]

12285

\[ {}x^{\prime } = {\mathrm e}^{t +x} \]
i.c.

[_separable]

12286

\[ {}T^{\prime } = 2 a t \left (T^{2}-a^{2}\right ) \]
i.c.

[_separable]

12289

\[ {}y^{\prime } = \frac {2 t y^{2}}{t^{2}+1} \]
i.c.

[_separable]

12291

\[ {}x^{\prime } = 6 t \left (x-1\right )^{{2}/{3}} \]

[_separable]

12292

\[ {}x^{\prime } = \frac {4 t^{2}+3 x^{2}}{2 x t} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12293

\[ {}x^{\prime } {\mathrm e}^{2 t}+2 x \,{\mathrm e}^{2 t} = {\mathrm e}^{-t} \]
i.c.

[[_linear, ‘class A‘]]

12295

\[ {}y^{\prime } = \frac {y^{2}+2 t y}{t^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12296

\[ {}y^{\prime } = -y^{2} {\mathrm e}^{-t^{2}} \]
i.c.

[_separable]

12303

\[ {}x^{\prime } = -\frac {2 x}{t}+t \]

[_linear]

12304

\[ {}y^{\prime }+y = {\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

12305

\[ {}x^{\prime }+2 x t = {\mathrm e}^{-t^{2}} \]

[_linear]

12306

\[ {}t x^{\prime } = -x+t^{2} \]

[_linear]

12307

\[ {}\theta ^{\prime } = -a \theta +{\mathrm e}^{b t} \]

[[_linear, ‘class A‘]]

12308

\[ {}\left (t^{2}+1\right ) x^{\prime } = -3 x t +6 t \]

[_separable]

12309

\[ {}x^{\prime }+\frac {5 x}{t} = 1+t \]
i.c.

[_linear]

12310

\[ {}x^{\prime } = \left (a +\frac {b}{t}\right ) x \]
i.c.

[_separable]

12312

\[ {}N^{\prime } = N-9 \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

12313

\[ {}\cos \left (\theta \right ) v^{\prime }+v = 3 \]

[_separable]

12314

\[ {}R^{\prime } = \frac {R}{t}+t \,{\mathrm e}^{-t} \]
i.c.

[_linear]

12316

\[ {}x^{\prime } = 2 x t \]

[_separable]

12319

\[ {}x^{\prime } = \left (t +x\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

12321

\[ {}x^{\prime }+p \left (t \right ) x = 0 \]

[_separable]

12322

\[ {}x^{\prime } = \frac {2 x}{3 t}+\frac {2 t}{x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12323

\[ {}x^{\prime } = x \left (1+x \,{\mathrm e}^{t}\right ) \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

12324

\[ {}x^{\prime } = -\frac {x}{t}+\frac {1}{t x^{2}} \]

[_separable]

12325

\[ {}t^{2} y^{\prime }+2 t y-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12328

\[ {}x^{3}+3 t x^{2} x^{\prime } = 0 \]

[_separable]

12331

\[ {}x+3 t x^{2} x^{\prime } = 0 \]

[_separable]

12332

\[ {}x^{2}-t^{2} x^{\prime } = 0 \]

[_separable]

12333

\[ {}t \cot \left (x\right ) x^{\prime } = -2 \]

[_separable]

12468

\[ {}y^{\prime }+y = x +1 \]

[[_linear, ‘class A‘]]

12472

\[ {}2 x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

12473

\[ {}y^{\prime } x +y = x^{3} y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

12474

\[ {}y^{\prime }+3 y = 3 x^{2} {\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

12475

\[ {}y^{\prime }+4 y x = 8 x \]

[_separable]

12484

\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x} \]
i.c.

[[_linear, ‘class A‘]]

12485

\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x} \]
i.c.

[[_linear, ‘class A‘]]

12492

\[ {}y^{\prime } = \frac {y^{2}}{x -2} \]
i.c.

[_separable]

12494

\[ {}3 x +2 y+\left (2 x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12501

\[ {}\frac {\left (2 s-1\right ) s^{\prime }}{t}+\frac {s-s^{2}}{t^{2}} = 0 \]

[_separable]

12507

\[ {}\frac {3-y}{x^{2}}+\frac {\left (y^{2}-2 x \right ) y^{\prime }}{x y^{2}} = 0 \]
i.c.

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

12508

\[ {}\frac {1+8 x y^{{2}/{3}}}{x^{{2}/{3}} y^{{1}/{3}}}+\frac {\left (2 x^{{4}/{3}} y^{{2}/{3}}-x^{{1}/{3}}\right ) y^{\prime }}{y^{{4}/{3}}} = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _exact, _rational]

12509

\[ {}4 x +3 y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

12510

\[ {}y^{2}+2 y x -x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12511

\[ {}y+x \left (x^{2}+y^{2}\right )^{2}+\left (y \left (x^{2}+y^{2}\right )^{2}-x \right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

12512

\[ {}4 y x +\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

12513

\[ {}y x +2 x +y+2+\left (x^{2}+2 x \right ) y^{\prime } = 0 \]

[_separable]

12514

\[ {}2 r \left (s^{2}+1\right )+\left (r^{4}+1\right ) s^{\prime } = 0 \]

[_separable]

12516

\[ {}\tan \left (\theta \right )+2 r \theta ^{\prime } = 0 \]

[_separable]

12519

\[ {}x +y-y^{\prime } x = 0 \]

[_linear]

12520

\[ {}2 y x +3 y^{2}-\left (2 y x +x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12521

\[ {}v^{3}+\left (u^{3}-u v^{2}\right ) v^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12522

\[ {}x \tan \left (\frac {y}{x}\right )+y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12523

\[ {}\left (2 s^{2}+2 s t +t^{2}\right ) s^{\prime }+s^{2}+2 s t -t^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

12524

\[ {}x^{3}+y^{2} \sqrt {x^{2}+y^{2}}-x y \sqrt {x^{2}+y^{2}}\, y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12526

\[ {}y+2+y \left (x +4\right ) y^{\prime } = 0 \]
i.c.

[_separable]

12529

\[ {}x^{2}+3 y^{2}-2 x y y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12530

\[ {}2 x -5 y+\left (4 x -y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12531

\[ {}3 x^{2}+9 y x +5 y^{2}-\left (6 x^{2}+4 y x \right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12532

\[ {}x +2 y+\left (2 x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12533

\[ {}3 x -y-\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12534

\[ {}x^{2}+2 y^{2}+\left (4 y x -y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

12535

\[ {}2 x^{2}+2 y x +y^{2}+\left (2 y x +x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12536

\[ {}y^{\prime }+\frac {3 y}{x} = 6 x^{2} \]

[_linear]

12537

\[ {}x^{4} y^{\prime }+2 x^{3} y = 1 \]

[_linear]

12538

\[ {}y^{\prime }+3 y = 3 x^{2} {\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

12539

\[ {}y^{\prime }+4 y x = 8 x \]

[_separable]

12540

\[ {}x^{\prime }+\frac {x}{t^{2}} = \frac {1}{t^{2}} \]

[_separable]

12541

\[ {}\left (u^{2}+1\right ) v^{\prime }+4 v u = 3 u \]

[_separable]

12550

\[ {}y^{\prime }-\frac {y}{x} = -\frac {y^{2}}{x} \]

[_separable]

12551

\[ {}y^{\prime } x +y = -2 x^{6} y^{4} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

12554

\[ {}y^{\prime } x -2 y = 2 x^{4} \]
i.c.

[_linear]

12555

\[ {}y^{\prime }+3 x^{2} y = x^{2} \]
i.c.

[_separable]

12557

\[ {}2 x \left (1+y\right )-\left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

12560

\[ {}y^{\prime }+\frac {y}{2 x} = \frac {x}{y^{3}} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

12561

\[ {}y^{\prime } x +y = \left (y x \right )^{{3}/{2}} \]
i.c.

[[_homogeneous, ‘class G‘], _rational]

12566

\[ {}a y^{\prime }+b y = k \,{\mathrm e}^{-\lambda x} \]

[[_linear, ‘class A‘]]

12570

\[ {}y^{\prime } = \left (1-x \right ) y^{2}+\left (2 x -1\right ) y-x \]

[_Riccati]

12572

\[ {}y^{\prime } = -8 x y^{2}+4 x \left (4 x +1\right ) y-8 x^{3}-4 x^{2}+1 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

12573

\[ {}6 x^{2} y-\left (x^{3}+1\right ) y^{\prime } = 0 \]

[_separable]

12574

\[ {}\left (3 x^{2} y^{2}-x \right ) y^{\prime }+2 x y^{3}-y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

12575

\[ {}y-1+x \left (x +1\right ) y^{\prime } = 0 \]

[_separable]

12576

\[ {}x^{2}-2 y+y^{\prime } x = 0 \]

[_linear]

12577

\[ {}3 x -5 y+\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12578

\[ {}y^{2} {\mathrm e}^{2 x}+\left ({\mathrm e}^{2 x} y-2 y\right ) y^{\prime } = 0 \]

[_separable]

12579

\[ {}8 x^{3} y-12 x^{3}+\left (x^{4}+1\right ) y^{\prime } = 0 \]

[_separable]

12580

\[ {}2 x^{2}+y x +y^{2}+2 x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

12581

\[ {}y^{\prime } = \frac {4 x^{3} y^{2}-3 x^{2} y}{x^{3}-2 y x^{4}} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12582

\[ {}\left (x +1\right ) y^{\prime }+y x = {\mathrm e}^{-x} \]

[_linear]

12584

\[ {}x^{2} y^{\prime }+y x = x y^{3} \]

[_separable]

12585

\[ {}\left (x^{3}+1\right ) y^{\prime }+6 x^{2} y = 6 x^{2} \]

[_separable]

12586

\[ {}y^{\prime } = \frac {2 x^{2}+y^{2}}{2 y x -x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12587

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12588

\[ {}2 y^{2}+8+\left (-x^{2}+1\right ) y y^{\prime } = 0 \]
i.c.

[_separable]

12589

\[ {}y^{2} {\mathrm e}^{2 x}-2 x +{\mathrm e}^{2 x} y y^{\prime } = 0 \]
i.c.

[_exact, _Bernoulli]

12591

\[ {}4 x y y^{\prime } = 1+y^{2} \]
i.c.

[_separable]

12592

\[ {}y^{\prime } = \frac {2 x +7 y}{2 x -2 y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12593

\[ {}y^{\prime } = \frac {x y}{x^{2}+1} \]
i.c.

[_separable]

12596

\[ {}x^{2} y^{\prime }+y x = \frac {y^{3}}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12601

\[ {}4 x y^{2}+6 y+\left (5 x^{2} y+8 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12602

\[ {}8 y^{3} x^{2}-2 y^{4}+\left (5 x^{3} y^{2}-8 x y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12603

\[ {}5 x +2 y+1+\left (2 x +y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12604

\[ {}3 x -y+1-\left (6 x -2 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12605

\[ {}x -2 y-3+\left (2 x +y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12606

\[ {}10 x -4 y+12-\left (x +5 y+3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12607

\[ {}6 x +4 y+1+\left (4 x +2 y+2\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12608

\[ {}3 x -y-6+\left (x +y+2\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12609

\[ {}2 x +3 y+1+\left (4 x +6 y+1\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12610

\[ {}4 x +3 y+1+\left (x +y+1\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12875

\[ {}x^{\prime } {\mathrm e}^{3 t}+3 x \,{\mathrm e}^{3 t} = {\mathrm e}^{-t} \]
i.c.

[[_linear, ‘class A‘]]

12881

\[ {}x^{\prime } = t^{3} \left (-x+1\right ) \]
i.c.

[_separable]

12882

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (x \right ) \]
i.c.

[_separable]

12883

\[ {}x^{\prime } = t^{2} x \]

[_separable]

12885

\[ {}y^{\prime } = y^{2} {\mathrm e}^{-t^{2}} \]

[_separable]

12887

\[ {}y^{\prime } x = k y \]

[_separable]

12888

\[ {}i^{\prime } = p \left (t \right ) i \]

[_separable]

12893

\[ {}y^{\prime }+\frac {y}{x} = x^{2} \]

[_linear]

12894

\[ {}x^{\prime }+x t = 4 t \]
i.c.

[_separable]

12899

\[ {}x^{\prime }+5 x = t \]

[[_linear, ‘class A‘]]

12909

\[ {}y x +y^{2}+x^{2}-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

12910

\[ {}x^{\prime } = \frac {x^{2}+t \sqrt {t^{2}+x^{2}}}{x t} \]

[[_homogeneous, ‘class A‘], _dAlembert]

13011

\[ {}12 x +6 y-9+\left (5 x +2 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13013

\[ {}y^{\prime } x +y = x^{3} \]

[_linear]

13014

\[ {}y-y^{\prime } x = x^{2} y y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13015

\[ {}x^{\prime }+3 x = {\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

13017

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

13019

\[ {}x \left (\ln \left (x \right )-\ln \left (y\right )\right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

13020

\[ {}x y {y^{\prime }}^{2}-\left (x^{2}+y^{2}\right ) y^{\prime }+y x = 0 \]

[_separable]

13022

\[ {}x^{\prime } = {\mathrm e}^{\frac {x}{t}}+\frac {x}{t} \]

[[_homogeneous, ‘class A‘], _dAlembert]

13024

\[ {}y = y^{\prime } x +\frac {1}{y} \]

[_separable]

13026

\[ {}y^{\prime } = \frac {y}{x +y^{3}} \]

[[_homogeneous, ‘class G‘], _rational]

13029

\[ {}y^{\prime } = \frac {2 y-x -4}{2 x -y+5} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13030

\[ {}y^{\prime }-\frac {y}{x +1}+y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

13034

\[ {}2 x +2 y-1+\left (x +y-2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13038

\[ {}y^{\prime } = \left (x -5 y\right )^{{1}/{3}}+2 \]

[[_homogeneous, ‘class C‘], _dAlembert]

13039

\[ {}\left (x -y\right ) y-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13044

\[ {}y^{\prime } = \frac {3 x -4 y-2}{3 x -4 y-3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13047

\[ {}y^{\prime }-\frac {3 y}{x}+x^{3} y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

13050

\[ {}3 y^{2}-x +2 y \left (y^{2}-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

13051

\[ {}\left (x -y\right ) y-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13052

\[ {}y^{\prime } = \frac {x +y-3}{1-x +y} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13053

\[ {}y^{\prime } x -y^{2} \ln \left (x \right )+y = 0 \]

[_Bernoulli]

13055

\[ {}\left (4 y+2 x +3\right ) y^{\prime }-2 y-x -1 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13057

\[ {}\left (y^{2}-x^{2}\right ) y^{\prime }+2 y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

13058

\[ {}3 x y^{2} y^{\prime }+y^{3}-2 x = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

13111

\[ {}x^{2} y^{\prime } = 1+y^{2} \]

[_separable]

13114

\[ {}y^{\prime } = \cos \left (x +y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

13115

\[ {}y^{\prime } x +y = x y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

13130

\[ {}5 y^{\prime }-y x = 0 \]

[_separable]

13324

\[ {}y-y^{\prime } x = 0 \]

[_separable]

13326

\[ {}1+y-\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

13328

\[ {}y-a +x^{2} y^{\prime } = 0 \]

[_separable]

13329

\[ {}z-\left (-a^{2}+t^{2}\right ) z^{\prime } = 0 \]

[_separable]

13330

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

13331

\[ {}1+s^{2}-\sqrt {t}\, s^{\prime } = 0 \]

[_separable]

13332

\[ {}r^{\prime }+r \tan \left (t \right ) = 0 \]

[_separable]

13333

\[ {}\left (x^{2}+1\right ) y^{\prime }-\sqrt {1-y^{2}} = 0 \]

[_separable]

13337

\[ {}y-x +\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13338

\[ {}y+x +y^{\prime } x = 0 \]

[_linear]

13339

\[ {}x +y+\left (-x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13341

\[ {}8 y+10 x +\left (5 y+7 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13342

\[ {}2 \sqrt {s t}-s+t s^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

13343

\[ {}t -s+t s^{\prime } = 0 \]

[_linear]

13344

\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13345

\[ {}x \cos \left (\frac {y}{x}\right ) \left (y^{\prime } x +y\right ) = y \sin \left (\frac {y}{x}\right ) \left (-y+y^{\prime } x \right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

13346

\[ {}3 y-7 x +7-\left (3 x -7 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13347

\[ {}x +2 y+1-\left (4 y+2 x +3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13348

\[ {}x +2 y+1-\left (2 x -3\right ) y^{\prime } = 0 \]

[_linear]

13349

\[ {}\frac {y-y^{\prime } x}{\sqrt {x^{2}+y^{2}}} = m \]

[[_homogeneous, ‘class A‘], _dAlembert]

13350

\[ {}\frac {x +y y^{\prime }}{\sqrt {x^{2}+y^{2}}} = m \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

13352

\[ {}y y^{\prime } = -x +\sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

13353

\[ {}y^{\prime }-\frac {2 y}{x +1} = \left (x +1\right )^{3} \]

[_linear]

13354

\[ {}y^{\prime }-\frac {a y}{x} = \frac {x +1}{x} \]

[_linear]

13359

\[ {}y^{\prime }+\frac {n y}{x} = a \,x^{-n} \]

[_linear]

13360

\[ {}y^{\prime }+y = {\mathrm e}^{-x} \]

[[_linear, ‘class A‘]]

13361

\[ {}y^{\prime }+\frac {\left (1-2 x \right ) y}{x^{2}}-1 = 0 \]

[_linear]

13363

\[ {}\left (-x^{2}+1\right ) y^{\prime }-y x +a x y^{2} = 0 \]

[_separable]

13366

\[ {}y^{\prime } x = \left (y \ln \left (x \right )-2\right ) y \]

[_Bernoulli]

13370

\[ {}\left (y^{3}-x \right ) y^{\prime } = y \]

[[_homogeneous, ‘class G‘], _exact, _rational]

13373

\[ {}\frac {x}{\left (x +y\right )^{2}}+\frac {\left (2 x +y\right ) y^{\prime }}{\left (x +y\right )^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

13374

\[ {}\frac {1}{x^{2}}+\frac {3 y^{2}}{x^{4}} = \frac {2 y y^{\prime }}{x^{3}} \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

13375

\[ {}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0 \]

[_separable]

13376

\[ {}x +y y^{\prime } = \frac {y}{x^{2}+y^{2}}-\frac {x y^{\prime }}{x^{2}+y^{2}} \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

13383

\[ {}y = y^{\prime } x +y^{\prime } \]

[_separable]

13386

\[ {}y^{\prime } = \frac {2 y}{x}-\sqrt {3} \]

[_linear]

13438

\[ {}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0 \]

[_separable]

13441

\[ {}\left (x^{2}+1\right ) y^{\prime }-y x -\alpha = 0 \]

[_linear]

13442

\[ {}x \cos \left (\frac {y}{x}\right ) y^{\prime } = y \cos \left (\frac {y}{x}\right )-x \]

[[_homogeneous, ‘class A‘], _dAlembert]

13444

\[ {}y^{\prime } x -y^{2} \ln \left (x \right )+y = 0 \]

[_Bernoulli]

13445

\[ {}2 x +2 y-1+\left (x +y-2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13473

\[ {}-y+y^{\prime } x = 0 \]

[_separable]

13478

\[ {}y^{\prime }-\frac {y}{x} = 1 \]

[_linear]

13480

\[ {}x^{2} y^{\prime }+2 y x = 0 \]

[_separable]

13488

\[ {}2 y^{\prime } x -y = 0 \]

[_separable]

13495

\[ {}y^{\prime }-2 y x = 0 \]

[_separable]

13496

\[ {}y^{\prime }+y = x^{2}+2 x -1 \]

[[_linear, ‘class A‘]]

13498

\[ {}y^{\prime } = x \sqrt {y} \]

[_separable]

13501

\[ {}x y^{\prime } \ln \left (x \right )-\left (1+\ln \left (x \right )\right ) y = 0 \]

[_separable]

13519

\[ {}y^{\prime } = y x \]

[_separable]

13520

\[ {}y^{\prime } = -y x \]

[_separable]

13523

\[ {}y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

13524

\[ {}y^{\prime } = y x \]

[_separable]

13525

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

13526

\[ {}y^{\prime } = \frac {y}{x} \]

[_separable]

13531

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

13532

\[ {}y^{\prime } = \ln \left (x +y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

13533

\[ {}y^{\prime } = \frac {2 x -y}{x +3 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13536

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

13537

\[ {}y^{\prime } = \frac {1}{y x} \]

[_separable]

13540

\[ {}y^{\prime } = \frac {y}{-x +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13541

\[ {}y^{\prime } = \frac {x}{y^{2}} \]

[_separable]

13542

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]

[_separable]

13544

\[ {}y^{\prime } = \left (y x \right )^{{1}/{3}} \]

[[_homogeneous, ‘class G‘]]

13545

\[ {}y^{\prime } = \sqrt {\frac {y-4}{x}} \]

[[_homogeneous, ‘class C‘], _dAlembert]

13546

\[ {}y^{\prime } = -\frac {y}{x}+y^{{1}/{4}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

13552

\[ {}y^{\prime } = \frac {y}{x}+\cos \left (x \right ) \]
i.c.

[_linear]

13558

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

13573

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

13574

\[ {}y^{\prime } = \frac {2 x}{y} \]
i.c.

[_separable]

13576

\[ {}y^{\prime } = y x +x \]
i.c.

[_separable]

13577

\[ {}x \,{\mathrm e}^{y}+y^{\prime } = 0 \]
i.c.

[_separable]

13578

\[ {}y-x^{2} y^{\prime } = 0 \]
i.c.

[_separable]

13580

\[ {}2 x y y^{\prime }+y^{2} = -1 \]

[_separable]

13581

\[ {}y^{\prime } = \frac {1-y x}{x^{2}} \]

[_linear]

13582

\[ {}y^{\prime } = -\frac {y \left (2 x +y\right )}{x \left (2 y+x \right )} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13583

\[ {}y^{\prime } = \frac {y^{2}}{1-y x} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13586

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

13587

\[ {}y^{\prime } = \frac {y}{x -1}+x^{2} \]
i.c.

[_linear]

13588

\[ {}y^{\prime } = \frac {y}{x}+\sin \left (x^{2}\right ) \]
i.c.

[_linear]

13589

\[ {}y^{\prime } = \frac {2 y}{x}+{\mathrm e}^{x} \]
i.c.

[_linear]

13591

\[ {}x -y y^{\prime } = 0 \]

[_separable]

13592

\[ {}y-y^{\prime } x = 0 \]

[_separable]

13593

\[ {}x^{2}-y+y^{\prime } x = 0 \]

[_linear]

13594

\[ {}x y \left (1-y\right )-2 y^{\prime } = 0 \]

[_separable]

13596

\[ {}\left (2 x -1\right ) y+x \left (x +1\right ) y^{\prime } = 0 \]

[_separable]

13598

\[ {}y^{\prime } = x +y \]
i.c.

[[_linear, ‘class A‘]]

13599

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

13600

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

13611

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

13612

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

13614

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

13615

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

13616

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

13617

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

13618

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

13619

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

13620

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

13621

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

13627

\[ {}y^{\prime } = \frac {y}{-x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13629

\[ {}y^{\prime } = \frac {y}{-x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13637

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

13638

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

13639

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

13640

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

13641

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

13763

\[ {}y^{\prime } = \frac {y+1}{1+t} \]

[_separable]

13764

\[ {}y^{\prime } = t^{2} y^{2} \]

[_separable]

13765

\[ {}y^{\prime } = t^{4} y \]

[_separable]

13770

\[ {}y^{\prime } = 2 t y^{2}+3 y^{2} \]

[_separable]

13771

\[ {}y^{\prime } = \frac {t}{y} \]

[_separable]

13773

\[ {}y^{\prime } = t y^{{1}/{3}} \]

[_separable]

13775

\[ {}y^{\prime } = \frac {2 y+1}{t} \]

[_separable]

13778

\[ {}v^{\prime } = t^{2} v-2-2 v+t^{2} \]

[_separable]

13779

\[ {}y^{\prime } = \frac {1}{t y+t +y+1} \]

[_separable]

13782

\[ {}w^{\prime } = \frac {w}{t} \]

[_separable]

13784

\[ {}x^{\prime } = -x t \]
i.c.

[_separable]

13785

\[ {}y^{\prime } = t y \]
i.c.

[_separable]

13791

\[ {}y^{\prime } = t y^{2}+2 y^{2} \]
i.c.

[_separable]

13794

\[ {}y^{\prime } = \left (1+y^{2}\right ) t \]
i.c.

[_separable]

13796

\[ {}y^{\prime } = 2 t y^{2}+3 t^{2} y^{2} \]
i.c.

[_separable]

13803

\[ {}y^{\prime } = y+t +1 \]

[[_linear, ‘class A‘]]

13805

\[ {}y^{\prime } = 2 y-t \]
i.c.

[[_linear, ‘class A‘]]

13807

\[ {}y^{\prime } = \left (1+t \right ) y \]
i.c.

[_separable]

13817

\[ {}y^{\prime } = t y+t y^{2} \]

[_separable]

13818

\[ {}y^{\prime } = t^{2}+t^{2} y \]

[_separable]

13819

\[ {}y^{\prime } = t +t y \]

[_separable]

13846

\[ {}y^{\prime } = \frac {1}{\left (y+1\right ) \left (t -2\right )} \]
i.c.

[_separable]

13848

\[ {}y^{\prime } = \frac {t}{y-2} \]
i.c.

[_separable]

13888

\[ {}y^{\prime } = -4 y+9 \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

13889

\[ {}y^{\prime } = -4 y+3 \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

13892

\[ {}y^{\prime } = 3 y-4 \,{\mathrm e}^{3 t} \]

[[_linear, ‘class A‘]]

13893

\[ {}y^{\prime } = \frac {y}{2}+4 \,{\mathrm e}^{\frac {t}{2}} \]

[[_linear, ‘class A‘]]

13894

\[ {}y^{\prime }+2 y = {\mathrm e}^{\frac {t}{3}} \]
i.c.

[[_linear, ‘class A‘]]

13895

\[ {}y^{\prime }-2 y = 3 \,{\mathrm e}^{-2 t} \]
i.c.

[[_linear, ‘class A‘]]

13898

\[ {}y^{\prime }-2 y = 7 \,{\mathrm e}^{2 t} \]
i.c.

[[_linear, ‘class A‘]]

13899

\[ {}y^{\prime }+2 y = 3 t^{2}+2 t -1 \]

[[_linear, ‘class A‘]]

13900

\[ {}y^{\prime }+2 y = t^{2}+2 t +1+{\mathrm e}^{4 t} \]

[[_linear, ‘class A‘]]

13902

\[ {}y^{\prime }-3 y = 2 t -{\mathrm e}^{4 t} \]

[[_linear, ‘class A‘]]

13904

\[ {}y^{\prime } = -\frac {y}{t}+2 \]

[_linear]

13905

\[ {}y^{\prime } = \frac {3 y}{t}+t^{5} \]

[_linear]

13906

\[ {}y^{\prime } = -\frac {y}{1+t}+t^{2} \]

[_linear]

13907

\[ {}y^{\prime } = -2 t y+4 \,{\mathrm e}^{-t^{2}} \]

[_linear]

13908

\[ {}y^{\prime }-\frac {2 t y}{t^{2}+1} = 3 \]

[_linear]

13909

\[ {}y^{\prime }-\frac {2 y}{t} = t^{3} {\mathrm e}^{t} \]

[_linear]

13910

\[ {}y^{\prime } = -\frac {y}{1+t}+2 \]
i.c.

[_linear]

13911

\[ {}y^{\prime } = \frac {y}{1+t}+4 t^{2}+4 t \]
i.c.

[_linear]

13912

\[ {}y^{\prime } = -\frac {y}{t}+2 \]
i.c.

[_linear]

13913

\[ {}y^{\prime } = -2 t y+4 \,{\mathrm e}^{-t^{2}} \]
i.c.

[_linear]

13914

\[ {}y^{\prime }-\frac {2 y}{t} = 2 t^{2} \]
i.c.

[_linear]

13915

\[ {}y^{\prime }-\frac {3 y}{t} = 2 t^{3} {\mathrm e}^{2 t} \]
i.c.

[_linear]

13925

\[ {}y^{\prime } = -2 t y+4 \,{\mathrm e}^{-t^{2}} \]

[_linear]

13926

\[ {}y^{\prime }+2 y = 3 \,{\mathrm e}^{-2 t} \]

[[_linear, ‘class A‘]]

13933

\[ {}y^{\prime } = y+{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

13935

\[ {}y^{\prime } = t y \]

[_separable]

13936

\[ {}y^{\prime } = 3 y+{\mathrm e}^{7 t} \]

[[_linear, ‘class A‘]]

13937

\[ {}y^{\prime } = \frac {t y}{t^{2}+1} \]

[_separable]

13939

\[ {}y^{\prime } = t +\frac {2 y}{1+t} \]

[_linear]

13942

\[ {}y^{\prime } = -3 y+{\mathrm e}^{-2 t}+t^{2} \]

[[_linear, ‘class A‘]]

13943

\[ {}x^{\prime } = -x t \]
i.c.

[_separable]

13945

\[ {}y^{\prime } = 3 y+2 \,{\mathrm e}^{3 t} \]
i.c.

[[_linear, ‘class A‘]]

13946

\[ {}y^{\prime } = t^{2} y^{3}+y^{3} \]
i.c.

[_separable]

13947

\[ {}y^{\prime }+5 y = 3 \,{\mathrm e}^{-5 t} \]
i.c.

[[_linear, ‘class A‘]]

13948

\[ {}y^{\prime } = 2 t y+3 t \,{\mathrm e}^{t^{2}} \]
i.c.

[_linear]

13950

\[ {}y^{\prime } = 2 t y^{2}+3 t^{2} y^{2} \]
i.c.

[_separable]

13956

\[ {}y^{\prime } = t^{2} y+1+y+t^{2} \]

[_separable]

13957

\[ {}y^{\prime } = \frac {2 y+1}{t} \]

[_separable]

14143

\[ {}y^{\prime }+4 y = {\mathrm e}^{2 x} \]

[[_linear, ‘class A‘]]

14145

\[ {}y y^{\prime } = 2 x \]

[_separable]

14186

\[ {}y^{\prime }+3 y x = 6 x \]

[_separable]

14189

\[ {}x^{2} y^{\prime }+x y^{2} = x \]

[_separable]

14192

\[ {}\left (x -2\right ) y^{\prime } = 3+y \]

[_separable]

14193

\[ {}\left (y-2\right ) y^{\prime } = x -3 \]

[_separable]

14197

\[ {}y^{\prime } = 3 y^{2}-y^{2} \sin \left (x \right ) \]

[_separable]

14202

\[ {}y^{\prime }+y x = 4 x \]

[_separable]

14203

\[ {}y^{\prime }+4 y = x^{2} \]

[[_linear, ‘class A‘]]

14204

\[ {}y^{\prime } = y x -3 x -2 y+6 \]

[_separable]

14205

\[ {}y^{\prime } = \sin \left (x +y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

14207

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

14209

\[ {}x y y^{\prime } = y^{2}+9 \]

[_separable]

14210

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

14212

\[ {}y^{\prime } = {\mathrm e}^{2 x -3 y} \]

[_separable]

14213

\[ {}y^{\prime } = \frac {x}{y} \]
i.c.

[_separable]

14214

\[ {}y^{\prime } = 2 x -1+2 y x -y \]
i.c.

[_separable]

14217

\[ {}y^{\prime } = y x -4 x \]

[_separable]

14223

\[ {}y^{\prime } = y x -4 x \]

[_separable]

14224

\[ {}y^{\prime } = y x -3 x -2 y+6 \]

[_separable]

14225

\[ {}y^{\prime } = 3 y^{2}-y^{2} \sin \left (x \right ) \]

[_separable]

14227

\[ {}y^{\prime } = \frac {y}{x} \]

[_separable]

14229

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

14233

\[ {}y^{\prime } = 3 x y^{3} \]

[_separable]

14235

\[ {}y^{\prime }-3 x^{2} y^{2} = -3 x^{2} \]

[_separable]

14236

\[ {}y^{\prime }-3 x^{2} y^{2} = 3 x^{2} \]

[_separable]

14242

\[ {}y^{\prime } x = y^{2}-y \]
i.c.

[_separable]

14243

\[ {}y^{\prime } = \frac {-1+y^{2}}{y x} \]
i.c.

[_separable]

14252

\[ {}y^{\prime } = y \sin \left (x \right ) \]

[_separable]

14256

\[ {}y^{\prime }+2 y = 20 \,{\mathrm e}^{3 x} \]

[[_linear, ‘class A‘]]

14257

\[ {}y^{\prime } = 4 y+16 x \]

[[_linear, ‘class A‘]]

14258

\[ {}y^{\prime }-2 y x = x \]

[_separable]

14259

\[ {}y^{\prime } x +3 y-10 x^{2} = 0 \]

[_linear]

14261

\[ {}y^{\prime } x = \sqrt {x}+3 y \]

[_linear]

14267

\[ {}y^{\prime }+5 y = {\mathrm e}^{-3 x} \]
i.c.

[[_linear, ‘class A‘]]

14268

\[ {}3 y+y^{\prime } x = 20 x^{2} \]
i.c.

[_linear]

14269

\[ {}y^{\prime } x = y+x^{2} \cos \left (x \right ) \]
i.c.

[_linear]

14270

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \left (3+3 x^{2}-y\right ) \]
i.c.

[_linear]

14273

\[ {}-y+y^{\prime } x = x^{2} {\mathrm e}^{-x^{2}} \]
i.c.

[_linear]

14274

\[ {}y^{\prime } = \frac {1}{\left (3 x +3 y+2\right )^{2}} \]

[[_homogeneous, ‘class C‘], _dAlembert]

14275

\[ {}y^{\prime } = \frac {\left (3 x -2 y\right )^{2}+1}{3 x -2 y}+\frac {3}{2} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14276

\[ {}\cos \left (-4 y+8 x -3\right ) y^{\prime } = 2+2 \cos \left (-4 y+8 x -3\right ) \]

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

14277

\[ {}y^{\prime } = 1+\left (-x +y\right )^{2} \]
i.c.

[[_homogeneous, ‘class C‘], _Riccati]

14278

\[ {}x^{2} y^{\prime }-y x = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14279

\[ {}y^{\prime } = \frac {y}{x}+\frac {x}{y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14280

\[ {}\cos \left (\frac {y}{x}\right ) \left (y^{\prime }-\frac {y}{x}\right ) = 1+\sin \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

14281

\[ {}y^{\prime } = \frac {x -y}{x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14283

\[ {}y^{\prime }-\frac {3 y}{x} = \frac {y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14285

\[ {}y^{\prime }-\frac {y}{x} = \frac {1}{y} \]
i.c.

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

14286

\[ {}y^{\prime } = \frac {y}{x}+\frac {x^{2}}{y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14287

\[ {}3 y^{\prime } = -2+\sqrt {2 x +3 y+4} \]

[[_homogeneous, ‘class C‘], _dAlembert]

14288

\[ {}3 y^{\prime }+\frac {2 y}{x} = 4 \sqrt {y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

14289

\[ {}y^{\prime } = 4+\frac {1}{\sin \left (4 x -y\right )} \]

[[_homogeneous, ‘class C‘], _dAlembert]

14290

\[ {}\left (-x +y\right ) y^{\prime } = 1 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

14291

\[ {}\left (x +y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14292

\[ {}\left (2 y x +2 x^{2}\right ) y^{\prime } = x^{2}+2 y x +2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

14293

\[ {}y^{\prime }+\frac {y}{x} = y^{3} x^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

14294

\[ {}y^{\prime } = 2 \sqrt {2 x +y-3}-2 \]

[[_homogeneous, ‘class C‘], _dAlembert]

14295

\[ {}y^{\prime } = 2 \sqrt {2 x +y-3} \]

[[_homogeneous, ‘class C‘], _dAlembert]

14296

\[ {}-y+y^{\prime } x = \sqrt {x^{2}+y x} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

14297

\[ {}y^{\prime }+3 y = \frac {28 \,{\mathrm e}^{2 x}}{y^{3}} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

14298

\[ {}y^{\prime } = \left (x -y+3\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

14299

\[ {}y^{\prime }+2 x = 2 \sqrt {y+x^{2}} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

14301

\[ {}y^{\prime } = x \left (1+\frac {2 y}{x^{2}}+\frac {y^{2}}{x^{4}}\right ) \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

14302

\[ {}y^{\prime } = \frac {1}{y}-\frac {y}{2 x} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

14303

\[ {}{\mathrm e}^{x y^{2}-x^{2}} \left (y^{2}-2 x \right )+2 \,{\mathrm e}^{x y^{2}-x^{2}} x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

14304

\[ {}2 y x +y^{2}+\left (2 y x +x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

14305

\[ {}2 x y^{3}+4 x^{3}+3 x^{2} y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

14306

\[ {}2-2 x +3 y^{2} y^{\prime } = 0 \]

[_separable]

14308

\[ {}4 x^{3} y+\left (x^{4}-y^{4}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

14309

\[ {}1+\ln \left (y x \right )+\frac {x y^{\prime }}{y} = 0 \]

[[_homogeneous, ‘class G‘], _exact]

14310

\[ {}1+{\mathrm e}^{y}+x \,{\mathrm e}^{y} y^{\prime } = 0 \]

[_separable]

14311

\[ {}{\mathrm e}^{y}+\left (x \,{\mathrm e}^{y}+1\right ) y^{\prime } = 0 \]

[[_1st_order, _with_exponential_symmetries], _exact]

14312

\[ {}1+y^{4}+x y^{3} y^{\prime } = 0 \]

[_separable]

14313

\[ {}y+\left (y^{4}-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

14314

\[ {}\frac {2 y}{x}+\left (4 x^{2} y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

14316

\[ {}3 y+3 y^{2}+\left (2 x +4 y x \right ) y^{\prime } = 0 \]

[_separable]

14317

\[ {}2 x \left (1+y\right )-y^{\prime } = 0 \]

[_separable]

14318

\[ {}2 y^{3}+\left (4 x^{3} y^{3}-3 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

14319

\[ {}4 y x +\left (3 x^{2}+5 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14320

\[ {}6+12 x^{2} y^{2}+\left (7 x^{3} y+\frac {x}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

14321

\[ {}y^{\prime } x = 2 y-6 x^{3} \]

[_linear]

14322

\[ {}y^{\prime } x = 2 y^{2}-6 y \]

[_separable]

14323

\[ {}4 y^{2}-x^{2} y^{2}+y^{\prime } = 0 \]

[_separable]

14324

\[ {}y^{\prime } = \sqrt {x +y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

14326

\[ {}x y y^{\prime }-y^{2} = \sqrt {x^{4}+x^{2} y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

14327

\[ {}y^{\prime } = y^{2}-2 y x +x^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

14328

\[ {}4 y x -6+x^{2} y^{\prime } = 0 \]

[_linear]

14329

\[ {}x y^{2}-6+x^{2} y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

14330

\[ {}x^{3}+y^{3}+x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14331

\[ {}3 y-x^{3}+y^{\prime } x = 0 \]

[_linear]

14333

\[ {}3 x y^{3}-y+y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

14334

\[ {}2+2 x^{2}-2 y x +\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_linear]

14337

\[ {}y^{\prime } = \frac {1}{y x -3 x} \]

[_separable]

14338

\[ {}y^{\prime } = \frac {3 y}{x +1}-y^{2} \]

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

14340

\[ {}\sin \left (y\right )+\left (x +1\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

14342

\[ {}x y y^{\prime } = 2 x^{2}+2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14343

\[ {}y^{\prime } = \frac {2 y+x}{x +2 y+3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14344

\[ {}y^{\prime } = \frac {2 y+x}{2 x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14345

\[ {}y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

14346

\[ {}y^{\prime } = x y^{2}+3 y^{2}+x +3 \]

[_separable]

14347

\[ {}1-\left (2 y+x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

14350

\[ {}y^{\prime }-3 y = 12 \,{\mathrm e}^{2 x} \]

[[_linear, ‘class A‘]]

14351

\[ {}x y y^{\prime } = x^{2}+y x +y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

14353

\[ {}x y^{3} y^{\prime } = y^{4}-x^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

14354

\[ {}y^{\prime } = 4 y-\frac {16 \,{\mathrm e}^{4 x}}{y^{2}} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

14355

\[ {}2 y-6 x +\left (x +1\right ) y^{\prime } = 0 \]

[_linear]

14356

\[ {}x y^{2}+\left (x^{2} y+10 y^{4}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

14358

\[ {}\left (3-x +y\right )^{2} \left (y^{\prime }-1\right ) = 1 \]

[[_homogeneous, ‘class C‘], _exact, _rational, _dAlembert]

14360

\[ {}y^{2}-y^{2} \cos \left (x \right )+y^{\prime } = 0 \]

[_separable]

14363

\[ {}y^{\prime } = y^{3}-y^{3} \cos \left (x \right ) \]

[_separable]

14365

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]

[_separable]

14366

\[ {}y^{\prime } = \tan \left (6 x +3 y+1\right )-2 \]

[[_homogeneous, ‘class C‘], _dAlembert]

14367

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]

[_separable]

14951

\[ {}2 x -y-y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14953

\[ {}y^{\prime }+y x = 0 \]

[_separable]

14964

\[ {}y^{\prime } = -\frac {x}{y} \]

[_separable]

14965

\[ {}3 y \left (t^{2}+y\right )+t \left (t^{2}+6 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

14966

\[ {}y^{\prime } = -\frac {2 y}{x}-3 \]

[_linear]

14994

\[ {}y^{\prime } = \frac {\left (x -4\right ) y^{3}}{x^{3} \left (y-2\right )} \]

[_separable]

14995

\[ {}y^{\prime } = \frac {y^{2}+2 y x}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15004

\[ {}y^{\prime }+y \cos \left (x \right ) = 0 \]

[_separable]

15012

\[ {}2 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15018

\[ {}y^{\prime }+2 y = x^{2} \]
i.c.

[[_linear, ‘class A‘]]

15029

\[ {}y^{\prime } = y \sqrt {t} \]
i.c.

[_separable]

15031

\[ {}t y^{\prime } = y \]

[_separable]

15032

\[ {}y^{\prime } = y \tan \left (t \right ) \]
i.c.

[_separable]

15042

\[ {}t y^{\prime }+y = t^{3} \]
i.c.

[_linear]

15053

\[ {}y^{\prime } = t y^{2} \]
i.c.

[_separable]

15054

\[ {}y^{\prime } = -\frac {t}{y} \]
i.c.

[_separable]

15056

\[ {}y^{\prime } = \frac {x}{y^{2}} \]

[_separable]

15057

\[ {}\frac {1}{2 \sqrt {t}}+y^{2} y^{\prime } = 0 \]

[_separable]

15058

\[ {}y^{\prime } = \frac {\sqrt {y}}{x^{2}} \]

[_separable]

15063

\[ {}y^{\prime } = \frac {y+1}{1+t} \]

[_separable]

15064

\[ {}y^{\prime } = \frac {y+2}{2 t +1} \]

[_separable]

15065

\[ {}\frac {3}{t^{2}} = \left (\frac {1}{\sqrt {y}}+\sqrt {y}\right ) y^{\prime } \]

[_separable]

15071

\[ {}y^{\prime } = {\mathrm e}^{2 y+10 t} \]

[_separable]

15072

\[ {}y^{\prime } = {\mathrm e}^{3 y+2 t} \]

[_separable]

15085

\[ {}y^{\prime } = \frac {5^{-t}}{y^{2}} \]

[_separable]

15086

\[ {}y^{\prime } = t^{2} y^{2}+y^{2}-t^{2}-1 \]

[_separable]

15088

\[ {}4 \left (x -1\right )^{2} y^{\prime }-3 \left (3+y\right )^{2} = 0 \]

[_separable]

15100

\[ {}y^{\prime } = \frac {\sqrt {t}}{y} \]
i.c.

[_separable]

15101

\[ {}y^{\prime } = \sqrt {\frac {y}{t}} \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

15102

\[ {}y^{\prime } = \frac {{\mathrm e}^{t}}{y+1} \]
i.c.

[_separable]

15108

\[ {}y^{\prime } = \frac {3+y}{3 x +1} \]
i.c.

[_separable]

15109

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]
i.c.

[_separable]

15110

\[ {}y^{\prime } = {\mathrm e}^{2 x -y} \]
i.c.

[_separable]

15111

\[ {}y^{\prime } = \frac {3 y+1}{x +3} \]
i.c.

[_separable]

15112

\[ {}y^{\prime } = y \cos \left (t \right ) \]
i.c.

[_separable]

15113

\[ {}y^{\prime } = y^{2} \cos \left (t \right ) \]
i.c.

[_separable]

15116

\[ {}y^{\prime } = -\frac {y-2}{x -2} \]
i.c.

[_separable]

15117

\[ {}y^{\prime } = \frac {x +y+3}{3 x +3 y+1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15118

\[ {}y^{\prime } = \frac {x -y+2}{2 x -2 y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15119

\[ {}y^{\prime } = \left (x +y-4\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

15126

\[ {}y^{\prime } = y f \left (t \right ) \]
i.c.

[_separable]

15128

\[ {}y^{\prime }-y = 2 \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

15130

\[ {}y^{\prime }-y = t^{2}-2 t \]

[[_linear, ‘class A‘]]

15132

\[ {}t y^{\prime }+y = t^{2} \]

[_linear]

15133

\[ {}t y^{\prime }+y = t \]

[_linear]

15136

\[ {}y^{\prime }-\frac {2 t y}{t^{2}+1} = 2 \]

[_linear]

15137

\[ {}y^{\prime }-\frac {4 t y}{4 t^{2}+1} = 4 t \]

[_linear]

15138

\[ {}y^{\prime } = 2 x +\frac {x y}{x^{2}-1} \]

[_linear]

15140

\[ {}y^{\prime }-\frac {3 t y}{t^{2}-4} = t \]

[_linear]

15141

\[ {}y^{\prime }-\frac {4 t y}{4 t^{2}-9} = t \]

[_linear]

15142

\[ {}y^{\prime }-\frac {9 x y}{9 x^{2}+49} = x \]

[_linear]

15144

\[ {}y^{\prime }+y x = x^{3} \]

[_linear]

15145

\[ {}y^{\prime }-y x = x \]

[_separable]

15146

\[ {}y^{\prime } = \frac {1}{y^{2}+x} \]

[[_1st_order, _with_exponential_symmetries]]

15147

\[ {}y^{\prime }-x = y \]

[[_linear, ‘class A‘]]

15148

\[ {}y-\left (x +3 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

15149

\[ {}x^{\prime } = \frac {3 x t^{2}}{-t^{3}+1} \]

[_separable]

15150

\[ {}p^{\prime } = t^{3}+\frac {p}{t} \]

[_linear]

15151

\[ {}v^{\prime }+v = {\mathrm e}^{-s} \]

[[_linear, ‘class A‘]]

15152

\[ {}y^{\prime }-y = 4 \,{\mathrm e}^{t} \]
i.c.

[[_linear, ‘class A‘]]

15153

\[ {}y^{\prime }+y = {\mathrm e}^{-t} \]
i.c.

[[_linear, ‘class A‘]]

15154

\[ {}y^{\prime }+3 t^{2} y = {\mathrm e}^{-t^{3}} \]
i.c.

[_linear]

15155

\[ {}y^{\prime }+2 t y = 2 t \]
i.c.

[_separable]

15159

\[ {}\left (t^{2}+4\right ) y^{\prime }+2 t y = 2 t \]
i.c.

[_separable]

15160

\[ {}x^{\prime } = x+t +1 \]
i.c.

[[_linear, ‘class A‘]]

15161

\[ {}y^{\prime } = {\mathrm e}^{2 t}+2 y \]
i.c.

[[_linear, ‘class A‘]]

15162

\[ {}y^{\prime }-\frac {y}{t} = \ln \left (t \right ) \]

[_linear]

15167

\[ {}y^{\prime }+y = 5 \,{\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

15168

\[ {}y^{\prime }+y = {\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

15169

\[ {}y^{\prime }+y = 2-{\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

15170

\[ {}y^{\prime }-5 y = t \]

[[_linear, ‘class A‘]]

15171

\[ {}y^{\prime }+3 y = 27 t^{2}+9 \]

[[_linear, ‘class A‘]]

15174

\[ {}y^{\prime }+10 y = 2 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

15175

\[ {}y^{\prime }-3 y = 27 t^{2} \]

[[_linear, ‘class A‘]]

15176

\[ {}y^{\prime }-y = 2 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

15177

\[ {}y^{\prime }+y = 4+3 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

15182

\[ {}y^{\prime }+y = t \]
i.c.

[[_linear, ‘class A‘]]

15185

\[ {}y^{\prime }+y = {\mathrm e}^{t} \]
i.c.

[[_linear, ‘class A‘]]

15186

\[ {}y^{2}-\frac {y}{2 \sqrt {t}}+\left (2 t y-\sqrt {t}+1\right ) y^{\prime } = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15187

\[ {}\frac {t}{\sqrt {t^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {t^{2}+y^{2}}} = 0 \]

[_separable]

15188

\[ {}y \cos \left (t y\right )+t \cos \left (t y\right ) y^{\prime } = 0 \]

[_separable]

15190

\[ {}3 t y^{2}+y^{3} y^{\prime } = 0 \]

[_separable]

15193

\[ {}\ln \left (t y\right )+\frac {t y^{\prime }}{y} = 0 \]

[[_homogeneous, ‘class G‘], _exact]

15194

\[ {}{\mathrm e}^{t y}+\frac {t \,{\mathrm e}^{t y} y^{\prime }}{y} = 0 \]

[_separable]

15197

\[ {}y^{2}+2 t y y^{\prime } = 0 \]

[_separable]

15198

\[ {}\frac {3 t^{2}}{y}-\frac {t^{3} y^{\prime }}{y^{2}} = 0 \]

[_separable]

15200

\[ {}-\frac {1}{y}+\left (\frac {t}{y^{2}}+3 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

15201

\[ {}2 t y+\left (t^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

15202

\[ {}2 t y^{3}+\left (1+3 t^{2} y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

15203

\[ {}\sin \left (y\right )^{2}+t \sin \left (2 y\right ) y^{\prime } = 0 \]

[_separable]

15204

\[ {}3 t^{2}+3 y^{2}+6 t y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

15207

\[ {}-2 t y^{2} \sin \left (t^{2}\right )+2 y \cos \left (t^{2}\right ) y^{\prime } = 0 \]

[_separable]

15211

\[ {}\left (3+t \right ) \cos \left (y+t \right )+\sin \left (y+t \right )+\left (3+t \right ) \cos \left (y+t \right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _exact]

15213

\[ {}-\frac {y^{2} {\mathrm e}^{\frac {y}{t}}}{t^{2}}+1+{\mathrm e}^{\frac {y}{t}} \left (1+\frac {y}{t}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

15214

\[ {}2 t \sin \left (\frac {y}{t}\right )-y \cos \left (\frac {y}{t}\right )+t \cos \left (\frac {y}{t}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

15215

\[ {}2 t y^{2}+2 t^{2} y y^{\prime } = 0 \]
i.c.

[_separable]

15216

\[ {}1+\frac {y}{t^{2}}-\frac {y^{\prime }}{t} = 0 \]
i.c.

[_linear]

15218

\[ {}1+5 t -y-\left (t +2 y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15227

\[ {}t^{2} y+t^{3} y^{\prime } = 0 \]

[_separable]

15228

\[ {}y \left (2 \,{\mathrm e}^{t}+4 t \right )+3 \left ({\mathrm e}^{t}+t^{2}\right ) y^{\prime } = 0 \]

[_separable]

15230

\[ {}2 t y+y^{2}-t^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15238

\[ {}\frac {9 t}{5}+2 y+\left (2 t +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15239

\[ {}2 t +\frac {19 y}{10}+\left (\frac {19 t}{10}+2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15241

\[ {}y^{\prime }+y = t y^{2} \]

[_Bernoulli]

15246

\[ {}y^{\prime }-\frac {y}{t} = t y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

15247

\[ {}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15248

\[ {}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t} \]

[_separable]

15249

\[ {}y^{\prime }-\frac {y}{t} = t^{2} y^{{3}/{2}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

15250

\[ {}\cos \left (\frac {t}{y+t}\right )+{\mathrm e}^{\frac {2 y}{t}} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

15253

\[ {}\frac {2}{t}+\frac {1}{y}+\frac {t y^{\prime }}{y^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15256

\[ {}2 t +\left (y-3 t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

15257

\[ {}2 y-3 t +t y^{\prime } = 0 \]

[_linear]

15258

\[ {}t y-y^{2}+t \left (t -3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15259

\[ {}t^{2}+t y+y^{2}-t y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15260

\[ {}t^{3}+y^{3}-t y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15261

\[ {}y^{\prime } = \frac {t +4 y}{4 t +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15262

\[ {}t -y+t y^{\prime } = 0 \]

[_linear]

15263

\[ {}y+\left (y+t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15264

\[ {}2 t^{2}-7 t y+5 y^{2}+t y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15266

\[ {}y^{2} = \left (t y-4 t^{2}\right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15267

\[ {}y-\left (3 \sqrt {t y}+t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

15268

\[ {}\left (t^{2}-y^{2}\right ) y^{\prime }+y^{2}+t y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15269

\[ {}t y y^{\prime }-t^{2} {\mathrm e}^{-\frac {y}{t}}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

15270

\[ {}y^{\prime } = \frac {1}{\frac {2 y \,{\mathrm e}^{-\frac {t}{y}}}{t}+\frac {t}{y}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

15271

\[ {}t \left (\ln \left (t \right )-\ln \left (y\right )\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _dAlembert]

15274

\[ {}y^{\prime } = \frac {4 y^{2}-t^{2}}{2 t y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15275

\[ {}t +y-t y^{\prime } = 0 \]
i.c.

[_linear]

15276

\[ {}t y^{\prime }-y-\sqrt {t^{2}+y^{2}} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

15277

\[ {}t^{3}+y^{2} \sqrt {t^{2}+y^{2}}-t y \sqrt {t^{2}+y^{2}}\, y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

15278

\[ {}y^{3}-t^{3}-t y^{2} y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15279

\[ {}t y^{3}-\left (t^{4}+y^{4}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

15282

\[ {}5 t +2 y+1+\left (2 t +y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15283

\[ {}3 t -y+1-\left (6 t -2 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15284

\[ {}2 t +3 y+1+\left (4 t +6 y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15285

\[ {}y^{\prime }-\frac {2 y}{x} = -x^{2} y \]

[_separable]

15290

\[ {}1+y-t y^{\prime } = \ln \left (y^{\prime }\right ) \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

15294

\[ {}y = t \left (y^{\prime }+1\right )+2 y^{\prime }+1 \]

[_linear]

15296

\[ {}t^{{1}/{3}} y^{{2}/{3}}+t +\left (t^{{2}/{3}} y^{{1}/{3}}+y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

15297

\[ {}y^{\prime } = \frac {y^{2}-t^{2}}{t y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15298

\[ {}y \sin \left (\frac {t}{y}\right )-\left (t +t \sin \left (\frac {t}{y}\right )\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

15299

\[ {}y^{\prime } = \frac {2 t^{5}}{5 y^{2}} \]

[_separable]

15301

\[ {}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t} \]

[_separable]

15302

\[ {}y^{\prime } = \frac {{\mathrm e}^{8 y}}{t} \]

[_separable]

15303

\[ {}y^{\prime } = \frac {{\mathrm e}^{5 t}}{y^{4}} \]

[_separable]

15306

\[ {}y^{\prime } = \frac {\left (4-7 x \right ) \left (2 y-3\right )}{\left (x -1\right ) \left (2 x -5\right )} \]

[_separable]

15309

\[ {}y-t +\left (y+t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15310

\[ {}y-x +y^{\prime } = 0 \]

[[_linear, ‘class A‘]]

15311

\[ {}y^{2}+\left (t y+t^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15312

\[ {}r^{\prime } = \frac {r^{2}+t^{2}}{r t} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15313

\[ {}x^{\prime } = \frac {5 t x}{t^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

15319

\[ {}y^{\prime }+t y = t \]

[_separable]

15320

\[ {}x^{\prime }+\frac {x}{y} = y^{2} \]

[_linear]

15322

\[ {}y^{\prime }-y = t y^{3} \]

[_Bernoulli]

15323

\[ {}y^{\prime }+y = \frac {{\mathrm e}^{t}}{y^{2}} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

15325

\[ {}y-t y^{\prime } = 2 y^{2} \ln \left (t \right ) \]

[[_homogeneous, ‘class D‘], _Bernoulli]

15328

\[ {}2 x -y-2+\left (2 y-x \right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15329

\[ {}\cos \left (t -y\right )+\left (1-\cos \left (t -y\right )\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

15335

\[ {}y^{\prime } = \sqrt {x -y} \]
i.c.

[[_homogeneous, ‘class C‘], _dAlembert]

15462

\[ {}y^{\prime }-4 y = t^{2} \]

[[_linear, ‘class A‘]]

15464

\[ {}y^{\prime }-y = {\mathrm e}^{4 t} \]
i.c.

[[_linear, ‘class A‘]]

15465

\[ {}y^{\prime }+4 y = {\mathrm e}^{-4 t} \]
i.c.

[[_linear, ‘class A‘]]

15466

\[ {}y^{\prime }+4 y = t \,{\mathrm e}^{-4 t} \]

[[_linear, ‘class A‘]]

15827

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

15829

\[ {}y^{\prime } = \sqrt {x -y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

15830

\[ {}y^{\prime } = \sqrt {x^{2}-y}-x \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

15832

\[ {}y^{\prime } = \frac {1+y}{x -y} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15835

\[ {}y^{\prime } = \left (3 x -y\right )^{{1}/{3}}-1 \]

[[_homogeneous, ‘class C‘], _dAlembert]

15838

\[ {}y^{\prime }+2 y = {\mathrm e}^{x} \]

[[_linear, ‘class A‘]]

15839

\[ {}\left (-x^{2}+1\right ) y^{\prime }+y x = 2 x \]

[_separable]

15841

\[ {}y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

15842

\[ {}y^{\prime } = -x +y \]

[[_linear, ‘class A‘]]

15843

\[ {}y^{\prime } = \frac {x}{2}-y+\frac {3}{2} \]

[[_linear, ‘class A‘]]

15845

\[ {}y^{\prime } = \left (-1+y\right ) x \]

[_separable]

15847

\[ {}y^{\prime } = \cos \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

15848

\[ {}y^{\prime } = y-x^{2} \]

[[_linear, ‘class A‘]]

15849

\[ {}y^{\prime } = x^{2}+2 x -y \]

[[_linear, ‘class A‘]]

15850

\[ {}y^{\prime } = \frac {1+y}{x -1} \]

[_separable]

15851

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15853

\[ {}y^{\prime } = 2 x -y \]

[[_linear, ‘class A‘]]

15854

\[ {}y^{\prime } = y+x^{2} \]

[[_linear, ‘class A‘]]

15855

\[ {}y^{\prime } = -\frac {y}{x} \]

[_separable]

15862

\[ {}y^{\prime } = x +y \]
i.c.

[[_linear, ‘class A‘]]

15864

\[ {}y^{\prime } x = 2 x -y \]
i.c.

[_linear]

15865

\[ {}1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

15866

\[ {}1+y^{2}+x y y^{\prime } = 0 \]

[_separable]

15867

\[ {}y^{\prime } \sin \left (x \right )-y \cos \left (x \right ) = 0 \]
i.c.

[_separable]

15868

\[ {}1+y^{2} = y^{\prime } x \]

[_separable]

15872

\[ {}y \ln \left (y\right )+y^{\prime } x = 1 \]
i.c.

[_separable]

15873

\[ {}y^{\prime } = a^{x +y} \]

[_separable]

15874

\[ {}{\mathrm e}^{y} \left (x^{2}+1\right ) y^{\prime }-2 x \left (1+{\mathrm e}^{y}\right ) = 0 \]

[_separable]

15878

\[ {}y^{\prime } = \sin \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

15879

\[ {}y^{\prime } = a x +b y+c \]

[[_linear, ‘class A‘]]

15880

\[ {}\left (x +y\right )^{2} y^{\prime } = a^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

15882

\[ {}a^{2}+y^{2}+2 x \sqrt {a x -x^{2}}\, y^{\prime } = 0 \]
i.c.

[_separable]

15883

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

15896

\[ {}\left (x +1\right ) y^{\prime } = -1+y \]

[_separable]

15897

\[ {}y^{\prime } = 2 x \left (\pi +y\right ) \]

[_separable]

15899

\[ {}y^{\prime } x = y+x \cos \left (\frac {y}{x}\right )^{2} \]

[[_homogeneous, ‘class A‘], _dAlembert]

15900

\[ {}x -y+y^{\prime } x = 0 \]

[_linear]

15901

\[ {}y^{\prime } x = y \left (\ln \left (y\right )-\ln \left (x \right )\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

15902

\[ {}x^{2} y^{\prime } = x^{2}-y x +y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

15903

\[ {}y^{\prime } x = y+\sqrt {y^{2}-x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

15904

\[ {}2 x^{2} y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

15905

\[ {}4 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15906

\[ {}y-x +\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15907

\[ {}x +y-2+\left (1-x \right ) y^{\prime } = 0 \]

[_linear]

15908

\[ {}3 y-7 x +7-\left (3 x -7 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15909

\[ {}x +y-2+\left (x -y+4\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15910

\[ {}x +y+\left (x -y-2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15911

\[ {}2 x +3 y-5+\left (3 x +2 y-5\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15913

\[ {}x -2 y-1+\left (3 x -6 y+2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15914

\[ {}x +y+\left (x +y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15915

\[ {}2 x y^{\prime } \left (x -y^{2}\right )+y^{3} = 0 \]

[[_homogeneous, ‘class G‘], _rational]

15916

\[ {}4 y^{6}+x^{3} = 6 x y^{5} y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

15917

\[ {}y \left (1+\sqrt {x^{2} y^{4}+1}\right )+2 y^{\prime } x = 0 \]

[[_homogeneous, ‘class G‘]]

15918

\[ {}x +y^{3}+3 \left (y^{3}-x \right ) y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

15919

\[ {}y^{\prime }+2 y = {\mathrm e}^{-x} \]

[[_linear, ‘class A‘]]

15920

\[ {}x^{2}-y^{\prime } x = y \]
i.c.

[_linear]

15921

\[ {}y^{\prime }-2 y x = 2 x \,{\mathrm e}^{x^{2}} \]

[_linear]

15922

\[ {}y^{\prime }+2 y x = {\mathrm e}^{-x^{2}} \]

[_linear]

15924

\[ {}y^{\prime } x -2 y = x^{3} \cos \left (x \right ) \]

[_linear]

15927

\[ {}\left (2 x -y^{2}\right ) y^{\prime } = 2 y \]

[[_homogeneous, ‘class G‘], _rational]

15929

\[ {}y^{\prime } = \frac {y}{2 y \ln \left (y\right )+y-x} \]

[[_1st_order, _with_linear_symmetries]]

15939

\[ {}y^{\prime } x +y = 2 x \]

[_linear]

15942

\[ {}y^{\prime }+2 y x = 2 x y^{2} \]

[_separable]

15943

\[ {}3 x y^{2} y^{\prime }-2 y^{3} = x^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15944

\[ {}\left (x^{3}+{\mathrm e}^{y}\right ) y^{\prime } = 3 x^{2} \]

[[_1st_order, _with_linear_symmetries]]

15945

\[ {}y^{\prime }+3 y x = y \,{\mathrm e}^{x^{2}} \]

[_separable]

15950

\[ {}y^{\prime }-y \cos \left (x \right ) = y^{2} \cos \left (x \right ) \]

[_separable]

15956

\[ {}x \left (2 x^{2}+y^{2}\right )+y \left (x^{2}+2 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

15963

\[ {}\frac {x y}{\sqrt {x^{2}+1}}+2 y x -\frac {y}{x}+\left (\sqrt {x^{2}+1}+x^{2}-\ln \left (x \right )\right ) y^{\prime } = 0 \]

[_separable]

15968

\[ {}3 x^{2} y+y^{3}+\left (x^{3}+3 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

15970

\[ {}x^{2}+y-y^{\prime } x = 0 \]

[_linear]

15971

\[ {}x +y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

15976

\[ {}3 y^{2}-x +\left (2 y^{3}-6 y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

15978

\[ {}x -y x +\left (y+x^{2}\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

15982

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

15983

\[ {}{y^{\prime }}^{2}-\left (2 x +y\right ) y^{\prime }+x^{2}+y x = 0 \]

[_quadrature]

15986

\[ {}{y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0 \]

[[_1st_order, _with_linear_symmetries]]

16000

\[ {}y = 2 y^{\prime } x +\ln \left (y^{\prime }\right ) \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

16012

\[ {}y^{\prime } x -y^{2}+\left (2 x +1\right ) y = x^{2}+2 x \]

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

16013

\[ {}x^{2} y^{\prime } = x^{2} y^{2}+y x +1 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

16016

\[ {}{y^{\prime }}^{3}-4 x y y^{\prime }+8 y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries]]

16026

\[ {}{y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0 \]

[[_1st_order, _with_linear_symmetries]]

16029

\[ {}y^{\prime } = \left (x -y\right )^{2}+1 \]

[[_homogeneous, ‘class C‘], _Riccati]

16032

\[ {}x^{3}-3 x y^{2}+\left (y^{3}-3 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16033

\[ {}5 y x -4 y^{2}-6 x^{2}+\left (y^{2}-8 y x +\frac {5 x^{2}}{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16035

\[ {}y-x y^{2} \ln \left (x \right )+y^{\prime } x = 0 \]

[_Bernoulli]

16037

\[ {}y^{\prime } = \frac {1}{2 x -y^{2}} \]

[[_1st_order, _with_exponential_symmetries]]

16039

\[ {}x y y^{\prime }-y^{2} = x^{4} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

16040

\[ {}\frac {1}{x^{2}-y x +y^{2}} = \frac {y^{\prime }}{2 y^{2}-y x} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

16041

\[ {}\left (2 x -1\right ) y^{\prime }-2 y = \frac {1-4 x}{x^{2}} \]

[_linear]

16042

\[ {}x -y+3+\left (3 x +y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16044

\[ {}y^{\prime } \left (3 x^{2}-2 x \right )-y \left (6 x -2\right ) = 0 \]

[_separable]

16045

\[ {}x y^{2} y^{\prime }-y^{3} = \frac {x^{4}}{3} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

16046

\[ {}1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

16047

\[ {}x^{2}+y^{2}-x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

16048

\[ {}x -y+2+\left (x -y+3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16049

\[ {}x y^{2}+y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

16052

\[ {}\left (x -2 y x -y^{2}\right ) y^{\prime }+y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

16054

\[ {}y^{\prime }-1 = {\mathrm e}^{2 y+x} \]

[[_homogeneous, ‘class C‘], _dAlembert]

16055

\[ {}2 x^{5}+4 x^{3} y-2 x y^{2}+\left (y^{2}+2 x^{2} y-x^{4}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

16056

\[ {}x^{2} y^{n} y^{\prime } = 2 y^{\prime } x -y \]

[[_homogeneous, ‘class G‘], _rational]

16057

\[ {}\left (3 x +3 y+a^{2}\right ) y^{\prime } = 4 x +4 y+b^{2} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16058

\[ {}x -y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

16059

\[ {}y^{\prime } x +y = y^{2} \ln \left (x \right ) \]
i.c.

[_Bernoulli]

16062

\[ {}\left (5 x -7 y+1\right ) y^{\prime }+x +y-1 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16063

\[ {}x +y+1+\left (2 x +2 y-1\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16064

\[ {}y^{3}+2 \left (x^{2}-x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

16065

\[ {}y^{\prime } = \frac {2 \left (2+y\right )^{2}}{\left (x +y-1\right )^{2}} \]

[[_homogeneous, ‘class C‘], _rational]