2.2.182 Problems 18101 to 18200

Table 2.365: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

18101

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

1.073

18102

\[ {}2 y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

0.069

18103

\[ {}v^{\prime } = g -\frac {k v^{2}}{m} \]

[_quadrature]

0.773

18104

\[ {}x^{2}-2 y^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

71.063

18105

\[ {}x^{2} y^{\prime }-3 x y-2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.911

18106

\[ {}x^{2} y^{\prime } = 3 \left (x^{2}+y^{2}\right ) \arctan \left (\frac {y}{x}\right )+x y \]

[[_homogeneous, ‘class A‘], _dAlembert]

14.548

18107

\[ {}x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )+x \]

[[_homogeneous, ‘class A‘], _dAlembert]

5.033

18108

\[ {}y^{\prime } x = y+2 x \,{\mathrm e}^{-\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

14.878

18109

\[ {}x -y-\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.651

18110

\[ {}y^{\prime } x = 2 x +3 y \]

[_linear]

2.455

18111

\[ {}y^{\prime } x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8.233

18112

\[ {}x^{2} y^{\prime } = y^{2}+2 x y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.691

18113

\[ {}x^{3}+y^{3}-x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7.844

18114

\[ {}y^{\prime } = \left (x +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

1.716

18115

\[ {}y^{\prime } = \sin \left (x -y+1\right )^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

8.013

18116

\[ {}y^{\prime } = \frac {x +y+4}{x -y-6} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.463

18117

\[ {}y^{\prime } = \frac {x +y+4}{x +y-6} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.722

18118

\[ {}2 x -2 y+\left (-1+y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.981

18119

\[ {}y^{\prime } = \frac {x +y-1}{x +4 y+2} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13.465

18120

\[ {}2 x +3 y-1-4 \left (x +1\right ) y^{\prime } = 0 \]

[_linear]

1.962

18121

\[ {}y^{\prime } = \frac {1-x y^{2}}{2 x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.897

18122

\[ {}y^{\prime } = \frac {2+3 x y^{2}}{4 x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.490

18123

\[ {}y^{\prime } = \frac {y-x y^{2}}{x +x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.736

18124

\[ {}\left (x +\frac {2}{y}\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.641

18125

\[ {}\sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

39.923

18126

\[ {}y-x^{3}+\left (x +y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

1.216

18127

\[ {}y+y \cos \left (x y\right )+\left (x +x \cos \left (x y\right )\right ) y^{\prime } = 0 \]

[_separable]

2.141

18128

\[ {}\cos \left (x \right ) \cos \left (y\right )^{2}+2 \sin \left (x \right ) \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

2.582

18129

\[ {}\left (\sin \left (x \right ) \sin \left (y\right )-x \,{\mathrm e}^{y}\right ) y^{\prime } = {\mathrm e}^{y}+\cos \left (x \right ) \cos \left (y\right ) \]

[_exact]

32.204

18130

\[ {}-\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0 \]

[_separable]

1.852

18131

\[ {}1+y+\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

1.836

18132

\[ {}2 x y^{3}+y \cos \left (x \right )+\left (3 x^{2} y^{2}+\sin \left (x \right )\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

41.483

18133

\[ {}1 = \frac {y}{1-x^{2} y^{2}}+\frac {x y^{\prime }}{1-x^{2} y^{2}} \]

[_exact, _rational, _Riccati]

1.509

18134

\[ {}2 x y^{4}+\sin \left (y\right )+\left (4 x^{2} y^{3}+x \cos \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

2.561

18135

\[ {}\frac {y^{\prime } x +y}{1-x^{2} y^{2}}+x = 0 \]

[_exact, _rational, _Riccati]

1.747

18136

\[ {}2 x \left (1+\sqrt {x^{2}-y}\right ) = \sqrt {x^{2}-y}\, y^{\prime } \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

4.465

18137

\[ {}x \ln \left (y\right )+x y+\left (y \ln \left (x \right )+x y\right ) y^{\prime } = 0 \]

[_separable]

1.704

18138

\[ {}{\mathrm e}^{y^{2}}-\csc \left (y\right ) \csc \left (x \right )^{2}+\left (2 x y \,{\mathrm e}^{y^{2}}-\csc \left (y\right ) \cot \left (y\right ) \cot \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

53.928

18139

\[ {}1+y^{2} \sin \left (2 x \right )-2 y \cos \left (x \right )^{2} y^{\prime } = 0 \]

[_exact, _Bernoulli]

5.816

18140

\[ {}\frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

4.544

18141

\[ {}3 x^{2} \left (1+\ln \left (y\right )\right )+\left (\frac {x^{3}}{y}-2 y\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.461

18142

\[ {}\frac {y-y^{\prime } x}{\left (x +y\right )^{2}}+y^{\prime } = 1 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

2.840

18143

\[ {}\frac {4 y^{2}-2 x^{2}}{4 x y^{2}-x^{3}}+\frac {\left (8 y^{2}-x^{2}\right ) y^{\prime }}{4 y^{3}-x^{2} y} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

55.713

18144

\[ {}\left (3 x^{2}-y^{2}\right ) y^{\prime }-2 x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.181

18145

\[ {}x y-1+\left (x^{2}-x y\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

1.153

18146

\[ {}y^{\prime } x +y+3 x^{3} y^{4} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

6.046

18147

\[ {}{\mathrm e}^{x}+\left ({\mathrm e}^{x} \cot \left (y\right )+2 y \csc \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

3.360

18148

\[ {}\left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

2.121

18149

\[ {}y+\left (x -2 x^{2} y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.868

18150

\[ {}x +3 y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.219

18151

\[ {}y+\left (2 x -y \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.208

18152

\[ {}y \ln \left (y\right )-2 x y+\left (x +y\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

1.357

18153

\[ {}y^{2}+x y+1+\left (x^{2}+x y+1\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.336

18154

\[ {}x^{3}+x y^{3}+3 y^{2} y^{\prime } = 0 \]

[_rational, _Bernoulli]

1.939

18155

\[ {}-y+y^{\prime } x = \left (1+y^{2}\right ) y^{\prime } \]

[[_1st_order, _with_linear_symmetries], _rational]

1.468

18156

\[ {}y-y^{\prime } x = x y^{3} y^{\prime } \]

[_separable]

2.492

18157

\[ {}y^{\prime } x = x^{5}+x^{3} y^{2}+y \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

2.026

18158

\[ {}\left (x +y\right ) y^{\prime } = y-x \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.502

18159

\[ {}y^{\prime } x = y+x^{2}+9 y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

1.339

18160

\[ {}y^{2}-y+y^{\prime } x = 0 \]

[_separable]

2.255

18161

\[ {}-y+y^{\prime } x = 2 x^{2}-3 \]

[_linear]

1.306

18162

\[ {}y^{\prime } x +y = \sqrt {x y}\, y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

65.276

18163

\[ {}y-x y^{2}+\left (x +x^{2} y^{2}\right ) y^{\prime } = 0 \]

[_rational]

1.230

18164

\[ {}-y+y^{\prime } x = x^{2} y^{4} \left (y^{\prime } x +y\right ) \]

[[_homogeneous, ‘class G‘], _rational]

3.462

18165

\[ {}y^{\prime } x +y+x^{2} y^{5} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.165

18166

\[ {}2 x y^{2}-y+y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2.083

18167

\[ {}y^{\prime }+\frac {y}{x} = \sin \left (x \right ) \]

[_linear]

1.307

18168

\[ {}y^{\prime } = \frac {2 y}{x}+\frac {x^{3}}{y}+x \tan \left (\frac {y}{x^{2}}\right ) \]

[[_homogeneous, ‘class G‘]]

5.010

18169

\[ {}y^{\prime } x -3 y = x^{4} \]

[_linear]

1.573

18170

\[ {}y^{\prime }+y = \frac {1}{1+{\mathrm e}^{2 x}} \]

[_linear]

1.595

18171

\[ {}\left (x^{2}+1\right ) y^{\prime }+2 x y = \cot \left (x \right ) \]

[_linear]

1.618

18172

\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x}+x^{2} \]

[[_linear, ‘class A‘]]

2.636

18173

\[ {}y^{\prime }+y \cot \left (x \right ) = 2 x \csc \left (x \right ) \]

[_linear]

1.652

18174

\[ {}2 y-x^{3} = y^{\prime } x \]

[_linear]

1.613

18175

\[ {}y-x +x y \cot \left (x \right )+y^{\prime } x = 0 \]

[_linear]

1.677

18176

\[ {}y^{\prime }-2 x y = 6 x \,{\mathrm e}^{x^{2}} \]

[_linear]

2.365

18177

\[ {}x \ln \left (x \right ) y^{\prime }+y = 3 x^{3} \]

[_linear]

1.372

18178

\[ {}y-2 x y-x^{2}+x^{2} y^{\prime } = 0 \]

[_linear]

1.665

18179

\[ {}y^{\prime } x +y = x^{4} y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.553

18180

\[ {}x y^{2} y^{\prime }+y^{3} = x \cos \left (x \right ) \]

[_Bernoulli]

55.157

18181

\[ {}y^{\prime } x +y = x y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.563

18182

\[ {}\left ({\mathrm e}^{y}-2 x y\right ) y^{\prime } = y^{2} \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.185

18183

\[ {}y-y^{\prime } x = y^{\prime } y^{2} {\mathrm e}^{y} \]

[[_1st_order, _with_linear_symmetries]]

1.292

18184

\[ {}y^{\prime } x +2 = x^{3} \left (-1+y\right ) y^{\prime } \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

2.239

18185

\[ {}y^{\prime } x = 2 x^{2} y+y \ln \left (y\right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.620

18186

\[ {}y^{\prime } \sin \left (2 x \right ) = 2 y+2 \cos \left (x \right ) \]

[_linear]

2.927

18187

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.397

18188

\[ {}x y^{\prime \prime } = y^{\prime }+{y^{\prime }}^{3} \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.655

18189

\[ {}y^{\prime \prime }-k y = 0 \]

[[_2nd_order, _missing_x]]

3.536

18190

\[ {}x^{2} y^{\prime \prime } = 2 y^{\prime } x +{y^{\prime }}^{2} \]

[[_2nd_order, _missing_y]]

0.514

18191

\[ {}2 y y^{\prime \prime } = {y^{\prime }}^{2}+1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.082

18192

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.244

18193

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

[[_2nd_order, _missing_y]]

1.056

18194

\[ {}\left (x^{2}+2 y^{\prime }\right ) y^{\prime \prime }+2 y^{\prime } x = 0 \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

1.367

18195

\[ {}y y^{\prime \prime } = y^{2} y^{\prime }+{y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.668

18196

\[ {}y^{\prime \prime } = y^{\prime } {\mathrm e}^{y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

1.562

18197

\[ {}y^{\prime \prime } = {y^{\prime }}^{2}+1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

4.441

18198

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

6.114

18199

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.253

18200

\[ {}\left (1-x y\right ) y^{\prime } = y^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.603