2.2.182 Problems 18101 to 18200

Table 2.365: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

18101

xy2y+y3=xcos(x)

[_Bernoulli]

41.779

18102

xy+y=xy2

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.674

18103

(ey2xy)y=y2

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.364

18104

yxy=yy2ey

[[_1st_order, _with_linear_symmetries]]

1.375

18105

xy+2=x3(y1)y

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

2.622

18106

xy=2x2y+yln(y)

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.858

18107

ysin(2x)=2y+2cos(x)

[_linear]

3.618

18108

yy+y2=0

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.163

18109

xy=y+y3

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.424

18110

yky=0

[[_2nd_order, _missing_x]]

3.887

18111

x2y=2xy+y2

[[_2nd_order, _missing_y]]

0.472

18112

2yy=1+y2

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.075

18113

yyy2=0

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.333

18114

xy+y=4x

[[_2nd_order, _missing_y]]

1.015

18115

(x2+2y)y+2xy=0
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

3.611

18116

yy=y2y+y2
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.964

18117

y=yey
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

2.926

18118

y=1+y2

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

1.555

18119

y+y2=1

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

1.694

18120

yy=y2

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.268

18121

(1xy)y=y2

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.827

18122

2x+3y+1+(2y3x+5)y=0

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

37.517

18123

xy=x2+y2

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9.830

18124

y2=(x3xy)y

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.822

18125

x2y3+y=(x3y2x)y

[[_homogeneous, ‘class G‘], _rational]

3.132

18126

yy+y22yy=0

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

2.080

18127

xy+y=x2y+y2

[_separable]

2.729

18128

xyy=x2y+y2

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

73.605

18129

(ex3y2x2)y+yex=2xy3

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.175

18130

y+2xy2=0

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.223

18131

x2+y=xy

[_linear]

1.660

18132

xy+y=x2cos(x)

[_linear]

1.552

18133

6x+4y+3+(3x+2y+2)y=0

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.968

18134

cos(x+y)=xsin(x+y)+xsin(x+y)y

[[_1st_order, _with_linear_symmetries], _exact]

4.826

18135

x2y+xy=1

[[_2nd_order, _missing_y]]

0.821

18136

y2exy+cos(x)+(exy+xyexy)y=0

[_exact]

35.752

18137

yln(xy)=1+ln(xy)

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

2.214

18138

y+2xy=ex2

[_linear]

1.725

18139

y23xy2x2=(x2xy)y

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

80.409

18140

(x2+1)y+2xy=4x3

[_linear]

1.810

18141

exsin(y)+excos(y)y=ysin(xy)+xsin(xy)y

[_exact]

40.325

18142

(x2+1)y+xy=0

[[_2nd_order, _missing_y]]

0.780

18143

(xey+yx2)y=2xyeyx

[NONE]

0.212

18144

(x+1)ex=(xexyey)y

[‘y=_G(x,y’)‘]

1.939

18145

x2y4+x6x3y3y=0

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6.251

18146

y=1+3tan(x)y

[_linear]

1.577

18147

y=1+yxy2x2

[[_homogeneous, ‘class A‘], _rational, _Riccati]

2.995

18148

y=2xyex2y2y2+y2ex2y2+2x2ex2y2

[[_homogeneous, ‘class A‘], _dAlembert]

71.808

18149

y=x+2y+22x+y

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.569

18150

3x2ln(y)+x3yy=0

[_separable]

2.262

18151

3y2x2+3x+(2yln(5xx+3)+3sin(y))y=0

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

38.766

18152

yx(x+y)32xy(x+y)3=0

[_linear]

4.513

18153

xy2+y+xy=0

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.617

18154

x2y=y(3x2y)

[[_2nd_order, _missing_y]]

0.427

18155

3x2yy3(3xy2x3)y=0

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

8.557

18156

x(x2+1)y+2y=(x2+1)3

[_linear]

1.540

18157

y=3x2y12x+3y1

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.295

18158

ex2y(1+2x2y)+x3ex2yy=0

[_linear]

1.369

18159

3x2ey2x+(x3eysin(y))y=0

[_exact]

2.508

18160

y2y+y3=0

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.374

18161

3xy+y2+(3xy+x2)y=0

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

70.917

18162

x2y=y2+xy+x2

[[_homogeneous, ‘class A‘], _rational, _Riccati]

2.546

18163

xy+y=y2ln(x)

[_Bernoulli]

2.559

18164

cos(y)x+3(sin(y)ln(5x+15)1y)y=0

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

38.746

18165

x2y+y2=0

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.201

18166

xy+y1+xy=0

[_linear]

1.207

18167

x2yy2=2xy

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.981

18168

y=2yy3

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.304

18169

x+xcot(y)=sec(y)

[_linear]

1.911

18170

xyy=3x2

[[_2nd_order, _missing_y]]

0.979

18171

xy+y=0

[[_2nd_order, _missing_y]]

0.743

18172

yy2y=4x

[[_2nd_order, _with_linear_symmetries]]

1.122

18173

x3y+x2y+xy=1

[[_2nd_order, _with_linear_symmetries]]

3.049

18174

y2y=6

[[_2nd_order, _missing_x]]

2.046

18175

y2y=sin(x)

[[_2nd_order, _linear, _nonhomogeneous]]

1.582

18176

y=ex

[[_2nd_order, _quadrature]]

1.777

18177

y2y=4

[[_2nd_order, _missing_x]]

2.064

18178

yy=sin(x)

[[_2nd_order, _linear, _nonhomogeneous]]

1.418

18179

(1+x)yxy+y=0

[[_2nd_order, _with_linear_symmetries]]

1.224

18180

y+2y=6ex

[[_2nd_order, _missing_y]]

1.994

18181

x2y3xy5y=0

[[_2nd_order, _exact, _linear, _homogeneous]]

0.981

18182

x2y4xy+(x2+6)y=0

[[_2nd_order, _with_linear_symmetries]]

1.365

18183

yy=0

[[_2nd_order, _missing_x]]

2.061

18184

x2y2xy+2y=0
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.880

18185

y3y+2y=0
i.c.

[[_2nd_order, _missing_x]]

1.163

18186

y4y+4y=0

[[_2nd_order, _missing_x]]

0.967

18187

x2y2y=0
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

1.079

18188

y+y2y=0
i.c.

[[_2nd_order, _missing_x]]

1.421

18189

y+5y+6y=0
i.c.

[[_2nd_order, _missing_x]]

1.169

18190

y+y=0
i.c.

[[_2nd_order, _missing_x]]

2.515

18191

y+y2=0

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.391

18192

y+2xy+(x2+1)y=0

[[_2nd_order, _with_linear_symmetries]]

0.543

18193

y+y=0

[[_2nd_order, _missing_x]]

0.287

18194

yy=0

[[_2nd_order, _missing_x]]

0.248

18195

xy+3y=0

[[_2nd_order, _missing_y]]

0.078

18196

x2y+xy4y=0

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.086

18197

(x2+1)y2xy+2y=0

[_Gegenbauer]

0.104

18198

x2y+xy+(x214)y=0

[[_2nd_order, _with_linear_symmetries]]

0.145

18199

yxy1+x+y1+x=0

[[_2nd_order, _with_linear_symmetries]]

0.100

18200

x2y+2xy2y=0

[[_Emden, _Fowler]]

0.082