2.3.17 first order ode ID 1

Table 2.365: first order ode ID 1

#

ODE

CAS classification

Solved?

67

\[ {}y^{\prime } = 6 \,{\mathrm e}^{2 x -y} \]
i.c.

[_separable]

702

\[ {}y^{\prime } = 6 \,{\mathrm e}^{2 x -y} \]
i.c.

[_separable]

1184

\[ {}y^{\prime } = -1+{\mathrm e}^{y} \]

[_quadrature]

1185

\[ {}y^{\prime } = -1+{\mathrm e}^{-y} \]

[_quadrature]

1237

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

2321

\[ {}y^{\prime } = {\mathrm e}^{3+t +y} \]

[_separable]

2492

\[ {}y^{\prime } = {\mathrm e}^{3+t +y} \]

[_separable]

2798

\[ {}y^{\prime } = {\mathrm e}^{y} \]
i.c.

[_quadrature]

3344

\[ {}y^{\prime } = -x \,{\mathrm e}^{y} \]

[_separable]

3910

\[ {}{\mathrm e}^{2 y}+\left (x +1\right ) y^{\prime } = 0 \]

[_separable]

3917

\[ {}y^{\prime } = {\mathrm e}^{x -2 y} \]
i.c.

[_separable]

3920

\[ {}{\mathrm e}^{-y}+\left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

3958

\[ {}y^{\prime } = {\mathrm e}^{y} \sin \left (x \right ) \]

[_separable]

3959

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

3969

\[ {}y^{\prime } = x \,{\mathrm e}^{-2 y} \]
i.c.

[_separable]

4290

\[ {}y^{\prime } = {\mathrm e}^{y}+x \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

4291

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

5475

\[ {}y^{\prime }-{\mathrm e}^{x -y}+{\mathrm e}^{x} = 0 \]

[_separable]

5839

\[ {}y^{\prime } = 8 x^{3} {\mathrm e}^{-2 y} \]
i.c.

[_separable]

6026

\[ {}y^{\prime } = {\mathrm e}^{3 x -2 y} \]
i.c.

[_separable]

6638

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

6970

\[ {}y^{\prime } = \frac {{\mathrm e}^{x -y}}{1+{\mathrm e}^{x}} \]

[_separable]

8218

\[ {}x^{2} y^{\prime }+{\mathrm e}^{-y} = 0 \]

[_separable]

8286

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

8287

\[ {}y^{\prime } = 10+{\mathrm e}^{x +y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

8288

\[ {}y^{\prime } = 10 \,{\mathrm e}^{x +y}+x^{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

8289

\[ {}y^{\prime } = x \,{\mathrm e}^{x +y}+\sin \left (x \right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

8290

\[ {}y^{\prime } = 5 \,{\mathrm e}^{x^{2}+20 y}+\sin \left (x \right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

9311

\[ {}y^{\prime }-{\mathrm e}^{x -y}+{\mathrm e}^{x} = 0 \]

[_separable]

12251

\[ {}x^{\prime } = {\mathrm e}^{-x} \]

[_quadrature]

12267

\[ {}x^{\prime } = {\mathrm e}^{-2 x} \]
i.c.

[_quadrature]

12283

\[ {}x^{\prime } = t^{2} {\mathrm e}^{-x} \]
i.c.

[_separable]

12285

\[ {}x^{\prime } = {\mathrm e}^{t +x} \]
i.c.

[_separable]

13017

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

13531

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

13572

\[ {}y^{\prime } = x \,{\mathrm e}^{y-x^{2}} \]
i.c.

[_separable]

13577

\[ {}x \,{\mathrm e}^{y}+y^{\prime } = 0 \]
i.c.

[_separable]

13768

\[ {}y^{\prime } = {\mathrm e}^{-y} \]

[_quadrature]

14212

\[ {}y^{\prime } = {\mathrm e}^{2 x -3 y} \]

[_separable]

14231

\[ {}y^{\prime } = {\mathrm e}^{-y} \]

[_quadrature]

14232

\[ {}y^{\prime } = {\mathrm e}^{-y}+1 \]

[_quadrature]

14365

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]

[_separable]

14367

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]

[_separable]

15071

\[ {}y^{\prime } = {\mathrm e}^{2 y+10 t} \]

[_separable]

15072

\[ {}y^{\prime } = {\mathrm e}^{3 y+2 t} \]

[_separable]

15103

\[ {}y^{\prime } = {\mathrm e}^{t -y} \]
i.c.

[_separable]

15109

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]
i.c.

[_separable]

15110

\[ {}y^{\prime } = {\mathrm e}^{2 x -y} \]
i.c.

[_separable]

15302

\[ {}y^{\prime } = \frac {{\mathrm e}^{8 y}}{t} \]

[_separable]

16054

\[ {}y^{\prime }-1 = {\mathrm e}^{2 y+x} \]

[[_homogeneous, ‘class C‘], _dAlembert]