2.2.182 Problems 18101 to 18200

Table 2.365: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

18101

\[ {}x y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.067

18102

\[ {}x^{2} y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.343

18103

\[ {}x^{3} y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.477

18104

\[ {}x^{4} y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.106

18105

\[ {}x^{3} y^{\prime \prime }+\left (\cos \left (2 x \right )-1\right ) y^{\prime }+2 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.778

18106

\[ {}4 x^{2} y^{\prime \prime }+\left (2 x^{4}-5 x \right ) y^{\prime }+\left (3 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.805

18107

\[ {}4 x y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.056

18108

\[ {}2 x y^{\prime \prime }+\left (3-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.816

18109

\[ {}2 x y^{\prime \prime }+\left (x +1\right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.065

18110

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }-\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.799

18111

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+x^{2} y = 0 \]

[_Lienard]

0.629

18112

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}-\frac {y}{x^{3}} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.105

18113

\[ {}y^{\prime \prime }+\frac {n y^{\prime }}{x^{2}}+\frac {q y}{x^{3}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.324

18114

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+\left (4 x +4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.742

18115

\[ {}4 x^{2} y^{\prime \prime }-8 x^{2} y^{\prime }+\left (4 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.809

18116

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

[_Lienard]

0.763

18117

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.867

18118

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.678

18119

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

[_Bessel]

1.535

18120

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.040

18121

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }+2 y = 0 \]

[_Jacobi]

0.913

18122

\[ {}\left (2 x^{2}+2 x \right ) y^{\prime \prime }+\left (1+5 x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.951

18123

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+\left (5 x +4\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.964

18124

\[ {}\left (x^{2}-x -6\right ) y^{\prime \prime }+\left (5+3 x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.939

18125

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (1-3 x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.675

18126

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0 \]

[_Gegenbauer]

1.229

18127

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (-n^{2}+x^{2}\right ) y = 0 \]

[_Bessel]

0.136

18128

\[ {}y^{\prime }+y = 3 \,{\mathrm e}^{2 x} \]
i.c.

[[_linear, ‘class A‘]]

0.259

18129

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.234

18130

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 2 \]
i.c.

[[_2nd_order, _missing_x]]

0.554

18131

\[ {}y^{\prime \prime }+y^{\prime } = 3 x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

0.290

18132

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \,{\mathrm e}^{-x} \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.395

18133

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.260

18134

\[ {}x y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }-\left (4 x +9\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.308

18135

\[ {}x y^{\prime \prime }+\left (2 x +3\right ) y^{\prime }+\left (x +3\right ) y = 3 \,{\mathrm e}^{-x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.454

18136

\[ {}y^{\prime \prime }+x^{2} y = 0 \]
i.c.

[[_Emden, _Fowler]]

2.508

18137

\[ {}y^{\prime \prime }+a^{2} y = f \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.597

18138

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 4 \,{\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.333

18139

\[ {}y^{\prime \prime }+y^{\prime }-6 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.260

18140

\[ {}y^{\prime \prime }-y^{\prime } = t^{2} \]
i.c.

[[_2nd_order, _missing_y]]

0.327

18141

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.552

18142

\[ {}\left [\begin {array}{c} x^{\prime }=x+3 y \\ y^{\prime }=3 x+y \end {array}\right ] \]
i.c.

system_of_ODEs

0.638

18143

\[ {}\left [\begin {array}{c} x^{\prime }=x+2 y \\ y^{\prime }=3 x+2 y \end {array}\right ] \]

system_of_ODEs

0.538

18144

\[ {}\left [\begin {array}{c} x^{\prime }=x+2 y+t -1 \\ y^{\prime }=3 x+2 y-5 t -2 \end {array}\right ] \]

system_of_ODEs

0.734

18145

\[ {}\left [\begin {array}{c} x^{\prime }=x+y \\ y^{\prime }=y \end {array}\right ] \]

system_of_ODEs

0.440

18146

\[ {}\left [\begin {array}{c} x^{\prime }=x \\ y^{\prime }=y \end {array}\right ] \]

system_of_ODEs

0.431

18147

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x+4 y \\ y^{\prime }=-2 x+3 y \end {array}\right ] \]

system_of_ODEs

0.513

18148

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-2 y \\ y^{\prime }=5 x+2 y \end {array}\right ] \]

system_of_ODEs

0.665

18149

\[ {}\left [\begin {array}{c} x^{\prime }=5 x+4 y \\ y^{\prime }=y-x \end {array}\right ] \]

system_of_ODEs

0.525

18150

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-3 y \\ y^{\prime }=8 x-6 y \end {array}\right ] \]

system_of_ODEs

0.524

18151

\[ {}\left [\begin {array}{c} x^{\prime }=2 x \\ y^{\prime }=3 y \end {array}\right ] \]

system_of_ODEs

0.467

18152

\[ {}\left [\begin {array}{c} x^{\prime }=-4 x-y \\ y^{\prime }=x-2 y \end {array}\right ] \]

system_of_ODEs

0.276

18153

\[ {}\left [\begin {array}{c} x^{\prime }=7 x+6 y \\ y^{\prime }=2 x+6 y \end {array}\right ] \]

system_of_ODEs

0.336

18154

\[ {}\left [\begin {array}{c} x^{\prime }=x-2 y \\ y^{\prime }=4 x+5 y \end {array}\right ] \]

system_of_ODEs

0.594

18155

\[ {}\left [\begin {array}{c} x^{\prime }=x+y-5 t +2 \\ y^{\prime }=4 x-2 y-8 t -8 \end {array}\right ] \]

system_of_ODEs

0.793

18156

\[ {}\left [\begin {array}{c} x^{\prime }=2 x \\ y^{\prime }=3 y \end {array}\right ] \]

system_of_ODEs

0.479

18157

\[ {}\left [\begin {array}{c} x^{\prime }=-x-2 y \\ y^{\prime }=4 x-5 y \end {array}\right ] \]

system_of_ODEs

0.590

18158

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x+4 y \\ y^{\prime }=-2 x+3 y \end {array}\right ] \]

system_of_ODEs

0.514

18159

\[ {}\left [\begin {array}{c} x^{\prime }=5 x+2 y \\ y^{\prime }=-17 x-5 y \end {array}\right ] \]

system_of_ODEs

0.589

18160

\[ {}\left [\begin {array}{c} x^{\prime }=-4 x-y \\ y^{\prime }=x-2 y \end {array}\right ] \]

system_of_ODEs

0.485

18161

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-3 y \\ y^{\prime }=8 x-6 y \end {array}\right ] \]

system_of_ODEs

0.530

18162

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-2 y \\ y^{\prime }=5 x+2 y \end {array}\right ] \]

system_of_ODEs

0.619

18163

\[ {}x^{\prime \prime }+\left (5 x^{4}-9 x^{2}\right ) x^{\prime }+x^{5} = 0 \]

[[_2nd_order, _missing_x]]

2.864

18164

\[ {}x^{\prime } = 3 t^{2}+4 t \]
i.c.

[_quadrature]

0.604

18165

\[ {}x^{\prime } = b \,{\mathrm e}^{t} \]
i.c.

[_quadrature]

0.288

18166

\[ {}x^{\prime } = \frac {1}{t^{2}+1} \]
i.c.

[_quadrature]

0.587

18167

\[ {}x^{\prime } = \frac {1}{\sqrt {t^{2}+1}} \]
i.c.

[_quadrature]

0.337

18168

\[ {}x^{\prime } = \cos \left (t \right ) \]
i.c.

[_quadrature]

0.624

18169

\[ {}x^{\prime } = \frac {\cos \left (t \right )}{\sin \left (t \right )} \]
i.c.

[_quadrature]

1.611

18170

\[ {}x^{\prime } = x^{2}-3 x+2 \]
i.c.

[_quadrature]

3.632

18171

\[ {}x^{\prime } = b \,{\mathrm e}^{x} \]
i.c.

[_quadrature]

1.309

18172

\[ {}x^{\prime } = \left (x-1\right )^{2} \]
i.c.

[_quadrature]

1.022

18173

\[ {}x^{\prime } = \sqrt {x^{2}-1} \]
i.c.

[_quadrature]

10.636

18174

\[ {}x^{\prime } = 2 \sqrt {x} \]
i.c.

[_quadrature]

1.392

18175

\[ {}x^{\prime } = \tan \left (x\right ) \]
i.c.

[_quadrature]

1.497

18176

\[ {}3 t^{2} x-x t +\left (3 t^{3} x^{2}+t^{3} x^{4}\right ) x^{\prime } = 0 \]

[_separable]

3.056

18177

\[ {}1+2 x+\left (-t^{2}+4\right ) x^{\prime } = 0 \]

[_separable]

1.865

18178

\[ {}x^{\prime } = \cos \left (\frac {x}{t}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4.161

18179

\[ {}\left (t^{2}-x^{2}\right ) x^{\prime } = x t \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6.648

18180

\[ {}{\mathrm e}^{3 t} x^{\prime }+3 x \,{\mathrm e}^{3 t} = 2 t \]

[[_linear, ‘class A‘]]

2.059

18181

\[ {}2 t +3 x+\left (3 t -x\right ) x^{\prime } = t^{2} \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1.880

18182

\[ {}x^{\prime }+2 x = {\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

1.134

18183

\[ {}x^{\prime }+x \tan \left (t \right ) = 0 \]

[_separable]

1.074

18184

\[ {}x^{\prime }-x \tan \left (t \right ) = 4 \sin \left (t \right ) \]

[_linear]

1.561

18185

\[ {}t^{3} x^{\prime }+\left (-3 t^{2}+2\right ) x = t^{3} \]

[_linear]

1.909

18186

\[ {}x^{\prime }+2 x t +t x^{4} = 0 \]

[_separable]

2.093

18187

\[ {}x^{\prime } t +x \ln \left (t \right ) = t^{2} \]

[_linear]

1.716

18188

\[ {}x^{\prime } t +x g \left (t \right ) = h \left (t \right ) \]

[_linear]

1.616

18189

\[ {}t^{2} x^{\prime \prime }-6 x^{\prime } t +12 x = 0 \]

[[_Emden, _Fowler]]

1.117

18190

\[ {}x^{\prime } = -\lambda x \]

[_quadrature]

0.807

18191

\[ {}\left [\begin {array}{c} x^{\prime }=x \\ y^{\prime }=x+2 y \end {array}\right ] \]

system_of_ODEs

0.421

18192

\[ {}t^{2} x^{\prime \prime }-2 x^{\prime } t +2 x = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.280

18193

\[ {}x^{\prime \prime }-5 x^{\prime }+6 x = 0 \]

[[_2nd_order, _missing_x]]

0.515

18194

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = 0 \]

[[_2nd_order, _missing_x]]

0.495

18195

\[ {}x^{\prime \prime }-4 x^{\prime }+5 x = 0 \]

[[_2nd_order, _missing_x]]

0.888

18196

\[ {}x^{\prime \prime }+3 x^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

1.013

18197

\[ {}x^{\prime \prime }-3 x^{\prime }+2 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.717

18198

\[ {}x^{\prime \prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.932

18199

\[ {}x^{\prime \prime }+2 x^{\prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.742

18200

\[ {}x^{\prime \prime }-2 x^{\prime }+2 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.891