2.2.183 Problems 18201 to 18300

Table 2.367: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

18201

\[ {}x^{\prime \prime }-x = t^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.970

18202

\[ {}x^{\prime \prime }-x = {\mathrm e}^{t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.082

18203

\[ {}x^{\prime \prime }+2 x^{\prime }+4 x = {\mathrm e}^{t} \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

39.718

18204

\[ {}x^{\prime \prime }-x^{\prime }+x = \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

83.114

18205

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = t \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.919

18206

\[ {}x^{\prime \prime }+x = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6.847

18207

\[ {}x^{2} y^{\prime \prime }-\frac {x^{2} {y^{\prime }}^{2}}{2 y}+4 x y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.206

18208

\[ {}y^{\prime }+c y = a \]

[_quadrature]

0.947

18209

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+k^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.098

18210

\[ {}y^{\prime \prime } \sin \left (x \right )+y^{\prime } \cos \left (x \right )+n y \sin \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.519

18211

\[ {}y^{\prime } = \frac {\sqrt {1-y^{2}}\, \arcsin \left (y\right )}{x} \]

[_separable]

386.878

18212

\[ {}v^{\prime \prime } = \left (\frac {1}{v}+{v^{\prime }}^{4}\right )^{{1}/{3}} \]

[[_2nd_order, _missing_x]]

9.939

18213

\[ {}v^{\prime }+u^{2} v = \sin \left (u \right ) \]

[_linear]

2.353

18214

\[ {}\sqrt {y^{\prime }+y} = \left (y^{\prime \prime }+2 x \right )^{{1}/{4}} \]

[NONE]

31.644

18215

\[ {}v^{\prime }+\frac {2 v}{u} = 3 \]

[_linear]

1.904

18216

\[ {}\sin \left (x \right ) \cos \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime } = 0 \]

[_separable]

3.579

18217

\[ {}y^{\prime }+\sqrt {\frac {1-y^{2}}{-x^{2}+1}} = 0 \]

unknown

1240.170

18218

\[ {}y-x y^{\prime } = b \left (1+x^{2} y^{\prime }\right ) \]

[_separable]

126.757

18219

\[ {}x^{\prime } = k \left (A -n x\right ) \left (M -m x\right ) \]

[_quadrature]

18.167

18220

\[ {}y^{\prime } = 1+\frac {1}{x}-\frac {1}{y^{2}+2}-\frac {1}{x \left (y^{2}+2\right )} \]

[_separable]

213.631

18221

\[ {}y^{2} = x \left (y-x \right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

358.378

18222

\[ {}2 x^{2} y+y^{3}-x^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

761.594

18223

\[ {}2 a x +b y+\left (2 c y+b x +e \right ) y^{\prime } = g \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.390

18224

\[ {}\sec \left (x \right )^{2} \tan \left (y\right ) y^{\prime }+\sec \left (y\right )^{2} \tan \left (x \right ) = 0 \]

[_separable]

38.081

18225

\[ {}x +y^{\prime } y = m y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10.129

18226

\[ {}\frac {2 x}{y^{3}}+\left (\frac {1}{y^{2}}-\frac {3 x^{2}}{y^{4}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4.920

18227

\[ {}\left (T+\frac {1}{\sqrt {t^{2}-T^{2}}}\right ) T^{\prime } = \frac {T}{t \sqrt {t^{2}-T^{2}}}-t \]

[_exact]

3.570

18228

\[ {}y^{\prime }+x y = x \]

[_separable]

1.480

18229

\[ {}y^{\prime }+\frac {y}{x} = \sin \left (x \right ) \]

[_linear]

1.271

18230

\[ {}y^{\prime }+\frac {y}{x} = \frac {\sin \left (x \right )}{y^{3}} \]

[_Bernoulli]

35.321

18231

\[ {}p^{\prime } = \frac {p+a \,t^{3}-2 p t^{2}}{t \left (-t^{2}+1\right )} \]

[_linear]

1.490

18232

\[ {}\left (T \ln \left (t \right )-1\right ) T = t T^{\prime } \]

[_Bernoulli]

2.372

18233

\[ {}y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2} \]

[_linear]

2.431

18234

\[ {}y-y^{\prime } \cos \left (x \right ) = y^{2} \cos \left (x \right ) \left (-\sin \left (x \right )+1\right ) \]

[_Bernoulli]

7.110

18235

\[ {}x {y^{\prime }}^{2}-y+2 y^{\prime } = 0 \]

[_rational, _dAlembert]

1.105

18236

\[ {}2 {y^{\prime }}^{3}+{y^{\prime }}^{2}-y = 0 \]

[_quadrature]

74.751

18237

\[ {}y^{\prime } = {\mathrm e}^{z -y^{\prime }} \]

[_quadrature]

0.263

18238

\[ {}\sqrt {t^{2}+T} = T^{\prime } \]

[[_homogeneous, ‘class G‘]]

4.627

18239

\[ {}\left (x^{2}-1\right ) {y^{\prime }}^{2} = 1 \]

[_quadrature]

0.379

18240

\[ {}y^{\prime } = \left (x +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

1.159

18241

\[ {}\theta ^{\prime \prime } = -p^{2} \theta \]

[[_2nd_order, _missing_x]]

3.096

18242

\[ {}\sec \left (\theta \right )^{2} = \frac {m s^{\prime }}{k} \]

[_quadrature]

0.320

18243

\[ {}y^{\prime \prime } = \frac {m \sqrt {1+{y^{\prime }}^{2}}}{k} \]

[[_2nd_order, _missing_x]]

0.594

18244

\[ {}\phi ^{\prime \prime } = \frac {4 \pi n c}{\sqrt {v_{0}^{2}+\frac {2 e \left (\phi -V_{0} \right )}{m}}} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

10.487

18245

\[ {}y^{\prime } = x \left (y^{2} a +b \right ) \]

[_separable]

2.421

18246

\[ {}n^{\prime } = \left (n^{2}+1\right ) x \]

[_separable]

1.722

18247

\[ {}v^{\prime }+\frac {2 v}{u} = 3 v \]

[_separable]

1.215

18248

\[ {}\sqrt {-u^{2}+1}\, v^{\prime } = 2 u \sqrt {1-v^{2}} \]

[_separable]

2.654

18249

\[ {}\sqrt {1+v^{\prime }} = \frac {{\mathrm e}^{u}}{2} \]

[_quadrature]

0.263

18250

\[ {}\frac {y^{\prime }}{x} = y \sin \left (x^{2}-1\right )-\frac {2 y}{\sqrt {x}} \]

[_separable]

2.792

18251

\[ {}y^{\prime } = 1+\frac {2 y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.403

18252

\[ {}v^{\prime }+2 v u = 2 u \]

[_separable]

1.124

18253

\[ {}1+v^{2}+\left (u^{2}+1\right ) v v^{\prime } = 0 \]

[_separable]

2.764

18254

\[ {}u \ln \left (u \right ) v^{\prime }+\sin \left (v\right )^{2} = 1 \]

[_separable]

3.989

18255

\[ {}4 y {y^{\prime }}^{3}-2 x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }+x^{3} = 16 y^{2} \]

[[_1st_order, _with_linear_symmetries]]

123.131

18256

\[ {}\theta ^{\prime \prime }-p^{2} \theta = 0 \]

[[_2nd_order, _missing_x]]

6.349

18257

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

3.865

18258

\[ {}y^{\prime \prime }+12 y = 7 y^{\prime } \]

[[_2nd_order, _missing_x]]

0.901

18259

\[ {}r^{\prime \prime }-a^{2} r = 0 \]

[[_2nd_order, _missing_x]]

6.772

18260

\[ {}y^{\prime \prime \prime \prime }-a^{4} y = 0 \]

[[_high_order, _missing_x]]

0.151

18261

\[ {}v^{\prime \prime }-6 v^{\prime }+13 v = {\mathrm e}^{-2 u} \]

[[_2nd_order, _with_linear_symmetries]]

11.856

18262

\[ {}y^{\prime \prime }+4 y^{\prime }-y = \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.709

18263

\[ {}y^{\prime \prime }+3 y = \sin \left (x \right )+\frac {\sin \left (3 x \right )}{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.831

18264

\[ {}5 x^{\prime }+x = \sin \left (3 t \right ) \]

[[_linear, ‘class A‘]]

1.667

18265

\[ {}x^{\prime \prime \prime \prime }-6 x^{\prime \prime \prime }+11 x^{\prime \prime }-6 x^{\prime } = {\mathrm e}^{-3 t} \]

[[_high_order, _missing_y]]

0.121

18266

\[ {}x^{4} y^{\prime \prime \prime \prime }+x^{3} y^{\prime \prime \prime }-20 x^{2} y^{\prime \prime }+20 x y^{\prime } = 17 x^{6} \]

[[_high_order, _missing_y]]

0.579

18267

\[ {}t^{4} x^{\prime \prime \prime \prime }-2 t^{3} x^{\prime \prime \prime }-20 t^{2} x^{\prime \prime }+12 x^{\prime } t +16 x = \cos \left (3 \ln \left (t \right )\right ) \]

[[_high_order, _exact, _linear, _nonhomogeneous]]

0.807

18268

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0 \]

[[_3rd_order, _missing_x]]

0.194

18269

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = {\mathrm e}^{2 x} \]

[[_high_order, _missing_y]]

0.122

18270

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = \cos \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.632

18271

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.380

18272

\[ {}y^{\prime \prime } = c \left (1+{y^{\prime }}^{2}\right ) \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

0.478

18273

\[ {}y^{\prime \prime } = c \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

[[_2nd_order, _missing_x]]

0.494

18274

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.177

18275

\[ {}y^{\prime \prime } = -m^{2} y \]

[[_2nd_order, _missing_x]]

2.640

18276

\[ {}1+{y^{\prime }}^{2}+\frac {m y^{\prime \prime }}{\sqrt {1+{y^{\prime }}^{2}}} = 0 \]

[[_2nd_order, _missing_x]]

72.381

18277

\[ {}y = x y^{\prime }+y^{\prime }-{y^{\prime }}^{3} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.347

18278

\[ {}x y^{\prime \prime }+2 y^{\prime } = x y \]

[[_2nd_order, _with_linear_symmetries]]

0.963

18279

\[ {}y-2 x y^{\prime }-{y^{\prime }}^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.152

18280

\[ {}y^{\prime }+\frac {x y}{x^{2}+1} = \frac {1}{x \left (x^{2}+1\right )} \]

[_linear]

1.317

18281

\[ {}y^{\prime \prime \prime }+\frac {3 y^{\prime \prime }}{x} = 0 \]

[[_3rd_order, _missing_y]]

0.397

18282

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+5 y = \frac {1}{x} \]

[[_2nd_order, _with_linear_symmetries]]

2.520

18283

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 2 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.887

18284

\[ {}v^{\prime \prime }+\frac {2 v^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

0.429

18285

\[ {}y^{\prime \prime }-2 y^{\prime } y = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.740

18286

\[ {}y^{\prime \prime }-{y^{\prime }}^{2}-y {y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.388

18287

\[ {}\left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = r y^{\prime \prime } \]

[[_2nd_order, _missing_x]]

65.100

18288

\[ {}y^{\prime \prime \prime } y^{\prime }-3 {y^{\prime \prime }}^{2}+3 y^{\prime \prime } {y^{\prime }}^{2}-2 {y^{\prime }}^{4}-x {y^{\prime }}^{5} = 0 \]

[[_3rd_order, _missing_y], [_3rd_order, _with_exponential_symmetries], [_3rd_order, _with_linear_symmetries]]

0.168

18289

\[ {}\left (1+y^{2}\right ) y^{\prime \prime }-2 {y^{\prime }}^{2} y-2 \left (1+y^{2}\right ) y^{\prime } = y^{2} \left (1+y^{2}\right ) \]

[[_2nd_order, _missing_x]]

3.918

18290

\[ {}y^{2} y^{\prime \prime \prime }-\left (3 y^{\prime } y+2 x y^{2}\right ) y^{\prime \prime }+\left (2 {y^{\prime }}^{2}+2 x y y^{\prime }+3 x^{2} y^{2}\right ) y^{\prime }+x^{3} y^{3} = 0 \]

0.116

18291

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.640

18292

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.692

18293

\[ {}x^{3} v^{\prime \prime \prime }+2 x^{2} v^{\prime \prime }+v = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.188

18294

\[ {}v^{\prime \prime }+\frac {2 x v^{\prime }}{x^{2}+1}+\frac {v}{\left (x^{2}+1\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.016

18295

\[ {}y^{\prime }+\frac {y}{x} = -x^{2}+1 \]

[_linear]

0.921

18296

\[ {}y^{\prime }+\cot \left (x \right ) y = \csc \left (x \right )^{2} \]

[_linear]

1.683

18297

\[ {}y^{\prime } = x -y \]

[[_linear, ‘class A‘]]

0.834

18298

\[ {}\left (x^{2}+1\right ) y^{\prime }+x^{2} y = x^{3}-x^{2} \arctan \left (x \right ) \]

[_linear]

40.885

18299

\[ {}y^{\prime }+\frac {x y}{x^{2}+1} = \frac {1}{x \left (x^{2}+1\right )} \]

[_linear]

1.262

18300

\[ {}x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}-1\right ) y = x^{3} \]

[_linear]

1.073