2.2.177 Problems 17601 to 17700

Table 2.367: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

17601

\begin{align*} y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }&=\cos \left (t \right ) \\ \end{align*}

[[_3rd_order, _missing_y]]

0.211

17602

\begin{align*} y^{\left (6\right )}+y^{\prime \prime \prime \prime }&=-24 \\ \end{align*}

[[_high_order, _missing_x]]

0.200

17603

\begin{align*} y^{\prime \prime \prime \prime }+y^{\prime \prime }&=\tan \left (t \right )^{2} \\ \end{align*}

[[_high_order, _missing_y]]

0.920

17604

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }&=3 t^{2} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.249

17605

\begin{align*} y^{\prime \prime \prime \prime }+y^{\prime \prime }&=\sec \left (t \right )^{2} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}

[[_high_order, _missing_y]]

0.605

17606

\begin{align*} y^{\prime \prime \prime }+y^{\prime }&=\sec \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 1 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.449

17607

\begin{align*} y^{\prime \prime \prime \prime }+y^{\prime \prime }&=\cos \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 1 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}

[[_high_order, _missing_y]]

0.542

17608

\begin{align*} y^{\prime \prime \prime \prime }+y^{\prime \prime }&=t \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 1 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}

[[_high_order, _missing_y]]

0.226

17609

\begin{align*} t^{2} \ln \left (t \right ) y^{\prime \prime \prime }-t y^{\prime \prime }+y^{\prime }&=1 \\ \end{align*}

[[_3rd_order, _missing_y]]

1.572

17610

\begin{align*} \left (t^{2}+t \right ) y^{\prime \prime \prime }+\left (-t^{2}+2\right ) y^{\prime \prime }-\left (t +2\right ) y^{\prime }&=-2-t \\ \end{align*}

[[_3rd_order, _missing_y]]

1.485

17611

\begin{align*} 2 t^{3} y^{\prime \prime \prime }+t^{2} y^{\prime \prime }+y^{\prime } t -y&=-3 t^{2} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ y^{\prime \prime }\left (1\right ) &= 0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.533

17612

\begin{align*} t y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }&=\frac {45}{8 t^{{7}/{2}}} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 0 \\ y^{\prime \prime }\left (1\right ) &= 1 \\ y^{\prime \prime \prime }\left (1\right ) &= 0 \\ \end{align*}

[[_high_order, _missing_y]]

0.302

17613

\begin{align*} 5 y-8 y^{\prime } x +4 x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11.031

17614

\begin{align*} 3 x^{2} y^{\prime \prime }-4 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

9.142

17615

\begin{align*} 2 x^{2} y^{\prime \prime }-8 y^{\prime } x +8 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

5.673

17616

\begin{align*} 2 x^{2} y^{\prime \prime }-7 y^{\prime } x +7 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

8.904

17617

\begin{align*} 4 x^{2} y^{\prime \prime }+17 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

2.832

17618

\begin{align*} 9 x^{2} y^{\prime \prime }-9 y^{\prime } x +10 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

5.521

17619

\begin{align*} 2 x^{2} y^{\prime \prime }-2 y^{\prime } x +20 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

4.894

17620

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +10 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

9.014

17621

\begin{align*} 4 x^{2} y^{\prime \prime }+8 y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

27.242

17622

\begin{align*} 4 x^{2} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

2.507

17623

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

4.034

17624

\begin{align*} x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

7.817

17625

\begin{align*} x^{3} y^{\prime \prime \prime }+22 x^{2} y^{\prime \prime }+124 y^{\prime } x +140 y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.248

17626

\begin{align*} x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }-46 y^{\prime } x +100 y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.242

17627

\begin{align*} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.234

17628

\begin{align*} x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+6 y^{\prime } x +4 y&=0 \\ \end{align*}

[[_3rd_order, _exact, _linear, _homogeneous]]

0.245

17629

\begin{align*} x^{3} y^{\prime \prime \prime }+2 y^{\prime } x -2 y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.227

17630

\begin{align*} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-2 y^{\prime } x -2 y&=0 \\ \end{align*}

[[_3rd_order, _exact, _linear, _homogeneous]]

0.277

17631

\begin{align*} x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+7 y^{\prime } x +y&=0 \\ \end{align*}

[[_3rd_order, _exact, _linear, _homogeneous]]

0.239

17632

\begin{align*} x^{3} y^{\prime \prime \prime \prime }+6 x^{2} y^{\prime \prime \prime }+7 y^{\prime \prime } x +y^{\prime }&=0 \\ \end{align*}

[[_high_order, _missing_y]]

0.493

17633

\begin{align*} x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y&=\frac {1}{x^{5}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

8.935

17634

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y&=x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.883

17635

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=\frac {1}{x^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.542

17636

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +4 y&=\frac {1}{x^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

9.792

17637

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y&=2 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.305

17638

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -16 y&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.806

17639

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +4 y&=8 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.464

17640

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +36 y&=x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

9.152

17641

\begin{align*} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-11 y^{\prime } x +16 y&=\frac {1}{x^{3}} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.445

17642

\begin{align*} x^{3} y^{\prime \prime \prime }+16 x^{2} y^{\prime \prime }+70 y^{\prime } x +80 y&=\frac {1}{x^{13}} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.459

17643

\begin{align*} 3 x^{2} y^{\prime \prime }-4 y^{\prime } x +2 y&=0 \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7.038

17644

\begin{align*} 2 x^{2} y^{\prime \prime }-7 y^{\prime } x +7 y&=0 \\ y \left (1\right ) &= -1 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler]]

6.684

17645

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +4 y&=0 \\ y \left (1\right ) &= -1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

4.769

17646

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +2 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

5.043

17647

\begin{align*} x^{3} y^{\prime \prime \prime }+10 x^{2} y^{\prime \prime }-20 y^{\prime } x +20 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= -1 \\ y^{\prime \prime }\left (1\right ) &= 1 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.303

17648

\begin{align*} x^{3} y^{\prime \prime \prime }+15 x^{2} y^{\prime \prime }+54 y^{\prime } x +42 y&=0 \\ y \left (1\right ) &= 5 \\ y^{\prime }\left (1\right ) &= 0 \\ y^{\prime \prime }\left (1\right ) &= 0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.295

17649

\begin{align*} x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+5 y^{\prime } x -5 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= -1 \\ y^{\prime \prime }\left (1\right ) &= 0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.313

17650

\begin{align*} x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+17 y^{\prime } x -17 y&=0 \\ y \left (1\right ) &= -2 \\ y^{\prime }\left (1\right ) &= 0 \\ y^{\prime \prime }\left (1\right ) &= 0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.312

17651

\begin{align*} 2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y&=\frac {1}{x^{2}} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15.648

17652

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=\ln \left (x \right ) \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15.514

17653

\begin{align*} 4 x^{2} y^{\prime \prime }+y&=x^{3} \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= -1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.119

17654

\begin{align*} 9 x^{2} y^{\prime \prime }+27 y^{\prime } x +10 y&=\frac {1}{x} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= -1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

120.427

17655

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

5.149

17656

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

8.039

17657

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3.787

17658

\begin{align*} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+37 y^{\prime } x&=0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.242

17659

\begin{align*} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 y^{\prime } x&=0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.238

17660

\begin{align*} -y+y^{\prime } x +x^{3} y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.229

17661

\begin{align*} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 y^{\prime } x&=-8 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.389

17662

\begin{align*} 4 y+2 x \left (x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

27.023

17663

\begin{align*} 4 y+2 x \left (x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime }&=\arctan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

10.950

17664

\begin{align*} 4 y+2 x \left (x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

4.333

17665

\begin{align*} 4 y+2 x \left (x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime }&=\arctan \left (x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

33.785

17666

\begin{align*} \left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

27.026

17667

\begin{align*} \left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (4 x^{2}-4\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6.260

17668

\begin{align*} \left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7.027

17669

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

8.219

17670

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.126

17671

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +4 y&=0 \\ y \left (-1\right ) &= 0 \\ y^{\prime }\left (-1\right ) &= 2 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13.933

17672

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ y \left (-1\right ) &= 0 \\ y^{\prime }\left (-1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler]]

4.945

17673

\begin{align*} x^{3} y^{\prime \prime \prime }+16 x^{2} y^{\prime \prime }+79 y^{\prime } x +125 y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.251

17674

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+5 x^{3} y^{\prime \prime \prime }-12 x^{2} y^{\prime \prime }-12 y^{\prime } x +48 y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.283

17675

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+14 x^{3} y^{\prime \prime \prime }+55 x^{2} y^{\prime \prime }+65 y^{\prime } x +15 y&=0 \\ \end{align*}

[[_high_order, _exact, _linear, _homogeneous]]

0.292

17676

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+8 x^{3} y^{\prime \prime \prime }+27 x^{2} y^{\prime \prime }+35 y^{\prime } x +45 y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.295

17677

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+10 x^{3} y^{\prime \prime \prime }+27 x^{2} y^{\prime \prime }+21 y^{\prime } x +4 y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.290

17678

\begin{align*} x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+44 y^{\prime } x +58 y&=0 \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 10 \\ y^{\prime \prime }\left (1\right ) &= -2 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.397

17679

\begin{align*} 6 x^{2} y^{\prime \prime }+5 y^{\prime } x -y&=0 \\ y \left (1\right ) &= a \\ y^{\prime }\left (1\right ) &= b \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15.536

17680

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +7 y&=0 \\ \end{align*}
Series expansion around \(x=1\).

[[_Emden, _Fowler]]

0.986

17681

\begin{align*} \left (x -2\right ) y^{\prime \prime }+y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=-2\).

[[_2nd_order, _with_linear_symmetries]]

0.986

17682

\begin{align*} \left (x^{2}-4\right ) y^{\prime \prime }+16 \left (2+x \right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=1\).

[[_2nd_order, _with_linear_symmetries]]

1.100

17683

\begin{align*} y^{\prime \prime }+3 y^{\prime }-18 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_x]]

0.860

17684

\begin{align*} y^{\prime \prime }-11 y^{\prime }+30 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_x]]

0.856

17685

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_x]]

0.495

17686

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{-x} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.892

17687

\begin{align*} \left (-2-2 x \right ) y^{\prime \prime }+2 y^{\prime }+4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.793

17688

\begin{align*} \left (3 x +2\right ) y^{\prime \prime }+3 y^{\prime } x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_y]]

0.686

17689

\begin{align*} \left (1+3 x \right ) y^{\prime \prime }-3 y^{\prime }-2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.805

17690

\begin{align*} \left (-x^{2}+2\right ) y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }+4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.918

17691

\begin{align*} y^{\prime \prime }-y^{\prime } x +4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Hermite]

0.634

17692

\begin{align*} \left (2 x^{2}+2\right ) y^{\prime \prime }+2 y^{\prime } x -3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.741

17693

\begin{align*} \left (3-2 x \right ) y^{\prime \prime }+2 y^{\prime }-2 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.710

17694

\begin{align*} y^{\prime \prime }-4 x^{2} y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.549

17695

\begin{align*} \left (2 x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x -3 y&=0 \\ y \left (0\right ) &= -2 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Series expansion around \(x=0\).

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.731

17696

\begin{align*} y^{\prime \prime }+y^{\prime } x&=\sin \left (x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_y]]

0.631

17697

\begin{align*} y^{\prime \prime }+y^{\prime }+y x&=\cos \left (x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.728

17698

\begin{align*} y^{\prime \prime }+\left (-1+y^{2}\right ) y^{\prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_x], _Van_der_Pol]

0.431

17699

\begin{align*} y^{\prime \prime }+\left (\frac {{y^{\prime }}^{2}}{3}-1\right ) y^{\prime }+y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_x]]

0.420

17700

\begin{align*} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.611