2.2.184 Problems 18301 to 18400

Table 2.369: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

18301

\[ {}y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2} \]

[_linear]

2.604

18302

\[ {}x \left (-x^{2}+1\right ) y^{\prime }+\left (2 x^{2}-1\right ) y = a \,x^{3} \]

[_linear]

1.308

18303

\[ {}y^{\prime }+\sin \left (x \right ) y = y^{2} \sin \left (x \right ) \]

[_separable]

2.681

18304

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x y = a x y^{2} \]

[_separable]

2.734

18305

\[ {}y^{\prime }+y \cos \left (x \right ) = y^{n} \sin \left (2 x \right ) \]

[_Bernoulli]

7.696

18306

\[ {}3 y^{2} y^{\prime }+y^{3} = x -1 \]

[_rational, _Bernoulli]

2.054

18307

\[ {}y^{\prime }-\tan \left (x \right ) y = y^{4} \sec \left (x \right ) \]

[_Bernoulli]

3.649

18308

\[ {}y \sqrt {x^{2}-1}+x \sqrt {y^{2}-1}\, y^{\prime } = 0 \]

[_separable]

2.656

18309

\[ {}\left ({\mathrm e}^{y}+1\right ) \cos \left (x \right )+{\mathrm e}^{y} \sin \left (x \right ) y^{\prime } = 0 \]

[_separable]

2.449

18310

\[ {}\sqrt {2 a y-y^{2}}\, \csc \left (x \right )+y \tan \left (x \right ) y^{\prime } = 0 \]

[_separable]

8.545

18311

\[ {}y \left (y+3\right ) y^{\prime } = x \left (3+2 y\right ) \]

[_separable]

2.302

18312

\[ {}x^{3}-3 x^{2} y+5 x y^{2}-7 y^{3}+\left (y^{4}+2 y^{2}-x^{3}+5 x^{2} y-21 x y^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational]

1.829

18313

\[ {}x^{3}+4 x y+y^{2}+\left (2 x^{2}+2 x y+4 y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

1.934

18314

\[ {}\sin \left (x \right ) \cos \left (y\right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

[_separable]

3.166

18315

\[ {}x^{2}+\ln \left (y\right )+\frac {x y^{\prime }}{y} = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.816

18316

\[ {}x \left (x -2 y\right ) y^{\prime }+x^{2}+2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

941.839

18317

\[ {}5 x y y^{\prime }-y^{2}-x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

233.014

18318

\[ {}\left (x^{2}+3 x y-y^{2}\right ) y^{\prime }-3 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8.757

18319

\[ {}\left (x^{2}+2 x y\right ) y^{\prime }-3 x^{2}+2 x y-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

14.752

18320

\[ {}5 x y y^{\prime }-4 x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18.473

18321

\[ {}\left (x^{2}-2 x y\right ) y^{\prime }+x^{2}-3 x y+2 y^{2} = 0 \]

[_linear]

2.175

18322

\[ {}3 x^{2} y^{\prime }+2 x^{2}-3 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3.753

18323

\[ {}\left (3 x +2 y-7\right ) y^{\prime } = 2 x -3 y+6 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.036

18324

\[ {}\left (6 x -5 y+4\right ) y^{\prime } = 2 x -y+1 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

55.519

18325

\[ {}\left (5 x -2 y+7\right ) y^{\prime } = x -3 y+2 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16.971

18326

\[ {}\left (x -3 y+4\right ) y^{\prime } = 5 x -7 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8.198

18327

\[ {}\left (x -3 y+4\right ) y^{\prime } = 2 x -6 y+7 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.527

18328

\[ {}\left (5 x -2 y+7\right ) y^{\prime } = 10 x -4 y+6 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.424

18329

\[ {}\left (2 x -2 y+5\right ) y^{\prime } = x -y+3 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.539

18330

\[ {}\left (6 x -4 y+1\right ) y^{\prime } = 3 x -2 y+1 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.563

18331

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

1.734

18332

\[ {}y^{\prime \prime }+2 y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

0.959

18333

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

0.098

18334

\[ {}2 y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-3 y = 0 \]

[[_3rd_order, _missing_x]]

0.098

18335

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

0.570

18336

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime }-5 y = 0 \]

[[_3rd_order, _missing_x]]

0.089

18337

\[ {}2 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

0.103

18338

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

[[_high_order, _missing_x]]

0.083

18339

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0 \]

[[_high_order, _missing_x]]

0.111

18340

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 2 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.205

18341

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }+3 y^{\prime } = x^{2} \]

[[_3rd_order, _missing_y]]

0.203

18342

\[ {}y^{\prime \prime }-4 y^{\prime }+2 y = x \]

[[_2nd_order, _with_linear_symmetries]]

1.355

18343

\[ {}y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

1.125

18344

\[ {}y^{\prime \prime \prime }+5 y^{\prime \prime }+6 y^{\prime } = x \]

[[_3rd_order, _missing_y]]

0.101

18345

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = x \]

[[_3rd_order, _with_linear_symmetries]]

0.199

18346

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

0.629

18347

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \]

[[_2nd_order, _with_linear_symmetries]]

0.743

18348

\[ {}y^{\prime \prime }+y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.612

18349

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-4 y = x \]

[[_3rd_order, _with_linear_symmetries]]

0.112

18350

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.631

18351

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = \cos \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.566

18352

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \]

[[_3rd_order, _with_linear_symmetries]]

0.236

18353

\[ {}y^{\prime \prime \prime \prime }-y = x^{4} \]

[[_high_order, _linear, _nonhomogeneous]]

0.132

18354

\[ {}e y^{\prime \prime } = \frac {P \left (\frac {L}{2}-x \right )}{2} \]

[[_2nd_order, _quadrature]]

1.012

18355

\[ {}e y^{\prime \prime } = \frac {w \left (\frac {L^{2}}{4}-x^{2}\right )}{2} \]

[[_2nd_order, _quadrature]]

1.095

18356

\[ {}e y^{\prime \prime } = -\frac {\left (w L +P \right ) x}{2}-\frac {w \,x^{2}}{2} \]

[[_2nd_order, _quadrature]]

1.099

18357

\[ {}e y^{\prime \prime } = -P \left (L -x \right ) \]

[[_2nd_order, _quadrature]]

0.994

18358

\[ {}e y^{\prime \prime } = -P L +\left (w L +P \right ) x -\frac {w \left (L^{2}+x^{2}\right )}{2} \]

[[_2nd_order, _quadrature]]

1.288

18359

\[ {}e y^{\prime \prime } = P \left (-y+a \right ) \]

[[_2nd_order, _missing_x]]

622.984

18360

\[ {}x^{3} y^{\prime \prime \prime }+7 x^{2} y^{\prime \prime }+8 x y^{\prime } = \ln \left (x \right )^{2} \]

[[_3rd_order, _missing_y]]

0.678

18361

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }-8 y = x \]

[[_2nd_order, _with_linear_symmetries]]

3.178

18362

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = x^{3} \]

[[_3rd_order, _with_linear_symmetries]]

0.353

18363

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = \ln \left (x \right ) \]

[[_3rd_order, _with_linear_symmetries]]

0.689

18364

\[ {}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

0.159

18365

\[ {}x y^{\prime \prime }+2 y^{\prime } = 2 x \]

[[_2nd_order, _missing_y]]

2.707

18366

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

6.160

18367

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3.705

18368

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3.579

18369

\[ {}y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+\csc \left (x \right )^{2} y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

31.615

18370

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (3 x -2\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

4.501

18371

\[ {}\left (3 x^{2}+x \right ) y^{\prime \prime }+2 \left (1+6 x \right ) y^{\prime }+6 y = \sin \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

5.605

18372

\[ {}\left (x^{3}+x^{2}-3 x +1\right ) y^{\prime \prime \prime }+\left (9 x^{2}+6 x -9\right ) y^{\prime \prime }+\left (18 x +6\right ) y^{\prime }+6 y = x^{3} \]

[[_3rd_order, _fully, _exact, _linear]]

0.046

18373

\[ {}x^{2} y^{\prime \prime \prime }+5 x y^{\prime \prime }+4 y^{\prime } = -\frac {1}{x^{2}} \]

[[_3rd_order, _missing_y]]

0.864

18374

\[ {}y^{\prime \prime } = \cos \left (x \right ) \]

[[_2nd_order, _quadrature]]

1.241

18375

\[ {}x^{2} y^{\prime \prime } = \ln \left (x \right ) \]

[[_2nd_order, _quadrature]]

0.405

18376

\[ {}y^{\prime \prime } = -a^{2} y \]

[[_2nd_order, _missing_x]]

2.352

18377

\[ {}y^{\prime \prime } = \frac {1}{y^{2}} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

714.540

18378

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.927

18379

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

19.293

18380

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-1-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

1.904

18381

\[ {}x y^{\prime \prime }+3 y^{\prime } = 3 x \]

[[_2nd_order, _missing_y]]

3.823

18382

\[ {}x = y^{\prime \prime }+y^{\prime } \]

[[_2nd_order, _missing_y]]

3.556

18383

\[ {}x = y+{y^{\prime }}^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.675

18384

\[ {}y = x y^{\prime }-{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.893

18385

\[ {}V^{\prime \prime }+\frac {2 V^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

1.880

18386

\[ {}V^{\prime \prime }+\frac {V^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

2.080

18387

\[ {}\left [\begin {array}{c} z^{\prime }+7 y-3 z=0 \\ 7 y^{\prime }+63 y-36 z=0 \end {array}\right ] \]

system_of_ODEs

0.506

18388

\[ {}\left [\begin {array}{c} z^{\prime }+2 y^{\prime }+3 y=0 \\ y^{\prime }+3 y-2 z=0 \end {array}\right ] \]

system_of_ODEs

0.611

18389

\[ {}\left [\begin {array}{c} y^{\prime }+3 y+z=0 \\ z^{\prime }+3 y+5 z=0 \end {array}\right ] \]

system_of_ODEs

0.480

18390

\[ {}\left [\begin {array}{c} y^{\prime }+3 y+2 z=0 \\ z^{\prime }+2 y-4 z=0 \end {array}\right ] \]

system_of_ODEs

0.729

18391

\[ {}\left [\begin {array}{c} y^{\prime }-3 y-2 z=0 \\ z^{\prime }+y-2 z=0 \end {array}\right ] \]

system_of_ODEs

0.730

18392

\[ {}\left [\begin {array}{c} y^{\prime }+z^{\prime }+6 y=0 \\ z^{\prime }+5 y+z=0 \end {array}\right ] \]

system_of_ODEs

0.605

18393

\[ {}\left [\begin {array}{c} z^{\prime }+y^{\prime }+5 y-3 z=x +{\mathrm e}^{x} \\ y^{\prime }+2 y-z={\mathrm e}^{x} \end {array}\right ] \]

system_of_ODEs

0.889

18394

\[ {}\left [\begin {array}{c} z^{\prime }+y+3 z={\mathrm e}^{x} \\ y^{\prime }+3 y+4 z={\mathrm e}^{2 x} \end {array}\right ] \]

system_of_ODEs

0.923

18395

\[ {}\left [\begin {array}{c} z^{\prime }-3 y+2 z={\mathrm e}^{x} \\ y^{\prime }+2 y-z={\mathrm e}^{3 x} \end {array}\right ] \]

system_of_ODEs

1.153

18396

\[ {}\left [\begin {array}{c} z^{\prime }+5 y-2 z=x \\ y^{\prime }+4 y+z=x \end {array}\right ] \]

system_of_ODEs

1.319

18397

\[ {}\left [\begin {array}{c} z^{\prime }+7 y-9 z={\mathrm e}^{x} \\ y^{\prime }-y-3 z={\mathrm e}^{2 x} \end {array}\right ] \]

system_of_ODEs

1.750

18398

\[ {}\left [\begin {array}{c} y^{\prime }-2 y-2 z={\mathrm e}^{3 x} \\ z^{\prime }+5 y-2 z={\mathrm e}^{4 x} \end {array}\right ] \]

system_of_ODEs

1.635

18399

\[ {}{y^{\prime }}^{2}+x y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.407

18400

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}} = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.695