2.3.19 first order ode nonlinear p but separable

Table 2.369: first order ode nonlinear p but separable

#

ODE

CAS classification

Solved?

4910

\[ {}{y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right ) \left (y-b \right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4911

\[ {}{y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right )^{2} \left (y-b \right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4912

\[ {}{y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right ) \left (y-b \right ) \left (y-c \right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4913

\[ {}{y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right )^{2} \left (y-b \right ) \left (y-c \right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4914

\[ {}{y^{\prime }}^{2} = f \left (x \right )^{2} \left (y-a \right ) \left (y-b \right ) \left (y-c \right )^{2} \]

[_separable]

4988

\[ {}x {y^{\prime }}^{2} = y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5017

\[ {}\left (x +1\right ) {y^{\prime }}^{2} = y \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

5035

\[ {}x^{2} {y^{\prime }}^{2}+y^{2}-y^{4} = 0 \]

[_separable]

5054

\[ {}\left (-x^{2}+1\right ) {y^{\prime }}^{2} = 1-y^{2} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5075

\[ {}3 x^{4} {y^{\prime }}^{2}-y x -y = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5147

\[ {}{y^{\prime }}^{3} = \left (a +b y+c y^{2}\right ) f \left (x \right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5149

\[ {}{y^{\prime }}^{3}+f \left (x \right ) \left (y-a \right )^{2} \left (y-b \right )^{2} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5150

\[ {}{y^{\prime }}^{3}+f \left (x \right ) \left (y-a \right )^{2} \left (y-b \right )^{2} \left (y-c \right )^{2} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5206

\[ {}{y^{\prime }}^{4}+f \left (x \right ) \left (y-a \right )^{3} \left (y-b \right )^{2} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5207

\[ {}{y^{\prime }}^{4}+f \left (x \right ) \left (y-a \right )^{3} \left (y-b \right )^{3} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5208

\[ {}{y^{\prime }}^{4}+f \left (x \right ) \left (y-a \right )^{3} \left (y-b \right )^{3} \left (y-c \right )^{2} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

7992

\[ {}y = x {y^{\prime }}^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8271

\[ {}{y^{\prime }}^{2} = \frac {y}{x} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8273

\[ {}{y^{\prime }}^{2} = \frac {y^{3}}{x} \]

[[_homogeneous, ‘class G‘]]

8274

\[ {}{y^{\prime }}^{3} = \frac {y^{2}}{x} \]

[[_homogeneous, ‘class G‘], _rational]

8275

\[ {}{y^{\prime }}^{2} = \frac {1}{y x} \]

[[_homogeneous, ‘class G‘]]

8276

\[ {}{y^{\prime }}^{2} = \frac {1}{x y^{3}} \]

[[_homogeneous, ‘class G‘]]

8277

\[ {}{y^{\prime }}^{2} = \frac {1}{y^{3} x^{2}} \]

[_separable]

8278

\[ {}{y^{\prime }}^{4} = \frac {1}{x y^{3}} \]

[[_homogeneous, ‘class G‘], _rational]

8279

\[ {}{y^{\prime }}^{2} = \frac {1}{x^{3} y^{4}} \]

[_separable]

9641

\[ {}x {y^{\prime }}^{2}-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9665

\[ {}x^{2} {y^{\prime }}^{2}+y^{2}-y^{4} = 0 \]

[_separable]

9681

\[ {}\left (x^{2}-1\right ) {y^{\prime }}^{2}-y^{2}+1 = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9752

\[ {}{y^{\prime }}^{3}-f \left (x \right ) \left (a y^{2}+b y+c \right )^{2} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

12127

\[ {}y = \left (x +1\right ) {y^{\prime }}^{2} \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

13129

\[ {}\sinh \left (x \right ) {y^{\prime }}^{2}+3 y = 0 \]

[‘y=_G(x,y’)‘]

13493

\[ {}{y^{\prime }}^{2}-9 y x = 0 \]

[[_homogeneous, ‘class G‘]]

15984

\[ {}{y^{\prime }}^{3}+\left (x +2\right ) {\mathrm e}^{y} = 0 \]

[[_1st_order, _with_exponential_symmetries]]