| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
6 y-2 y^{\prime } x +y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.598 |
|
| \begin{align*}
y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.654 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +9 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.735 |
|
| \begin{align*}
y^{\prime \prime }-\cos \left (x \right ) y&=\sin \left (x \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.727 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+6 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✗ |
0.786 |
|
| \begin{align*}
x \left (x +1\right ) y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}+5 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✓ |
✗ |
0.319 |
|
| \begin{align*}
\left (x^{2}-3 x -4\right ) y^{\prime \prime }-\left (x +1\right ) y^{\prime }+\left (x^{2}-1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.974 |
|
| \begin{align*}
\left (x^{2}-25\right )^{2} y^{\prime \prime }-\left (x +5\right ) y^{\prime }+10 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.044 |
|
| \begin{align*}
2 y^{\prime \prime } x -5 y^{\prime }-3 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.346 |
|
| \begin{align*}
5 y^{\prime \prime } x +8 y^{\prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.044 |
|
| \begin{align*}
9 y^{\prime \prime } x +14 y^{\prime }+\left (x -1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.373 |
|
| \begin{align*}
7 y^{\prime \prime } x +10 y^{\prime }+\left (-x^{2}+1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.546 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x -1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
7.057 |
|
| \begin{align*}
y^{\prime \prime } x +2 y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
5.752 |
|
| \begin{align*}
y^{\prime \prime }+\frac {8 y^{\prime }}{3 x}-\left (\frac {2}{3 x^{2}}-1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.019 |
|
| \begin{align*}
y^{\prime \prime }+\left (\frac {16}{3 x}-1\right ) y^{\prime }-\frac {16 y}{3 x^{2}}&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.141 |
|
| \begin{align*}
y^{\prime \prime }+\left (\frac {1}{2 x}-2\right ) y^{\prime }-\frac {35 y}{16 x^{2}}&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
8.564 |
|
| \begin{align*}
y^{\prime \prime }-\left (\frac {1}{x}+2\right ) y^{\prime }+\left (x +\frac {1}{x^{2}}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.267 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+7 y^{\prime } x -7 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.115 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.801 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.812 |
|
| \begin{align*}
y^{\prime \prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.531 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (-k^{2}+x^{2}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Bessel] |
✓ |
✓ |
✓ |
✗ |
1.312 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +k \left (1+k \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Gegenbauer] |
✓ |
✓ |
✓ |
✓ |
0.974 |
|
| \begin{align*}
\left (1-x \right ) x y^{\prime \prime }+\left (\frac {1}{2}-3 x \right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.396 |
|
| \begin{align*}
\left (1-x \right ) x y^{\prime \prime }+y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.196 |
|
| \begin{align*}
\left (1-x \right ) x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Jacobi] |
✓ |
✓ |
✓ |
✓ |
1.244 |
|
| \begin{align*}
y^{\prime \prime } x +\left (1-x \right ) y^{\prime }+k y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Laguerre] |
✓ |
✓ |
✓ |
✓ |
1.472 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.083 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (16 x^{2}-25\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
7.295 |
|
| \begin{align*}
y^{\prime \prime }-7 y^{\prime }+10 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
7.557 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
7.261 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
7.740 |
|
| \begin{align*}
\left (1+t \right )^{2} y^{\prime \prime }-2 \left (1+t \right ) y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.245 |
|
| \begin{align*}
t y^{\prime \prime }+2 y^{\prime }+t y&=0 \\
\end{align*} |
[_Lienard] |
✓ |
✓ |
✓ |
✓ |
0.203 |
|
| \begin{align*}
y^{\prime \prime }+7 y^{\prime }+10 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.424 |
|
| \begin{align*}
6 y^{\prime \prime }+5 y^{\prime }-4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
9.213 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
5.439 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.712 |
|
| \begin{align*}
y^{\prime \prime }-10 y^{\prime }+34 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
9.101 |
|
| \begin{align*}
2 y^{\prime \prime }-5 y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
5.294 |
|
| \begin{align*}
15 y^{\prime \prime }-11 y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
5.852 |
|
| \begin{align*}
20 y^{\prime \prime }+y^{\prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
9.507 |
|
| \begin{align*}
12 y^{\prime \prime }+8 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
5.152 |
|
| \begin{align*}
2 y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime }&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.101 |
|
| \begin{align*}
9 y^{\prime \prime \prime }+36 y^{\prime \prime }+40 y^{\prime }&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.103 |
|
| \begin{align*}
9 y^{\prime \prime \prime }+12 y^{\prime \prime }+13 y^{\prime }&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.104 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-8 y&=-t \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
44.273 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }&=5 t^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
6.941 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }&=-3 \sin \left (t \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
6.137 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=3 \sin \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
34.180 |
|
| \begin{align*}
y^{\prime \prime }-9 y&=\frac {1}{1+{\mathrm e}^{3 t}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
33.554 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }&=\frac {1}{1+{\mathrm e}^{2 t}} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✗ |
8.053 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }+2 y&=-4 \,{\mathrm e}^{-2 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
34.409 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+13 y&=3 \,{\mathrm e}^{-2 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
33.260 |
|
| \begin{align*}
y^{\prime \prime }+9 y^{\prime }+20 y&=-2 \,{\mathrm e}^{t} t \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
34.875 |
|
| \begin{align*}
y^{\prime \prime }+7 y^{\prime }+12 y&=3 t^{2} {\mathrm e}^{-4 t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
44.690 |
|
| \begin{align*}
y^{\prime \prime \prime }+3 y^{\prime \prime }-9 y^{\prime }+5 y&={\mathrm e}^{t} \\
\end{align*} |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.222 |
|
| \begin{align*}
y^{\prime \prime \prime }-12 y^{\prime }-16 y&={\mathrm e}^{4 t}-{\mathrm e}^{-2 t} \\
\end{align*} |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.474 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+18 y^{\prime \prime }+30 y^{\prime }+25 y&={\mathrm e}^{-t} \cos \left (2 t \right )+{\mathrm e}^{-2 t} \sin \left (t \right ) \\
\end{align*} |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.675 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+14 y^{\prime \prime }+20 y^{\prime }+25 y&=t^{2} \\
\end{align*} |
[[_high_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.252 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.032 |
|
| \begin{align*}
y^{\prime \prime }+10 y^{\prime }+16 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.809 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= -8 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.106 |
|
| \begin{align*}
y^{\prime \prime }+25 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
35.816 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=t \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
49.801 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-4 y&={\mathrm e}^{t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
3.819 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=\sin \left (3 t \right ) \\
y \left (0\right ) &= 6 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
51.922 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cos \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.068 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=\tan \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
34.256 |
|
| \begin{align*}
y^{\prime \prime }+y&=\csc \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
4.302 |
|
| \begin{align*}
y^{\prime \prime }-8 y^{\prime }+16 y&=\frac {{\mathrm e}^{4 t}}{t^{3}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
35.047 |
|
| \begin{align*}
y^{\prime \prime }-8 y^{\prime }+16 y&=\frac {{\mathrm e}^{4 t}}{t^{3}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
32.829 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+y&={\mathrm e}^{t} \ln \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
34.856 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+y&={\mathrm e}^{t} \ln \left (t \right ) \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
40.109 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime } t +t^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
7.322 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
7.732 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
8.449 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-5 y^{\prime } t +5 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
6.687 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+7 y^{\prime } x +8 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
5.998 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
10.769 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
4.115 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
10.663 |
|
| \begin{align*}
5 x^{2} y^{\prime \prime }-y^{\prime } x +2 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
48.474 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-7 y^{\prime } x +25 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
7.261 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y&=8 x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
11.827 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.926 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=x \,{\mathrm e}^{x} \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.961 |
|
| \begin{align*}
\left (2 x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x -3 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.746 |
|
| \begin{align*}
3 y^{\prime \prime } x +11 y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.373 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }+5 y^{\prime } x -2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
1.027 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-7 y^{\prime } x +\left (-2 x^{2}+7\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
7.484 |
|
| \begin{align*}
\left (1-x \right ) x y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }+10 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Jacobi] |
✓ |
✓ |
✓ |
✓ |
1.327 |
|
| \begin{align*}
x \left (x +1\right ) y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }-10 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.329 |
|
| \begin{align*}
t \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right )+y y^{\prime }&=1 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✗ |
✗ |
1.612 |
|
| \begin{align*}
4 x^{\prime \prime }+9 x&=0 \\
x \left (0\right ) &= -1 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
6.390 |
|
| \begin{align*}
9 x^{\prime \prime }+4 x&=0 \\
x \left (0\right ) &= -{\frac {1}{2}} \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
4.927 |
|
| \begin{align*}
x^{\prime \prime }+64 x&=0 \\
x \left (0\right ) &= {\frac {3}{4}} \\
x^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
8.062 |
|
| \begin{align*}
x^{\prime \prime }+100 x&=0 \\
x \left (0\right ) &= -{\frac {1}{4}} \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
5.430 |
|
| \begin{align*}
x^{\prime \prime }+x&=0 \\
x \left (0\right ) &= 3 \\
x^{\prime }\left (0\right ) &= -4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.960 |
|