2.2.185 Problems 18401 to 18500

Table 2.371: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

18401

[x=2xy=3y]

system_of_ODEs

0.408

18402

[x=x2yy=4x5y]

system_of_ODEs

0.565

18403

[x=3x+4yy=2x+3y]

system_of_ODEs

0.453

18404

[x=5x+2yy=17x5y]

system_of_ODEs

0.548

18405

[x=4xyy=x2y]

system_of_ODEs

0.443

18406

[x=4x3yy=8x6y]

system_of_ODEs

0.503

18407

[x=4x2yy=5x+2y]

system_of_ODEs

0.576

18408

x+(5x49x2)x+x5=0

[[_2nd_order, _missing_x]]

2.263

18409

x=3t2+4t
i.c.

[_quadrature]

0.694

18410

x=bet
i.c.

[_quadrature]

0.315

18411

x=1t2+1
i.c.

[_quadrature]

0.760

18412

x=1t2+1
i.c.

[_quadrature]

0.773

18413

x=cos(t)
i.c.

[_quadrature]

0.751

18414

x=cos(t)sin(t)
i.c.

[_quadrature]

1.139

18415

x=x23x+2
i.c.

[_quadrature]

1.634

18416

x=bex
i.c.

[_quadrature]

0.943

18417

x=(x1)2
i.c.

[_quadrature]

1.176

18418

x=x21
i.c.

[_quadrature]

4.401

18419

x=2x
i.c.

[_quadrature]

1.583

18420

x=tan(x)
i.c.

[_quadrature]

3.045

18421

3t2xtx+(3t3x2+t3x4)x=0

[_separable]

3.939

18422

1+2x+(t2+4)x=0

[_separable]

1.881

18423

x=cos(xt)

[[_homogeneous, ‘class A‘], _dAlembert]

2.768

18424

(t2x2)x=tx

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18.569

18425

e3tx+3xe3t=2t

[[_linear, ‘class A‘]]

1.872

18426

2t+3x+(3tx)x=t2

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1.487

18427

x+2x=et

[[_linear, ‘class A‘]]

1.358

18428

x+xtan(t)=0

[_separable]

1.790

18429

xxtan(t)=4sin(t)

[_linear]

1.965

18430

t3x+(3t2+2)x=t3

[_linear]

2.533

18431

x+2tx+tx4=0

[_separable]

2.663

18432

tx+xln(t)=t2

[_linear]

1.352

18433

tx+xg(t)=h(t)

[_linear]

1.165

18434

t2x6tx+12x=0

[[_Emden, _Fowler]]

0.937

18435

x=λx

[_quadrature]

0.856

18436

[x=xy=x+2y]

system_of_ODEs

0.426

18437

t2x2tx+2x=0

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.024

18438

x5x+6x=0

[[_2nd_order, _missing_x]]

0.842

18439

x4x+4x=0

[[_2nd_order, _missing_x]]

0.963

18440

x4x+5x=0

[[_2nd_order, _missing_x]]

2.105

18441

x+3x=0

[[_2nd_order, _missing_x]]

1.895

18442

x3x+2x=0
i.c.

[[_2nd_order, _missing_x]]

1.154

18443

x+x=0
i.c.

[[_2nd_order, _missing_x]]

2.052

18444

x+2x+x=0
i.c.

[[_2nd_order, _missing_x]]

1.323

18445

x2x+2x=0
i.c.

[[_2nd_order, _missing_x]]

2.143

18446

xx=t2
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.182

18447

xx=et
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.219

18448

x+2x+4x=etcos(2t)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

67.877

18449

xx+x=sin(2t)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

78.315

18450

x+4x+3x=tsin(t)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.694

18451

x+x=cos(t)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.517

18452

x2yx2y22y+4xy+4y=0

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.133

18453

y+cy=a

[_quadrature]

0.872

18454

y+yx+k2y=0

[[_2nd_order, _with_linear_symmetries]]

0.808

18455

cos(x)y+sin(x)y+nysin(x)=0

[[_2nd_order, _with_linear_symmetries]]

1.395

18456

y=1y2arcsin(y)x

[_separable]

5.431

18457

v=(1v+v4)1/3

[[_2nd_order, _missing_x]]

3.306

18458

v+u2v=sin(u)

[_linear]

1.676

18459

y+y=(y+2x)1/4

[NONE]

0.435

18460

v+2vu=3

[_linear]

2.504

18461

sin(x)cos(y)2+cos(x)2y=0

[_separable]

3.977

18462

y+1y2x2+1=0

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

26.539

18463

yxy=b(1+x2y)

[_separable]

1.033

18464

x=k(Anx)(Mmx)

[_quadrature]

7.715

18465

y=1+1x1y2+21x(y2+2)

[_separable]

1.595

18466

y2=x(yx)y

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

39.711

18467

2x2y+y3x3y=0

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

75.541

18468

2ax+by+(2cy+bx+e)y=g

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.614

18469

sec(x)2tan(y)y+sec(y)2tan(x)=0

[_separable]

38.659

18470

x+yy=my

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12.075

18471

2xy3+(1y23x2y4)y=0

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

34.314

18472

(T+1t2T2)T=Ttt2T2t

[_exact]

3.225

18473

y+xy=x

[_separable]

1.483

18474

y+yx=sin(x)

[_linear]

1.446

18475

y+yx=sin(x)y3

[_Bernoulli]

35.661

18476

p=p+at32pt2t(t2+1)

[_linear]

1.175

18477

(Tln(t)1)T=tT

[_Bernoulli]

2.440

18478

y+ycos(x)=sin(2x)2

[_linear]

2.412

18479

ycos(x)y=y2cos(x)(1sin(x))

[_Bernoulli]

6.082

18480

xy2y+2y=0

[_rational, _dAlembert]

0.978

18481

2y3+y2y=0

[_quadrature]

0.347

18482

y=ezy

[_quadrature]

0.521

18483

t2+T=T

[[_homogeneous, ‘class G‘]]

4.308

18484

(x21)y2=1

[_quadrature]

0.352

18485

y=(x+y)2

[[_homogeneous, ‘class C‘], _Riccati]

1.482

18486

θ=p2θ

[[_2nd_order, _missing_x]]

1.655

18487

sec(θ)2=msk

[_quadrature]

0.350

18488

y=m1+y2k

[[_2nd_order, _missing_x]]

2.990

18489

ϕ=4πncv02+2e(ϕV0)m

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

58.454

18490

y=x(ay2+b)

[_separable]

2.460

18491

n=(n2+1)x

[_separable]

2.016

18492

v+2vu=3v

[_separable]

1.684

18493

u2+1v=2u1v2

[_separable]

9.791

18494

1+v=eu2

[_quadrature]

0.517

18495

yx=ysin(x21)2yx

[_separable]

2.138

18496

y=1+2yxy

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

39.421

18497

v+2vu=2u

[_separable]

1.485

18498

1+v2+(u2+1)vv=0

[_separable]

2.920

18499

uln(u)v+sin(v)2=1

[_separable]

3.790

18500

4yy32x2y2+4xyy+x3=16y2

[[_1st_order, _with_linear_symmetries]]

115.909