2.2.185 Problems 18401 to 18500

Table 2.371: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

18401

\[ {}v^{\prime \prime }+\frac {2 v^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

0.462

18402

\[ {}y^{\prime \prime }-k^{2} y = 0 \]

[[_2nd_order, _missing_x]]

3.988

18403

\[ {}\left (1-x \right ) y^{\prime }-y-1 = 0 \]

[_separable]

1.391

18404

\[ {}y^{\prime }+\sqrt {\frac {1-y^{2}}{-x^{2}+1}} = 0 \]

unknown

1690.547

18405

\[ {}y-x y^{\prime } = a \left (y^{2}+y^{\prime }\right ) \]

[_separable]

191.412

18406

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

[_separable]

510.199

18407

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

454.347

18408

\[ {}y^{2}+\left (x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

120.134

18409

\[ {}x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

323.655

18410

\[ {}\left (4 y+3 x \right ) y^{\prime }+y-2 x = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

450.299

18411

\[ {}3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.437

18412

\[ {}\left (y-3 x +3\right ) y^{\prime } = 2 y-x -4 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.693

18413

\[ {}x^{2}-4 x y-2 y^{2}+\left (y^{2}-4 x y-2 x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

7.023

18414

\[ {}x +y^{\prime } y+\frac {-y+x y^{\prime }}{y^{2}+x^{2}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

1.363

18415

\[ {}a^{2}-2 x y-y^{2}-\left (x +y\right )^{2} y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

1.521

18416

\[ {}2 a x +b y+g +\left (2 c y+b x +e \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.584

18417

\[ {}\left (2 x^{2} y+4 x^{3}-12 x y^{2}+3 y^{2}-x \,{\mathrm e}^{y}+{\mathrm e}^{2 x}\right ) y^{\prime }+12 x^{2} y+2 x y^{2}+4 x^{3}-4 y^{3}+2 y \,{\mathrm e}^{2 x}-{\mathrm e}^{y} = 0 \]

[_exact]

2.919

18418

\[ {}y-x y^{\prime }+\ln \left (x \right ) = 0 \]

[_linear]

0.876

18419

\[ {}\left (x y+1\right ) y-\left (1-x y\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.288

18420

\[ {}a \left (x y^{\prime }+2 y\right ) = x y y^{\prime } \]

[_separable]

1.654

18421

\[ {}x^{4} {\mathrm e}^{x}-2 m x y^{2}+2 m \,x^{2} y y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _Bernoulli]

2.044

18422

\[ {}y \left (2 x y+{\mathrm e}^{x}\right )-{\mathrm e}^{x} y^{\prime } = 0 \]

[_Bernoulli]

2.026

18423

\[ {}x^{2} y-2 x y^{2}-\left (x^{3}-3 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6.673

18424

\[ {}y \left (x y+2 x^{2} y^{2}\right )+x \left (x y-x^{2} y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.553

18425

\[ {}x^{2}+y^{2}+2 x +2 y^{\prime } y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2.016

18426

\[ {}x^{2}+y^{2}-x^{2} y y^{\prime } = 0 \]

[_rational, _Bernoulli]

1.329

18427

\[ {}3 x^{2} y^{4}+2 x y+\left (2 x^{3} y^{3}-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

3.756

18428

\[ {}y^{4}+2 y+\left (x y^{3}+2 y^{4}-4 x \right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2.942

18429

\[ {}y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

85.610

18430

\[ {}2 x^{2} y-3 y^{4}+\left (3 x^{3}+2 x y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

6.967

18431

\[ {}y^{2}+2 x^{2} y+\left (2 x^{3}-x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.836

18432

\[ {}x y^{\prime }-a y = x +1 \]

[_linear]

1.680

18433

\[ {}y^{\prime }+y = {\mathrm e}^{-x} \]

[[_linear, ‘class A‘]]

0.964

18434

\[ {}\cos \left (x \right )^{2} y^{\prime }+y = \tan \left (x \right ) \]

[_linear]

4.297

18435

\[ {}\left (x +1\right ) y^{\prime }-n y = {\mathrm e}^{x} \left (x +1\right )^{n +1} \]

[_linear]

2.054

18436

\[ {}\left (x^{2}+1\right ) y^{\prime }+2 x y = 4 x^{2} \]

[_linear]

1.321

18437

\[ {}y^{\prime }+\frac {y}{x} = x^{2} y^{6} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.393

18438

\[ {}1+y^{2} = \left (\arctan \left (y\right )-x \right ) y^{\prime } \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

536.425

18439

\[ {}y^{\prime }+\frac {2 y}{x} = 3 x^{2} y^{{1}/{3}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

456.019

18440

\[ {}y^{\prime }+\frac {x y}{-x^{2}+1} = x \sqrt {y} \]

unknown

356.733

18441

\[ {}3 x \left (-x^{2}+1\right ) y^{2} y^{\prime }+\left (2 x^{2}-1\right ) y^{3} = a \,x^{3} \]

[_rational, _Bernoulli]

97.450

18442

\[ {}\left (x +y\right )^{2} y^{\prime } = a^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

174.097

18443

\[ {}-y+x y^{\prime } = \sqrt {y^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

547.937

18444

\[ {}-y+x y^{\prime } = x \sqrt {y^{2}+x^{2}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4.840

18445

\[ {}\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime } = 0 \]

[_separable]

37.369

18446

\[ {}\left (x^{2}-x^{2} y\right ) y^{\prime }+y^{2}+x y^{2} = 0 \]

[_separable]

1.638

18447

\[ {}y^{\prime }+\frac {\left (-2 x +1\right ) y}{x^{2}} = 1 \]

[_linear]

1.304

18448

\[ {}3 y^{\prime }+\frac {2 y}{x +1} = \frac {x^{3}}{y^{2}} \]

[_rational, _Bernoulli]

2.423

18449

\[ {}2 x -y+1+\left (2 y-x -1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.001

18450

\[ {}y^{\prime }+\frac {y}{\sqrt {-x^{2}+1}} = \frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \]

[_linear]

3.489

18451

\[ {}x y^{\prime }+\frac {y^{2}}{x} = y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1.811

18452

\[ {}x \left (x^{2}+y^{2}-a^{2}\right )+y \left (x^{2}-y^{2}-b^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational]

1.821

18453

\[ {}y^{\prime }+\frac {4 x y}{x^{2}+1} = \frac {1}{\left (x^{2}+1\right )^{3}} \]

[_linear]

2.182

18454

\[ {}x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

13.868

18455

\[ {}x \left (-x^{2}+1\right ) y^{\prime }+\left (2 x^{2}-1\right ) y = a \,x^{3} \]

[_linear]

1.191

18456

\[ {}x^{2}+y^{2}+1-2 x y y^{\prime } = 0 \]

[_rational, _Bernoulli]

1.812

18457

\[ {}x +y^{\prime } y = m \left (-y+x y^{\prime }\right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.676

18458

\[ {}y^{\prime }+y \cos \left (x \right ) = y^{n} \sin \left (2 x \right ) \]

[_Bernoulli]

5.617

18459

\[ {}\left (x +1\right ) y^{\prime }+1 = 2 \,{\mathrm e}^{y} \]

[_separable]

1.470

18460

\[ {}y^{\prime } = x^{3} y^{3}-x y \]

[_Bernoulli]

1.187

18461

\[ {}y+\left (a \,x^{2} y^{n}-2 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1.346

18462

\[ {}\left (1+6 y^{2}-3 x^{2} y\right ) y^{\prime } = 3 x y^{2}-x^{2} \]

[_exact, _rational]

1.498

18463

\[ {}y \left (x^{2}+y^{2}+a^{2}\right ) y^{\prime }+x \left (x^{2}+y^{2}-a^{2}\right ) = 0 \]

[_exact, _rational]

1.889

18464

\[ {}\left (y^{3} x^{2}+x y\right ) y^{\prime } = 1 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.966

18465

\[ {}y^{\prime } y = a x \]

[_separable]

3.168

18466

\[ {}\sqrt {a^{2}+x^{2}}\, y^{\prime }+y = \sqrt {a^{2}+x^{2}}-x \]

[_linear]

1.800

18467

\[ {}\left (x +y\right ) y^{\prime }+x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.703

18468

\[ {}y^{\prime } y+b y^{2} = a \cos \left (x \right ) \]

[_Bernoulli]

2.743

18469

\[ {}2 x y+\left (y^{2}-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

11.116

18470

\[ {}y-x y^{\prime } = b \left (1+x^{2} y^{\prime }\right ) \]

[_separable]

1.502

18471

\[ {}3 y+2 x +4-\left (4 x +6 y+5\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.487

18472

\[ {}\left (x^{3} y^{3}+x^{2} y^{2}+x y+1\right ) y+\left (x^{3} y^{3}-x^{2} y^{2}-x y+1\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.083

18473

\[ {}2 x^{2} y^{2}+y-\left (x^{3} y-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.602

18474

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

383.145

18475

\[ {}y^{\prime }+\frac {n y}{x} = a \,x^{-n} \]

[_linear]

240.335

18476

\[ {}\left (x -y\right )^{2} y^{\prime } = a^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

51.046

18477

\[ {}{y^{\prime }}^{3}+2 x {y^{\prime }}^{2}-y^{2} {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0 \]

[_quadrature]

4.030

18478

\[ {}{y^{\prime }}^{2}-a \,x^{3} = 0 \]

[_quadrature]

0.582

18479

\[ {}{y^{\prime }}^{3} \left (x +2 y\right )+3 {y^{\prime }}^{2} \left (x +y\right )+\left (2 x +y\right ) y^{\prime } = 0 \]

[_quadrature]

78.843

18480

\[ {}{y^{\prime }}^{3} = a \,x^{4} \]

[_quadrature]

0.940

18481

\[ {}4 y^{2} {y^{\prime }}^{2}+2 y^{\prime } x y \left (3 x +1\right )+3 x^{3} = 0 \]

[_separable]

20.232

18482

\[ {}{y^{\prime }}^{2}-7 y^{\prime }+12 = 0 \]

[_quadrature]

1.653

18483

\[ {}x -y^{\prime } y = a {y^{\prime }}^{2} \]

unknown

1500.431

18484

\[ {}y = -a y^{\prime }+\frac {c +a \arcsin \left (y^{\prime }\right )}{\sqrt {1-{y^{\prime }}^{2}}} \]

[_quadrature]

888.254

18485

\[ {}4 y = x^{2}+{y^{\prime }}^{2} \]

[[_homogeneous, ‘class G‘]]

3.225

18486

\[ {}x {y^{\prime }}^{2}-2 y^{\prime } y+a x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.490

18487

\[ {}y = 2 y^{\prime }+3 {y^{\prime }}^{2} \]

[_quadrature]

0.812

18488

\[ {}x \left (1+{y^{\prime }}^{2}\right ) = 1 \]

[_quadrature]

0.484

18489

\[ {}x^{2} = a^{2} \left (1+{y^{\prime }}^{2}\right ) \]

[_quadrature]

0.243

18490

\[ {}y^{2} = a^{2} \left (1+{y^{\prime }}^{2}\right ) \]

[_quadrature]

1.091

18491

\[ {}y^{2}+x y y^{\prime }-x^{2} {y^{\prime }}^{2} = 0 \]

[_separable]

0.652

18492

\[ {}y = {y^{\prime }}^{2} y+2 x y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.970

18493

\[ {}y = \left (1+y^{\prime }\right ) x +{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.536

18494

\[ {}x^{2} \left (y-x y^{\prime }\right ) = {y^{\prime }}^{2} y \]

[[_1st_order, _with_linear_symmetries]]

5.341

18495

\[ {}y = x y^{\prime }+\arcsin \left (y^{\prime }\right ) \]

[_Clairaut]

3.350

18496

\[ {}{\mathrm e}^{4 x} \left (y^{\prime }-1\right )+{\mathrm e}^{2 y} {y^{\prime }}^{2} = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.639

18497

\[ {}x y \left (y-x y^{\prime }\right ) = x +y^{\prime } y \]

[_separable]

5.612

18498

\[ {}y^{\prime }+2 x y = y^{2}+x^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

2.789

18499

\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+2 y^{2}-x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.017

18500

\[ {}y = y^{\prime } \left (x -b \right )+\frac {a}{y^{\prime }} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.711