2.3.20 first order ode riccati

Table 2.371: first order ode riccati

#

ODE

CAS classification

Solved?

27

\[ {}y^{\prime } = 2 x^{2} y^{2} \]
i.c.

[_separable]

39

\[ {}y^{\prime } = x^{2}+y^{2}-1 \]
i.c.

[_Riccati]

40

\[ {}y^{\prime } = x +\frac {y^{2}}{2} \]
i.c.

[[_Riccati, _special]]

42

\[ {}y^{\prime }+2 x y^{2} = 0 \]

[_separable]

50

\[ {}\left (x +1\right )^{2} y^{\prime } = \left (1+y\right )^{2} \]

[_separable]

58

\[ {}x^{2} y^{\prime } = 1-x^{2}+y^{2}-x^{2} y^{2} \]

[_separable]

60

\[ {}y^{\prime } = 3 x^{2} \left (1+y^{2}\right ) \]
i.c.

[_separable]

66

\[ {}y^{\prime } = 2 x y^{2}+3 x^{2} y^{2} \]
i.c.

[_separable]

113

\[ {}x^{2} y^{\prime } = y x +y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

121

\[ {}y^{\prime } = \left (4 x +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

167

\[ {}y^{\prime }+y^{2} = x^{2}+1 \]

[_Riccati]

168

\[ {}y^{\prime }+2 y x = 1+x^{2}+y^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

180

\[ {}x y^{2}+3 y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

181

\[ {}y x +y^{2}-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

184

\[ {}2 x y^{2}+x^{2} y^{\prime } = y^{2} \]

[_separable]

186

\[ {}2 y x +x^{2} y^{\prime } = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

188

\[ {}y^{\prime } = 1+x^{2}+y^{2}+x^{2} y^{2} \]

[_separable]

189

\[ {}x^{2} y^{\prime } = y x +3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

191

\[ {}4 x y^{2}+y^{\prime } = 5 x^{4} y^{2} \]

[_separable]

194

\[ {}y^{\prime } = y^{2}-2 y x +x^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

197

\[ {}3 x^{5} y^{2}+x^{3} y^{\prime } = 2 y^{2} \]

[_separable]

202

\[ {}9 x^{2} y^{2}+x^{{3}/{2}} y^{\prime } = y^{2} \]

[_separable]

527

\[ {}y^{\prime } = x^{2}+y^{2} \]

[[_Riccati, _special]]

528

\[ {}y^{\prime } = x^{2}+y^{2} \]
i.c.

[[_Riccati, _special]]

669

\[ {}y^{\prime } = 2 x^{2} y^{2} \]
i.c.

[_separable]

676

\[ {}y^{\prime } = x^{2}-y^{2} \]

[_Riccati]

678

\[ {}y^{\prime }+2 x y^{2} = 0 \]

[_separable]

686

\[ {}\left (x^{2}+1\right ) y^{\prime } = \left (1+y\right )^{2} \]

[_separable]

693

\[ {}x^{2} y^{\prime } = 1-x^{2}+y^{2}-x^{2} y^{2} \]

[_separable]

695

\[ {}y^{\prime } = 3 x^{2} \left (1+y^{2}\right ) \]
i.c.

[_separable]

701

\[ {}y^{\prime } = 2 x y^{2}+3 x^{2} y^{2} \]
i.c.

[_separable]

737

\[ {}x^{2} y^{\prime } = y x +y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

745

\[ {}y^{\prime } = \left (4 x +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

772

\[ {}x y^{2}+3 y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

773

\[ {}y x +y^{2}-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

776

\[ {}2 x y^{2}+x^{2} y^{\prime } = y^{2} \]

[_separable]

778

\[ {}2 y x +x^{2} y^{\prime } = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

780

\[ {}y^{\prime } = 1+x^{2}+y^{2}+x^{2} y^{2} \]

[_separable]

781

\[ {}x^{2} y^{\prime } = y x +3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

786

\[ {}y^{\prime } = y^{2}-2 y x +x^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

789

\[ {}3 x^{5} y^{2}+x^{3} y^{\prime } = 2 y^{2} \]

[_separable]

794

\[ {}9 x^{2} y^{2}+x^{{3}/{2}} y^{\prime } = y^{2} \]

[_separable]

1131

\[ {}y^{2} \sin \left (x \right )+y^{\prime } = 0 \]

[_separable]

1137

\[ {}y^{\prime } = \left (1-2 x \right ) y^{2} \]
i.c.

[_separable]

1140

\[ {}r^{\prime } = \frac {r^{2}}{x} \]
i.c.

[_separable]

1142

\[ {}y^{\prime } = \frac {x y^{2}}{\sqrt {x^{2}+1}} \]
i.c.

[_separable]

1151

\[ {}y^{\prime } = 2 y^{2}+x y^{2} \]
i.c.

[_separable]

1154

\[ {}y^{\prime } = 2 \left (x +1\right ) \left (1+y^{2}\right ) \]
i.c.

[_separable]

1155

\[ {}y^{\prime } = \frac {t \left (4-y\right ) y}{3} \]

[_separable]

1156

\[ {}y^{\prime } = \frac {t y \left (4-y\right )}{1+t} \]

[_separable]

1158

\[ {}y^{\prime } = \frac {x^{2}+y x +y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1163

\[ {}x^{2}+3 y x +y^{2}-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1175

\[ {}y^{\prime } = 2 t y^{2} \]

[_separable]

1178

\[ {}y^{\prime } = t \left (3-y\right ) y \]

[_separable]

1179

\[ {}y^{\prime } = y \left (3-t y\right ) \]

[_Bernoulli]

1180

\[ {}y^{\prime } = -y \left (3-t y\right ) \]

[_Bernoulli]

1181

\[ {}y^{\prime } = t -1-y^{2} \]

[_Riccati]

1230

\[ {}y^{\prime } = 1+2 x +y^{2}+2 x y^{2} \]

[_separable]

1522

\[ {}2 y^{\prime }+x \left (-1+y^{2}\right ) = 0 \]

[_separable]

1523

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

[_separable]

1532

\[ {}y^{\prime } = x \left (1+y^{2}\right ) \]
i.c.

[_separable]

1533

\[ {}y^{\prime } = -\frac {y \left (1+y\right )}{x} \]
i.c.

[_separable]

1577

\[ {}\frac {y^{\prime }}{\left (1+y\right )^{2}}-\frac {1}{x \left (1+y\right )} = -\frac {3}{x^{2}} \]

[[_homogeneous, ‘class C‘], _rational, _Riccati]

1580

\[ {}y^{\prime } x +y^{2}+y = 0 \]

[_separable]

1583

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

[_separable]

1585

\[ {}y^{\prime } = \left (x -1\right ) \left (-1+y\right ) \left (y-2\right ) \]

[_separable]

1588

\[ {}y^{\prime }+x \left (y^{2}+y\right ) = 0 \]
i.c.

[_separable]

1593

\[ {}y^{\prime } \left (x^{2}+2\right ) = 4 x \left (y^{2}+2 y+1\right ) \]

[_separable]

1600

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

1625

\[ {}y^{\prime }-y = x y^{2} \]

[_Bernoulli]

1627

\[ {}x^{2} y^{\prime } = y^{2}+y x -x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1628

\[ {}x^{2} y^{\prime } = y^{2}+y x -x^{2} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1643

\[ {}y^{\prime } = \frac {y^{2}+2 y x}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1646

\[ {}x^{2} y^{\prime } = x^{2}+y x +y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1649

\[ {}y^{\prime } = \frac {y x +y^{2}}{x^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1652

\[ {}y^{\prime } = \frac {y^{2}-3 y x -5 x^{2}}{x^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1653

\[ {}x^{2} y^{\prime } = 2 x^{2}+y^{2}+4 y x \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1662

\[ {}x^{2} y^{\prime } = y^{2}+y x -4 x^{2} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1671

\[ {}x^{3} y^{\prime } = 2 y^{2}+2 x^{2} y-2 x^{4} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

1672

\[ {}y^{\prime } = y^{2} {\mathrm e}^{-x}+4 y+2 \,{\mathrm e}^{x} \]

[[_1st_order, _with_linear_symmetries], _Riccati]

1673

\[ {}y^{\prime } = \frac {y^{2}+y \tan \left (x \right )+\tan \left (x \right )^{2}}{\sin \left (x \right )^{2}} \]

[_Riccati]

1674

\[ {}x \ln \left (x \right )^{2} y^{\prime } = -4 \ln \left (x \right )^{2}+y \ln \left (x \right )+y^{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _Riccati]

1679

\[ {}y^{\prime } = 1+x -\left (2 x +1\right ) y+x y^{2} \]

[_Riccati]

1712

\[ {}-y^{2}+x^{2} y^{\prime } = 0 \]

[_separable]

1736

\[ {}3 x^{2} y^{2}+2 y+2 y^{\prime } x = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1799

\[ {}x^{2} \left (y^{\prime }+y^{2}\right )-x \left (x +2\right ) y+x +2 = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

1800

\[ {}y^{\prime }+y^{2}+4 y x +4 x^{2}+2 = 0 \]

[[_homogeneous, ‘class C‘], _Riccati]

1801

\[ {}\left (2 x +1\right ) \left (y^{\prime }+y^{2}\right )-2 y-2 x -3 = 0 \]

[_rational, _Riccati]

1802

\[ {}\left (3 x -1\right ) \left (y^{\prime }+y^{2}\right )-\left (3 x +2\right ) y-6 x +8 = 0 \]

[_rational, _Riccati]

1803

\[ {}x^{2} \left (y^{\prime }+y^{2}\right )+y x +x^{2}-\frac {1}{4} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

1804

\[ {}x^{2} \left (y^{\prime }+y^{2}\right )-7 y x +7 = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

2318

\[ {}\left (t^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

2320

\[ {}y^{\prime } = 1-t +y^{2}-t y^{2} \]

[_separable]

2349

\[ {}y^{\prime } = t +y^{2} \]
i.c.

[[_Riccati, _special]]

2358

\[ {}y^{\prime } = \frac {\left (1+\cos \left (4 t \right )\right ) y}{4}-\frac {\left (1-\cos \left (4 t \right )\right ) y^{2}}{800} \]
i.c.

[_Bernoulli]

2359

\[ {}y^{\prime } = t^{2}+y^{2} \]
i.c.

[[_Riccati, _special]]

2489

\[ {}\left (t^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

2491

\[ {}y^{\prime } = 1-t +y^{2}-t y^{2} \]

[_separable]

2501

\[ {}y^{\prime } = \frac {2 y}{t}+\frac {y^{2}}{t^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2521

\[ {}y^{\prime } = {\mathrm e}^{t}+y^{2} \]
i.c.

[_Riccati]

2522

\[ {}y^{\prime } = y^{2}+\cos \left (t \right )^{2} \]
i.c.

[_Riccati]

2524

\[ {}y^{\prime } = t +y^{2} \]
i.c.

[[_Riccati, _special]]

2533

\[ {}y^{\prime } = \frac {\left (1+\cos \left (4 t \right )\right ) y}{4}-\frac {\left (1-\cos \left (4 t \right )\right ) y^{2}}{800} \]
i.c.

[_Bernoulli]

2534

\[ {}y^{\prime } = t^{2}+y^{2} \]
i.c.

[[_Riccati, _special]]

2539

\[ {}y^{\prime } = 1-t +y^{2} \]
i.c.

[_Riccati]

2541

\[ {}y^{\prime } = {\mathrm e}^{t} y^{2}-2 y \]
i.c.

[[_1st_order, _with_linear_symmetries], _Bernoulli]

2776

\[ {}1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

2786

\[ {}y^{\prime } x +y = y^{2} \]

[_separable]

2797

\[ {}x^{2} y^{\prime }+y^{2} = 0 \]
i.c.

[_separable]

2800

\[ {}1+y^{2} = \frac {y^{\prime }}{x^{3} \left (x -1\right )} \]
i.c.

[_separable]

2802

\[ {}\left (x^{2}+x +1\right ) y^{\prime } = y^{2}+2 y+5 \]
i.c.

[_separable]

2803

\[ {}\left (x^{2}-2 x -8\right ) y^{\prime } = y^{2}+y-2 \]
i.c.

[_separable]

2873

\[ {}x^{2} y+y^{2}+x^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2876

\[ {}y \left (y-x^{2}\right )+x^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2881

\[ {}{\mathrm e}^{x} y^{\prime } = 2 x y^{2}+y \,{\mathrm e}^{x} \]

[_Bernoulli]

2922

\[ {}x^{2} y^{\prime }+y^{2} = y x \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2925

\[ {}y^{\prime } x +y = y^{2} x^{2} \cos \left (x \right ) \]

[_Bernoulli]

2932

\[ {}y^{\prime }+y = y^{2} {\mathrm e}^{-t} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Bernoulli]

2948

\[ {}y-y^{\prime } x = 2 y^{\prime }+2 y^{2} \]

[_separable]

2974

\[ {}y x -y^{2}-x^{2} y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2981

\[ {}x^{\prime } = x+x^{2} {\mathrm e}^{\theta } \]
i.c.

[[_1st_order, _with_linear_symmetries], _Bernoulli]

2985

\[ {}4 x y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

3343

\[ {}y^{\prime } = x^{2} y^{2} \]

[_separable]

3392

\[ {}x^{2} y^{\prime }+x y^{2} = 4 y^{2} \]

[_separable]

3406

\[ {}y^{\prime } = \frac {4 y^{2}}{x^{2}}-y^{2} \]

[_separable]

3409

\[ {}y^{\prime }-\frac {y^{2}}{x^{2}} = {\frac {1}{4}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3410

\[ {}y^{\prime }-\frac {y^{2}}{x^{2}} = {\frac {1}{4}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3413

\[ {}y^{\prime } x +y-\frac {y^{2}}{x^{{3}/{2}}} = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3449

\[ {}y^{\prime } = \frac {y^{2}}{x^{2}+1} \]

[_separable]

3456

\[ {}y^{\prime } = \frac {x \left (-1+y^{2}\right )}{2 \left (x -2\right ) \left (x -1\right )} \]

[_separable]

3459

\[ {}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1 \]
i.c.

[_separable]

3478

\[ {}y^{\prime } = \frac {\left (x +y\right )^{2}}{2 x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3486

\[ {}x^{2} y^{\prime } = y^{2}+3 y x +x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3527

\[ {}y^{\prime } = \frac {y^{2}}{x^{2}+1} \]

[_separable]

3534

\[ {}y^{\prime } = \frac {x \left (-1+y^{2}\right )}{2 \left (x -2\right ) \left (x -1\right )} \]

[_separable]

3537

\[ {}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1 \]
i.c.

[_separable]

3569

\[ {}y^{\prime } = \frac {x^{2}+y x +y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3571

\[ {}y^{\prime } = \frac {\left (x +y\right )^{2}}{2 x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3579

\[ {}x^{2} y^{\prime } = y^{2}+3 y x +x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3594

\[ {}y^{\prime }+\frac {2 y}{x} = 6 x^{4} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3603

\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = x y^{2} \]
i.c.

[_rational, _Bernoulli]

3605

\[ {}y^{\prime } = \left (9 x -y\right )^{2} \]
i.c.

[[_homogeneous, ‘class C‘], _Riccati]

3606

\[ {}y^{\prime } = \left (4 x +y+2\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

3609

\[ {}y^{\prime } = 2 x \left (x +y\right )^{2}-1 \]
i.c.

[[_1st_order, _with_linear_symmetries], _Riccati]

3612

\[ {}y^{\prime }+\frac {2 y}{x}-y^{2} = -\frac {2}{x^{2}} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

3613

\[ {}y^{\prime }+\frac {7 y}{x}-3 y^{2} = \frac {3}{x^{2}} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

3905

\[ {}x^{2} y^{\prime } = x \left (-1+y\right )+\left (-1+y\right )^{2} \]

[[_homogeneous, ‘class C‘], _rational, _Riccati]

3911

\[ {}\left (x +1\right ) y^{\prime }-x^{2} y^{2} = 0 \]

[_separable]

3918

\[ {}y^{\prime } = \frac {x^{2}+y^{2}}{2 x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3957

\[ {}y^{\prime } = 6 x y^{2} \]

[_separable]

3966

\[ {}-y^{2}+x^{2} y^{\prime } = 0 \]
i.c.

[_separable]

3974

\[ {}y^{\prime } x = 2 y \left (-1+y\right ) \]
i.c.

[_separable]

3975

\[ {}2 y^{\prime } x = 1-y^{2} \]
i.c.

[_separable]

3978

\[ {}y^{\prime } = {\mathrm e}^{x} \left (1+y^{2}\right ) \]

[_separable]

3985

\[ {}x^{2} y^{\prime }-2 y x -2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3989

\[ {}y^{\prime } = \left (x +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

4003

\[ {}1 = \frac {y}{1-x^{2} y^{2}}+\frac {x y^{\prime }}{1-x^{2} y^{2}} \]

[_exact, _rational, _Riccati]

4009

\[ {}y^{\prime } x = x^{5}+x^{3} y^{2}+y \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

4011

\[ {}y^{\prime } x = y+x^{2}+9 y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

4068

\[ {}y^{\prime } = \left (x +1\right )^{2}+\left (4 y+1\right )^{2}+8 y x +1 \]

[[_homogeneous, ‘class C‘], _Riccati]

4089

\[ {}x^{2}+y+y^{2}-y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

4117

\[ {}y^{\prime }+y^{2} = x^{2}+1 \]

[_Riccati]

4207

\[ {}y^{\prime } = x^{2}-y^{2} \]

[_Riccati]

4208

\[ {}y^{\prime }+f \left (x \right )^{2} = f^{\prime }\left (x \right )+y^{2} \]

[_Riccati]

4209

\[ {}y^{\prime }+1-x = \left (x +y\right ) y \]

[_Riccati]

4210

\[ {}y^{\prime } = \left (x +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

4211

\[ {}y^{\prime } = \left (x -y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

4212

\[ {}y^{\prime } = 3-3 x +3 y+\left (x -y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

4213

\[ {}y^{\prime } = 2 x -\left (x^{2}+1\right ) y+y^{2} \]

[_Riccati]

4214

\[ {}y^{\prime } = x \left (x^{3}+2\right )-\left (2 x^{2}-y\right ) y \]

[[_1st_order, _with_linear_symmetries], _Riccati]

4215

\[ {}y^{\prime } = 1+x \left (-x^{3}+2\right )+\left (2 x^{2}-y\right ) y \]

[[_1st_order, _with_linear_symmetries], _Riccati]

4216

\[ {}y^{\prime } = \cos \left (x \right )-\left (\sin \left (x \right )-y\right ) y \]

[_Riccati]

4217

\[ {}y^{\prime } = \cos \left (2 x \right )+\left (\sin \left (2 x \right )+y\right ) y \]

[_Riccati]

4218

\[ {}y^{\prime } = f \left (x \right )+x f \left (x \right ) y+y^{2} \]

[_Riccati]

4219

\[ {}y^{\prime } = \left (3+x -4 y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

4220

\[ {}y^{\prime } = \left (1+4 x +9 y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

4221

\[ {}y^{\prime } = 3 a +3 b x +3 b y^{2} \]

[_Riccati]

4223

\[ {}y^{\prime } = a x +b y^{2} \]

[[_Riccati, _special]]

4224

\[ {}y^{\prime } = a +b x +c y^{2} \]

[_Riccati]

4226

\[ {}y^{\prime } = a \,x^{2}+b y^{2} \]

[[_Riccati, _special]]

4229

\[ {}y^{\prime } = 1+a \left (x -y\right ) y \]

[_Riccati]

4231

\[ {}y^{\prime } = x y \left (3+y\right ) \]

[_separable]

4232

\[ {}y^{\prime } = 1-x -x^{3}+\left (2 x^{2}+1\right ) y-x y^{2} \]

[_Riccati]

4233

\[ {}y^{\prime } = x \left (2+x^{2} y-y^{2}\right ) \]

[_Riccati]

4234

\[ {}y^{\prime } = x +\left (1-2 x \right ) y-\left (1-x \right ) y^{2} \]

[_Riccati]

4235

\[ {}y^{\prime } = a x y^{2} \]

[_separable]

4236

\[ {}y^{\prime } = x^{n} \left (a +b y^{2}\right ) \]

[_separable]

4237

\[ {}y^{\prime } = a \,x^{m}+b \,x^{n} y^{2} \]

[_Riccati]

4238

\[ {}y^{\prime } = \left (a +b y \cos \left (k x \right )\right ) y \]

[_Bernoulli]

4240

\[ {}y^{\prime }+4 \csc \left (x \right ) = \left (3-\cot \left (x \right )\right ) y+y^{2} \sin \left (x \right ) \]

[_Riccati]

4242

\[ {}y^{\prime }+\tan \left (x \right ) \left (1-y^{2}\right ) = 0 \]

[_separable]

4244

\[ {}y^{\prime } = \left (a +b y+c y^{2}\right ) f \left (x \right ) \]

[_separable]

4323

\[ {}y^{\prime } x +x^{2}+y^{2} = 0 \]

[_rational, _Riccati]

4324

\[ {}y^{\prime } x = x^{2}+y \left (1+y\right ) \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

4325

\[ {}y^{\prime } x -y+y^{2} = x^{{2}/{3}} \]

[_rational, _Riccati]

4326

\[ {}y^{\prime } x = a +b y^{2} \]

[_separable]

4327

\[ {}y^{\prime } x = a \,x^{2}+y+b y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

4328

\[ {}y^{\prime } x = a \,x^{2 n}+\left (n +b y\right ) y \]

[_rational, _Riccati]

4329

\[ {}y^{\prime } x = a \,x^{n}+b y+c y^{2} \]

[_rational, _Riccati]

4330

\[ {}y^{\prime } x = k +a \,x^{n}+b y+c y^{2} \]

[_rational, _Riccati]

4331

\[ {}y^{\prime } x +a +x y^{2} = 0 \]

[_rational, [_Riccati, _special]]

4332

\[ {}y^{\prime } x +\left (1-y x \right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4333

\[ {}y^{\prime } x = \left (1-y x \right ) y \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4334

\[ {}y^{\prime } x = \left (1+y x \right ) y \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4335

\[ {}y^{\prime } x = a \,x^{3} \left (1-y x \right ) y \]

[_Bernoulli]

4336

\[ {}y^{\prime } x = x^{3}+\left (2 x^{2}+1\right ) y+x y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

4337

\[ {}y^{\prime } x = y \left (1+2 y x \right ) \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4338

\[ {}y^{\prime } x +b x +\left (2+a x y\right ) y = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

4339

\[ {}y^{\prime } x +\operatorname {a0} +\operatorname {a1} x +\left (\operatorname {a2} +\operatorname {a3} x y\right ) y = 0 \]

[_rational, _Riccati]

4340

\[ {}y^{\prime } x +a \,x^{2} y^{2}+2 y = b \]

[_rational, _Riccati]

4341

\[ {}y^{\prime } x +x^{m}+\frac {\left (n -m \right ) y}{2}+x^{n} y^{2} = 0 \]

[_rational, _Riccati]

4342

\[ {}y^{\prime } x +\left (a +b \,x^{n} y\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4343

\[ {}y^{\prime } x = a \,x^{m}-b y-c \,x^{n} y^{2} \]

[_rational, _Riccati]

4344

\[ {}y^{\prime } x = 2 x -y+a \,x^{n} \left (x -y\right )^{2} \]

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

4345

\[ {}y^{\prime } x +\left (1-a y \ln \left (x \right )\right ) y = 0 \]

[_Bernoulli]

4346

\[ {}y^{\prime } x = y+\left (x^{2}-y^{2}\right ) f \left (x \right ) \]

[[_homogeneous, ‘class D‘], _Riccati]

4384

\[ {}\left (x +1\right ) y^{\prime } = a y+b x y^{2} \]

[_rational, _Bernoulli]

4394

\[ {}\left (x +a \right ) y^{\prime } = y \left (1-a y\right ) \]

[_separable]

4397

\[ {}2 y^{\prime } x +1 = 4 i x y+y^{2} \]

[_rational, _Riccati]

4406

\[ {}3 y^{\prime } x = 3 x^{{2}/{3}}+\left (1-3 y\right ) y \]

[_rational, _Riccati]

4417

\[ {}x^{2} y^{\prime }+x^{2}+y x +y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

4418

\[ {}x^{2} y^{\prime } = \left (1+2 x -y\right )^{2} \]

[[_homogeneous, ‘class C‘], _rational, _Riccati]

4419

\[ {}x^{2} y^{\prime } = a +b y^{2} \]

[_separable]

4420

\[ {}x^{2} y^{\prime } = \left (x +a y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4421

\[ {}x^{2} y^{\prime } = \left (a x +b y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4422

\[ {}x^{2} y^{\prime }+a \,x^{2}+b x y+c y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

4423

\[ {}x^{2} y^{\prime } = a +b \,x^{n}+x^{2} y^{2} \]

[_rational, _Riccati]

4424

\[ {}x^{2} y^{\prime }+2+x y \left (4+y x \right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

4425

\[ {}x^{2} y^{\prime }+2+a x \left (1-y x \right )-x^{2} y^{2} = 0 \]

[_rational, _Riccati]

4426

\[ {}x^{2} y^{\prime } = a +b \,x^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

4427

\[ {}x^{2} y^{\prime } = a +b \,x^{n}+c \,x^{2} y^{2} \]

[_rational, _Riccati]

4428

\[ {}x^{2} y^{\prime } = a +b x y+c \,x^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

4429

\[ {}x^{2} y^{\prime } = a +b x y+c \,x^{4} y^{2} \]

[_rational, _Riccati]

4455

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

4456

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 1-y^{2} \]

[_separable]

4457

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 1-\left (2 x -y\right ) y \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

4459

\[ {}\left (x^{2}+1\right ) y^{\prime }+x y \left (1-y\right ) = 0 \]

[_separable]

4460

\[ {}\left (-x^{2}+1\right ) y^{\prime } = x y \left (1+a y\right ) \]

[_separable]

4464

\[ {}\left (-x^{2}+4\right ) y^{\prime }+4 y = \left (x +2\right ) y^{2} \]

[_rational, _Bernoulli]

4467

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime }+\left (x -y\right ) y = 0 \]

[_rational, _Bernoulli]

4468

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime } = a^{2}+3 y x -2 y^{2} \]

[_rational, _Riccati]

4469

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime }+y x +b x y^{2} = 0 \]

[_separable]

4479

\[ {}x \left (x +a \right ) y^{\prime } = \left (b +c y\right ) y \]

[_separable]

4481

\[ {}\left (x -a \right )^{2} y^{\prime }+k \left (y+x -a \right )^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class C‘], _rational, _Riccati]

4484

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime } = c y^{2} \]

[_separable]

4486

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }+k \left (y+x -a \right ) \left (x +y-b \right )+y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

4489

\[ {}2 x^{2} y^{\prime }+1+2 y x -x^{2} y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

4493

\[ {}x \left (1-2 x \right ) y^{\prime } = 4 x -\left (4 x +1\right ) y+y^{2} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

4495

\[ {}2 x \left (1-x \right ) y^{\prime }+x +\left (1-x \right ) y^{2} = 0 \]

[_rational, _Riccati]

4498

\[ {}a \,x^{2} y^{\prime } = x^{2}+a x y+b^{2} y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

4499

\[ {}\left (b \,x^{2}+a \right ) y^{\prime } = A +B y^{2} \]

[_separable]

4505

\[ {}x^{3} y^{\prime } = x^{4}+y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

4506

\[ {}x^{3} y^{\prime } = y \left (y+x^{2}\right ) \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4507

\[ {}x^{3} y^{\prime } = x^{2} \left (-1+y\right )+y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

4508

\[ {}x^{3} y^{\prime } = \left (x +1\right ) y^{2} \]

[_separable]

4509

\[ {}x^{3} y^{\prime }+20+x^{2} y \left (1-x^{2} y\right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

4510

\[ {}x^{3} y^{\prime }+3+\left (3-2 x \right ) x^{2} y-x^{6} y^{2} = 0 \]

[_rational, _Riccati]

4523

\[ {}x \left (-x^{2}+1\right ) y^{\prime }+x^{2}+\left (-x^{2}+1\right ) y^{2} = 0 \]

[_rational, _Riccati]

4524

\[ {}x^{2} \left (1-x \right ) y^{\prime } = \left (2-x \right ) x y-y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4528

\[ {}x \left (c \,x^{2}+b x +a \right ) y^{\prime }+x^{2}-\left (c \,x^{2}+b x +a \right ) y = y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

4529

\[ {}x^{4} y^{\prime } = \left (x^{3}+y\right ) y \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4530

\[ {}x^{4} y^{\prime }+a^{2}+x^{4} y^{2} = 0 \]

[_rational, [_Riccati, _special]]

4532

\[ {}\left (-x^{4}+1\right ) y^{\prime } = 2 x \left (1-y^{2}\right ) \]

[_separable]

4534

\[ {}x \left (-x^{3}+1\right ) y^{\prime } = x^{2}+\left (1-2 y x \right ) y \]

[_rational, _Riccati]

4535

\[ {}x^{2} \left (-x^{2}+1\right ) y^{\prime } = \left (x -3 x^{3} y\right ) y \]

[_rational, _Bernoulli]

4537

\[ {}\left (c \,x^{2}+b x +a \right )^{2} \left (y^{\prime }+y^{2}\right )+A = 0 \]

[_rational, _Riccati]

4539

\[ {}x \left (-x^{4}+1\right ) y^{\prime } = 2 x \left (x^{2}-y^{2}\right )+\left (-x^{4}+1\right ) y \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

4542

\[ {}x^{n} y^{\prime } = x^{2 n -1}-y^{2} \]

[_Riccati]

4544

\[ {}x^{n} y^{\prime } = a^{2} x^{2 n -2}+b^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _Riccati]

4545

\[ {}x^{n} y^{\prime } = x^{n -1} \left (a \,x^{2 n}+n y-b y^{2}\right ) \]

[_rational, _Riccati]

4548

\[ {}y^{\prime } \sqrt {-x^{2}+1} = 1+y^{2} \]

[_separable]

4557

\[ {}x^{{3}/{2}} y^{\prime } = a +b \,x^{{3}/{2}} y^{2} \]

[_rational, [_Riccati, _special]]

4568

\[ {}y^{\prime } \left (a +\cos \left (\frac {x}{2}\right )^{2}\right ) = y \tan \left (\frac {x}{2}\right ) \left (1+a +\cos \left (\frac {x}{2}\right )^{2}-y\right ) \]

[_Bernoulli]

5177

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y^{2}+y^{4}\right ) {y^{\prime }}^{2}+x y^{2} \left (x^{2}+x y^{2}+y^{4}\right ) y^{\prime }-x^{3} y^{6} = 0 \]

[_quadrature]

5255

\[ {}y+x y^{2}-y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5277

\[ {}\left (-x^{2}+1\right ) z^{\prime }-x z = a x z^{2} \]

[_separable]

5281

\[ {}y^{\prime } x +y = y^{2} \ln \left (x \right ) \]

[_Bernoulli]

5304

\[ {}y^{\prime } x -a y+y^{2} = x^{-2 a} \]

[_rational, _Riccati]

5305

\[ {}y^{\prime } x -a y+y^{2} = x^{-\frac {2 a}{3}} \]

[_rational, _Riccati]

5306

\[ {}u^{\prime }+u^{2} = \frac {c}{x^{{4}/{3}}} \]

[_rational, [_Riccati, _special]]

5307

\[ {}u^{\prime }+b u^{2} = \frac {c}{x^{4}} \]

[_rational, [_Riccati, _special]]

5308

\[ {}u^{\prime }-u^{2} = \frac {2}{x^{{8}/{3}}} \]

[_rational, [_Riccati, _special]]

5344

\[ {}y x -y^{2}-x^{2} y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5401

\[ {}y^{\prime } x +y = y^{2} \ln \left (x \right ) \]

[_Bernoulli]

5415

\[ {}y^{\prime } x +x y^{2}-y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5416

\[ {}y^{\prime } x -y \left (2 y \ln \left (x \right )-1\right ) = 0 \]

[_Bernoulli]

5417

\[ {}x^{2} \left (x -1\right ) y^{\prime }-y^{2}-x \left (x -2\right ) y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5419

\[ {}y^{\prime }+\frac {y}{x} = \frac {y^{2}}{x} \]
i.c.

[_separable]

5422

\[ {}y^{\prime } = x^{3}+\frac {2 y}{x}-\frac {y^{2}}{x} \]

[_rational, _Riccati]

5423

\[ {}y^{\prime } = 2 \tan \left (x \right ) \sec \left (x \right )-y^{2} \sin \left (x \right ) \]

[_Riccati]

5424

\[ {}y^{\prime } = \frac {1}{x^{2}}-\frac {y}{x}-y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

5425

\[ {}y^{\prime } = 1+\frac {y}{x}-\frac {y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

5436

\[ {}x^{2} y+y^{2}+x^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

5439

\[ {}y^{\prime } x +y = x^{2} \left (1+{\mathrm e}^{x}\right ) y^{2} \]

[_Bernoulli]

5442

\[ {}y^{\prime } = \left (x +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

5446

\[ {}y^{\prime } x -y^{2}+1 = 0 \]

[_separable]

5451

\[ {}x^{3} y^{\prime }-y^{2}-x^{2} y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5456

\[ {}x^{2} y^{\prime }+x^{2}+y x +y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

5459

\[ {}\left (x^{2}-1\right ) y^{\prime }+y x -3 x y^{2} = 0 \]

[_separable]

5592

\[ {}y^{\prime } = a x y^{2} \]

[_separable]

5597

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

5635

\[ {}y^{\prime }+y^{2} = \frac {a^{2}}{x^{4}} \]

[_rational, _Riccati]

5660

\[ {}y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

5685

\[ {}x^{2} y^{\prime }+y^{2}-y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5692

\[ {}y^{\prime } = x y^{2}-\frac {2 y}{x}-\frac {1}{x^{3}} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

5693

\[ {}y^{\prime } = \frac {2 y^{2}}{x}+\frac {y}{x}-2 x \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

5694

\[ {}y^{\prime } = y^{2} {\mathrm e}^{-x}+y-{\mathrm e}^{x} \]

[[_1st_order, _with_linear_symmetries], _Riccati]

5776

\[ {}y^{\prime }-2 y-y^{2} {\mathrm e}^{3 x} = 0 \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

5831

\[ {}\frac {y^{\prime }}{y}+y \,{\mathrm e}^{\cos \left (x \right )} \sin \left (x \right ) = 0 \]

[_separable]

5832

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (x \right ) \]
i.c.

[_separable]

5844

\[ {}y^{\prime } = \sqrt {1+\sin \left (x \right )}\, \left (1+y^{2}\right ) \]
i.c.

[_separable]

5966

\[ {}y^{\prime }+y x = x y^{2} \]

[_separable]

5980

\[ {}\left (x +1\right )^{2} y^{\prime } = 1+y^{2} \]

[_separable]

5990

\[ {}y^{\prime } x +3 y = x^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6019

\[ {}y^{\prime }-y \cot \left (x \right ) = y^{2} \sec \left (x \right )^{2} \]
i.c.

[_Bernoulli]

6033

\[ {}y^{\prime }+x +x y^{2} = 0 \]
i.c.

[_separable]

6039

\[ {}y^{\prime }+\frac {y}{x} = x y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6142

\[ {}y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

6163

\[ {}y^{2}+y x -y^{\prime } x = 0 \]
i.c.

[_rational, _Bernoulli]

6164

\[ {}y^{\prime } = -2 \left (2 x +3 y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

6176

\[ {}y \left (x -2 y\right )-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6193

\[ {}1+y^{2} = \left (x^{2}+x \right ) y^{\prime } \]

[_separable]

6206

\[ {}y^{\prime }+y = y^{2} {\mathrm e}^{x} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

6624

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

6626

\[ {}y^{\prime } x +y = y^{2} \]
i.c.

[_separable]

6628

\[ {}y^{\prime }-x y^{2} = 2 y x \]

[_separable]

6632

\[ {}\frac {y}{x -1}+\frac {x y^{\prime }}{1+y} = 0 \]

[_separable]

6650

\[ {}y^{\prime } = \left (x +y+1\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

6668

\[ {}x^{2}+y x +y^{2} = x^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

6738

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

[_separable]

6745

\[ {}x^{2} y^{\prime }+y^{2}-y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6748

\[ {}y^{\prime } = -\frac {2}{t}+\frac {y}{t}+\frac {y^{2}}{t} \]

[_separable]

6749

\[ {}y^{\prime } = -\frac {y}{t}-1-y^{2} \]

[_rational, _Riccati]

6786

\[ {}\phi ^{\prime }-\frac {\phi ^{2}}{2}-\phi \cot \left (\theta \right ) = 0 \]

[_Bernoulli]

6788

\[ {}\left (\phi ^{\prime }-\frac {\phi ^{2}}{2}\right ) \sin \left (\theta \right )^{2}-\phi \sin \left (\theta \right ) \cos \left (\theta \right ) = \frac {\cos \left (2 \theta \right )}{2}+1 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

6798

\[ {}-y+y^{\prime } x = x^{2}+y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

6971

\[ {}y^{\prime } = x^{2} y^{2}-4 x^{2} \]

[_separable]

6977

\[ {}y^{\prime } = \frac {x^{2}+y x +y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

6982

\[ {}y^{\prime } = \frac {\left (x +y-1\right )^{2}}{2 \left (x +2\right )^{2}} \]

[[_homogeneous, ‘class C‘], _rational, _Riccati]

7016

\[ {}y^{\prime } x = y+x^{2}+y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

7046

\[ {}1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

7052

\[ {}x y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

7057

\[ {}y^{\prime } = x^{2} y^{2} \]
i.c.

[_separable]

7079

\[ {}y^{\prime } x +y = x y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7096

\[ {}\frac {y}{1-x^{2} y^{2}}+\frac {x y^{\prime }}{1-x^{2} y^{2}} = 1 \]

[_exact, _rational, _Riccati]

7098

\[ {}\frac {y^{\prime } x +y}{1-x^{2} y^{2}}+x = 0 \]

[_exact, _rational, _Riccati]

7108

\[ {}x^{2} y^{\prime }-3 y x -2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7115

\[ {}x^{2} y^{\prime } = y^{2}+2 y x \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7449

\[ {}y^{\prime } = y^{2}-x \]
i.c.

[[_Riccati, _special]]

7681

\[ {}{y^{\prime }}^{2}-y^{\prime } x y \left (x +y\right )+x^{3} y^{3} = 0 \]

[_separable]

7934

\[ {}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1 \]
i.c.

[_separable]

7938

\[ {}y^{\prime }+\frac {2 y}{x} = 6 x^{4} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7978

\[ {}y^{\prime } = \frac {5 x^{2}-y x +y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

7984

\[ {}y^{\prime } x -2 y+b y^{2} = c \,x^{4} \]

[_rational, _Riccati]

7985

\[ {}y^{\prime } x -y+y^{2} = x^{{2}/{3}} \]

[_rational, _Riccati]

7986

\[ {}u^{\prime }+u^{2} = \frac {1}{x^{{4}/{5}}} \]

[_rational, _Riccati]

8029

\[ {}y^{\prime } = x^{2}+y^{2} \]

[[_Riccati, _special]]

8033

\[ {}y^{\prime } = x^{2}+y^{2}-1 \]

[_Riccati]

8040

\[ {}y^{\prime }-y^{2}-x -x^{2} = 0 \]

[_Riccati]

8231

\[ {}y^{\prime } = a x +b y^{2} \]

[[_Riccati, _special]]

8239

\[ {}c y^{\prime } = a x +b y^{2} \]

[[_Riccati, _special]]

8240

\[ {}c y^{\prime } = \frac {a x +b y^{2}}{r} \]

[[_Riccati, _special]]

8241

\[ {}c y^{\prime } = \frac {a x +b y^{2}}{r x} \]

[_rational, _Riccati]

8242

\[ {}c y^{\prime } = \frac {a x +b y^{2}}{r \,x^{2}} \]

[_rational, _Riccati]

8247

\[ {}y^{\prime } = \sin \left (x \right )+y^{2} \]

[_Riccati]

8250

\[ {}y^{\prime } = x +y+b y^{2} \]

[_Riccati]

8386

\[ {}y^{\prime } = x -y^{2} \]

[[_Riccati, _special]]

9249

\[ {}y^{\prime }+y^{2}-a x -b = 0 \]

[_Riccati]

9250

\[ {}y^{\prime }+y^{2}+a \,x^{m} = 0 \]

[[_Riccati, _special]]

9251

\[ {}y^{\prime }+y^{2}-2 x^{2} y+x^{4}-2 x -1 = 0 \]

[[_1st_order, _with_linear_symmetries], _Riccati]

9252

\[ {}y^{\prime }+y^{2}+\left (y x -1\right ) f \left (x \right ) = 0 \]

[_Riccati]

9254

\[ {}y^{\prime }-y^{2}-y x -x +1 = 0 \]

[_Riccati]

9255

\[ {}y^{\prime }-\left (x +y\right )^{2} = 0 \]

[[_homogeneous, ‘class C‘], _Riccati]

9256

\[ {}y^{\prime }-y^{2}+\left (x^{2}+1\right ) y-2 x = 0 \]

[_Riccati]

9257

\[ {}y^{\prime }-y^{2}+y \sin \left (x \right )-\cos \left (x \right ) = 0 \]

[_Riccati]

9258

\[ {}y^{\prime }-y^{2}-y \sin \left (2 x \right )-\cos \left (2 x \right ) = 0 \]

[_Riccati]

9260

\[ {}y^{\prime }+a y^{2}-b \,x^{\nu } = 0 \]

[[_Riccati, _special]]

9263

\[ {}y^{\prime }+a y \left (-x +y\right )-1 = 0 \]

[_Riccati]

9264

\[ {}y^{\prime }+x y^{2}-x^{3} y-2 x = 0 \]

[_Riccati]

9265

\[ {}y^{\prime }-x y^{2}-3 y x = 0 \]

[_separable]

9266

\[ {}y^{\prime }+x^{-a -1} y^{2}-x^{a} = 0 \]

[_Riccati]

9267

\[ {}y^{\prime }-a \,x^{n} \left (1+y^{2}\right ) = 0 \]

[_separable]

9268

\[ {}y^{\prime }+y^{2} \sin \left (x \right )-\frac {2 \sin \left (x \right )}{\cos \left (x \right )^{2}} = 0 \]

[_Riccati]

9270

\[ {}y^{\prime }+f \left (x \right ) y^{2}+g \left (x \right ) y = 0 \]

[_Bernoulli]

9271

\[ {}y^{\prime }+f \left (x \right ) \left (y^{2}+2 a y+b \right ) = 0 \]

[_separable]

9331

\[ {}y^{\prime } x +y^{2}+x^{2} = 0 \]

[_rational, _Riccati]

9332

\[ {}y^{\prime } x -y^{2}+1 = 0 \]

[_separable]

9333

\[ {}y^{\prime } x +a y^{2}-y+b \,x^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

9334

\[ {}y^{\prime } x +a y^{2}-b y+c \,x^{2 b} = 0 \]

[_rational, _Riccati]

9335

\[ {}y^{\prime } x +a y^{2}-b y-c \,x^{\beta } = 0 \]

[_rational, _Riccati]

9336

\[ {}y^{\prime } x +a +x y^{2} = 0 \]

[_rational, [_Riccati, _special]]

9337

\[ {}y^{\prime } x +x y^{2}-y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

9338

\[ {}y^{\prime } x +x y^{2}-y-a \,x^{3} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

9339

\[ {}y^{\prime } x +x y^{2}-\left (2 x^{2}+1\right ) y-x^{3} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

9340

\[ {}y^{\prime } x +a x y^{2}+2 y+b x = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

9341

\[ {}y^{\prime } x +a x y^{2}+b y+c x +d = 0 \]

[_rational, _Riccati]

9342

\[ {}y^{\prime } x +x^{a} y^{2}+\frac {\left (a -b \right ) y}{2}+x^{b} = 0 \]

[_rational, _Riccati]

9343

\[ {}y^{\prime } x +a \,x^{\alpha } y^{2}+b y-c \,x^{\beta } = 0 \]

[_rational, _Riccati]

9344

\[ {}y^{\prime } x -y^{2} \ln \left (x \right )+y = 0 \]

[_Bernoulli]

9345

\[ {}y^{\prime } x -y \left (2 y \ln \left (x \right )-1\right ) = 0 \]

[_Bernoulli]

9364

\[ {}\left (x +1\right ) y^{\prime }+\left (-x +y\right ) y = 0 \]

[_rational, _Bernoulli]

9371

\[ {}x^{2} y^{\prime }+x^{2}+y x +y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

9372

\[ {}x^{2} y^{\prime }-y^{2}-y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

9373

\[ {}x^{2} y^{\prime }-y^{2}-y x -x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

9374

\[ {}x^{2} \left (y^{\prime }+y^{2}\right )+a \,x^{k}-b \left (b -1\right ) = 0 \]

[_rational, _Riccati]

9375

\[ {}x^{2} \left (y^{\prime }+y^{2}\right )+4 y x +2 = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

9376

\[ {}x^{2} \left (y^{\prime }+y^{2}\right )+a x y+b = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

9377

\[ {}x^{2} \left (y^{\prime }-y^{2}\right )-a \,x^{2} y+a x +2 = 0 \]

[_rational, _Riccati]

9378

\[ {}x^{2} \left (y^{\prime }+a y^{2}\right )-b = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

9379

\[ {}x^{2} \left (y^{\prime }+a y^{2}\right )+b \,x^{\alpha }+c = 0 \]

[_rational, _Riccati]

9390

\[ {}\left (x^{2}-1\right ) y^{\prime }+y^{2}-2 y x +1 = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

9391

\[ {}\left (x^{2}-1\right ) y^{\prime }-\left (-x +y\right ) y = 0 \]

[_rational, _Bernoulli]

9393

\[ {}\left (x^{2}-1\right ) y^{\prime }+a x y^{2}+y x = 0 \]

[_separable]

9395

\[ {}\left (x^{2}-4\right ) y^{\prime }+\left (x +2\right ) y^{2}-4 y = 0 \]

[_rational, _Bernoulli]

9397

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }+k \left (y+x -a \right ) \left (x +y-b \right )+y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

9398

\[ {}2 x^{2} y^{\prime }-2 y^{2}-y x +2 a^{2} x = 0 \]

[_rational, _Riccati]

9399

\[ {}2 x^{2} y^{\prime }-2 y^{2}-3 y x +2 a^{2} x = 0 \]

[_rational, _Riccati]

9400

\[ {}x \left (2 x -1\right ) y^{\prime }+y^{2}-\left (4 x +1\right ) y+4 x = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

9401

\[ {}2 x \left (x -1\right ) y^{\prime }+\left (x -1\right ) y^{2}-x = 0 \]

[_rational, _Riccati]

9402

\[ {}3 x^{2} y^{\prime }-7 y^{2}-3 y x -x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

9403

\[ {}3 \left (x^{2}-4\right ) y^{\prime }+y^{2}-y x -3 = 0 \]

[_rational, _Riccati]

9405

\[ {}x^{3} y^{\prime }-y^{2}-x^{4} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

9406

\[ {}x^{3} y^{\prime }-y^{2}-x^{2} y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

9407

\[ {}x^{3} y^{\prime }-x^{4} y^{2}+x^{2} y+20 = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

9408

\[ {}x^{3} y^{\prime }-x^{6} y^{2}-\left (2 x -3\right ) x^{2} y+3 = 0 \]

[_rational, _Riccati]

9411

\[ {}x \left (x^{2}-1\right ) y^{\prime }+\left (x^{2}-1\right ) y^{2}-x^{2} = 0 \]

[_rational, _Riccati]

9412

\[ {}x^{2} \left (x -1\right ) y^{\prime }-y^{2}-x \left (x -2\right ) y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

9413

\[ {}2 x \left (x^{2}-1\right ) y^{\prime }+2 \left (x^{2}-1\right ) y^{2}-\left (3 x^{2}-5\right ) y+x^{2}-3 = 0 \]

[_rational, _Riccati]

9414

\[ {}3 x \left (x^{2}-1\right ) y^{\prime }+x y^{2}-\left (x^{2}+1\right ) y-3 x = 0 \]

[_rational, _Riccati]

9415

\[ {}\left (a \,x^{2}+b x +c \right ) \left (-y+y^{\prime } x \right )-y^{2}+x^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

9416

\[ {}x^{4} \left (y^{\prime }+y^{2}\right )+a = 0 \]

[_rational, [_Riccati, _special]]

9417

\[ {}x \left (x^{3}-1\right ) y^{\prime }-2 x y^{2}+y+x^{2} = 0 \]

[_rational, _Riccati]

9419

\[ {}\left (a \,x^{2}+b x +c \right )^{2} \left (y^{\prime }+y^{2}\right )+A = 0 \]

[_rational, _Riccati]

9421

\[ {}x^{n} y^{\prime }+y^{2}-\left (n -1\right ) x^{n -1} y+x^{2 n -2} = 0 \]

[[_homogeneous, ‘class G‘], _Riccati]

9422

\[ {}x^{n} y^{\prime }-a y^{2}-b \,x^{2 n -2} = 0 \]

[[_homogeneous, ‘class G‘], _Riccati]

9429

\[ {}x y^{\prime } \ln \left (x \right )-y^{2} \ln \left (x \right )-\left (2 \ln \left (x \right )^{2}+1\right ) y-\ln \left (x \right )^{3} = 0 \]

[_Riccati]

9430

\[ {}y^{\prime } \sin \left (x \right )-y^{2} \sin \left (x \right )^{2}+\left (\cos \left (x \right )-3 \sin \left (x \right )\right ) y+4 = 0 \]

[_Riccati]

9436

\[ {}2 f \left (x \right ) y^{\prime }+2 f \left (x \right ) y^{2}-f^{\prime }\left (x \right ) y-2 f \left (x \right )^{2} = 0 \]

[_Riccati]

9860

\[ {}y^{\prime } = \frac {\left (-1+y \ln \left (x \right )\right )^{2}}{x} \]

[_Riccati]

9862

\[ {}y^{\prime } = \frac {\left (2 y \ln \left (x \right )-1\right )^{2}}{x} \]

[_Riccati]

9908

\[ {}y^{\prime } = \frac {y+x^{3} a \,{\mathrm e}^{x}+a \,x^{4}+a \,x^{3}-x y^{2} {\mathrm e}^{x}-x^{2} y^{2}-x y^{2}}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

9910

\[ {}y^{\prime } = \frac {y+x^{3} a \ln \left (x +1\right )+a \,x^{4}+a \,x^{3}-x y^{2} \ln \left (x +1\right )-x^{2} y^{2}-x y^{2}}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

9912

\[ {}y^{\prime } = \frac {y+x^{3} \ln \left (x \right )+x^{4}+x^{3}+7 x y^{2} \ln \left (x \right )+7 x^{2} y^{2}+7 x y^{2}}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

9914

\[ {}y^{\prime } = \frac {y+x^{3} b \ln \left (\frac {1}{x}\right )+x^{4} b +b \,x^{3}+x a y^{2} \ln \left (\frac {1}{x}\right )+a \,x^{2} y^{2}+a x y^{2}}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

9916

\[ {}y^{\prime } = \frac {y \left (-1+\ln \left (\left (x +1\right ) x \right ) y x^{4}-\ln \left (\left (x +1\right ) x \right ) x^{3}\right )}{x} \]

[_Bernoulli]

9918

\[ {}y^{\prime } = \frac {y+\ln \left (\left (x +1\right ) \left (x -1\right )\right ) x^{3}+7 \ln \left (\left (x +1\right ) \left (x -1\right )\right ) x y^{2}}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

9920

\[ {}y^{\prime } = \frac {y-\ln \left (\frac {x +1}{x -1}\right ) x^{3}+\ln \left (\frac {x +1}{x -1}\right ) x y^{2}}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

9921

\[ {}y^{\prime } = \frac {y+{\mathrm e}^{\frac {x +1}{x -1}} x^{3}+{\mathrm e}^{\frac {x +1}{x -1}} x y^{2}}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

9922

\[ {}y^{\prime } = \frac {y x -y-{\mathrm e}^{x +1} x^{3}+{\mathrm e}^{x +1} x y^{2}}{\left (x -1\right ) x} \]

[[_homogeneous, ‘class D‘], _Riccati]

9928

\[ {}y^{\prime } = \frac {y \ln \left (x -1\right )+x^{4}+x^{3}+x^{2} y^{2}+x y^{2}}{\ln \left (x -1\right ) x} \]

[[_homogeneous, ‘class D‘], _Riccati]

9929

\[ {}y^{\prime } = \frac {y \ln \left (x -1\right )+{\mathrm e}^{x +1} x^{3}+7 \,{\mathrm e}^{x +1} x y^{2}}{\ln \left (x -1\right ) x} \]

[[_homogeneous, ‘class D‘], _Riccati]

9935

\[ {}y^{\prime } = \frac {-y \,{\mathrm e}^{x}+y x -x^{3} \ln \left (x \right )-x^{3}-x y^{2} \ln \left (x \right )-x y^{2}}{\left (-{\mathrm e}^{x}+x \right ) x} \]

[[_homogeneous, ‘class D‘], _Riccati]

9936

\[ {}y^{\prime } = \frac {y \left (1-x +y x^{2} \ln \left (x \right )+x^{3} y-x \ln \left (x \right )-x^{2}\right )}{\left (x -1\right ) x} \]

[_Bernoulli]

9937

\[ {}y^{\prime } = \frac {y \ln \left (x \right ) x -y+2 x^{5} b +2 x^{3} a y^{2}}{\left (x \ln \left (x \right )-1\right ) x} \]

[[_homogeneous, ‘class D‘], _Riccati]

9947

\[ {}y^{\prime } = -\frac {y \left (-\ln \left (\frac {1}{x}\right )+{\mathrm e}^{x}+y x^{2} \ln \left (x \right )+x^{3} y-x \ln \left (x \right )-x^{2}\right )}{\left (-\ln \left (\frac {1}{x}\right )+{\mathrm e}^{x}\right ) x} \]

[_Bernoulli]

9952

\[ {}y^{\prime } = \frac {y \left (-{\mathrm e}^{x}+\ln \left (2 x \right ) x^{2} y-\ln \left (2 x \right ) x \right ) {\mathrm e}^{-x}}{x} \]

[_Bernoulli]

9954

\[ {}y^{\prime } = \frac {\left (18 x^{{3}/{2}}+36 y^{2}-12 x^{3} y+x^{6}\right ) \sqrt {x}}{36} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

9969

\[ {}y^{\prime } = \frac {2 x^{2}+2 x +x^{4}-2 x^{2} y-1+y^{2}}{x +1} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

9980

\[ {}y^{\prime } = -\frac {y \left (\tan \left (x \right )+\ln \left (2 x \right ) x -\ln \left (2 x \right ) x^{2} y\right )}{x \tan \left (x \right )} \]

[_Bernoulli]

9998

\[ {}y^{\prime } = \frac {y \left (-1-\ln \left (\frac {\left (x -1\right ) \left (x +1\right )}{x}\right )+\ln \left (\frac {\left (x -1\right ) \left (x +1\right )}{x}\right ) x y\right )}{x} \]

[_Bernoulli]

9999

\[ {}y^{\prime } = \frac {y \left (-\ln \left (x \right )-x \ln \left (\frac {\left (x -1\right ) \left (x +1\right )}{x}\right )+\ln \left (\frac {\left (x -1\right ) \left (x +1\right )}{x}\right ) x^{2} y\right )}{x \ln \left (x \right )} \]

[_Bernoulli]

10009

\[ {}y^{\prime } = \frac {y \left (-\ln \left (\frac {1}{x}\right )-\ln \left (\frac {x^{2}+1}{x}\right ) x +\ln \left (\frac {x^{2}+1}{x}\right ) x^{2} y\right )}{x \ln \left (\frac {1}{x}\right )} \]

[_Bernoulli]

10015

\[ {}y^{\prime } = \frac {y \left (-\tanh \left (\frac {1}{x}\right )-\ln \left (\frac {x^{2}+1}{x}\right ) x +\ln \left (\frac {x^{2}+1}{x}\right ) x^{2} y\right )}{x \tanh \left (\frac {1}{x}\right )} \]

[_Bernoulli]

10016

\[ {}y^{\prime } = -\frac {y \left (\tanh \left (x \right )+\ln \left (2 x \right ) x -\ln \left (2 x \right ) x^{2} y\right )}{x \tanh \left (x \right )} \]

[_Bernoulli]

10019

\[ {}y^{\prime } = \frac {y \ln \left (x \right )+\cosh \left (x \right ) x a y^{2}+\cosh \left (x \right ) x^{3} b}{x \ln \left (x \right )} \]

[[_homogeneous, ‘class D‘], _Riccati]

10021

\[ {}y^{\prime } = -\frac {y \left (\ln \left (x -1\right )+\coth \left (x +1\right ) x -\coth \left (x +1\right ) x^{2} y\right )}{x \ln \left (x -1\right )} \]

[_Bernoulli]

10025

\[ {}y^{\prime } = \frac {y \left (-\cosh \left (\frac {1}{x +1}\right ) x +\cosh \left (\frac {1}{x +1}\right )-x +x^{2} y-x^{2}+x^{3} y\right )}{x \left (x -1\right ) \cosh \left (\frac {1}{x +1}\right )} \]

[_Bernoulli]

10030

\[ {}y^{\prime } = \frac {y \left (-1-\cosh \left (\frac {x +1}{x -1}\right ) x +\cosh \left (\frac {x +1}{x -1}\right ) x^{2} y-\cosh \left (\frac {x +1}{x -1}\right ) x^{2}+\cosh \left (\frac {x +1}{x -1}\right ) x^{3} y\right )}{x} \]

[_Bernoulli]

10032

\[ {}y^{\prime } = \frac {y \left (-1-x \,{\mathrm e}^{\frac {x +1}{x -1}}+x^{2} {\mathrm e}^{\frac {x +1}{x -1}} y-x^{2} {\mathrm e}^{\frac {x +1}{x -1}}+x^{3} {\mathrm e}^{\frac {x +1}{x -1}} y\right )}{x} \]

[_Bernoulli]

10043

\[ {}y^{\prime } = \frac {x +y+y^{2}-2 y \ln \left (x \right ) x +x^{2} \ln \left (x \right )^{2}}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

10055

\[ {}y^{\prime } = \frac {\left (4 \,{\mathrm e}^{-x^{2}}-4 x^{2} {\mathrm e}^{-x^{2}}+4 y^{2}-4 x^{2} {\mathrm e}^{-x^{2}} y+x^{4} {\mathrm e}^{-2 x^{2}}\right ) x}{4} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

10071

\[ {}y^{\prime } = \frac {30 x^{3}+25 \sqrt {x}+25 y^{2}-20 x^{3} y-100 y \sqrt {x}+4 x^{6}+40 x^{{7}/{2}}+100 x}{25 x} \]

[_rational, _Riccati]

10075

\[ {}y^{\prime } = \frac {y+x^{2} \ln \left (x \right )^{3}+2 x^{2} \ln \left (x \right )^{2} y+x^{2} \ln \left (x \right ) y^{2}}{x \ln \left (x \right )} \]

[_Riccati]

10076

\[ {}y^{\prime } = \frac {y+x^{3} \ln \left (x \right )^{3}+2 x^{3} \ln \left (x \right )^{2} y+x^{3} \ln \left (x \right ) y^{2}}{x \ln \left (x \right )} \]

[_Riccati]

10103

\[ {}y^{\prime } = \frac {2 x y^{2}+4 y \ln \left (2 x +1\right ) x +2 \ln \left (2 x +1\right )^{2} x +y^{2}-2+\ln \left (2 x +1\right )^{2}+2 y \ln \left (2 x +1\right )}{2 x +1} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

10139

\[ {}y^{\prime } = \frac {-2 \cos \left (x \right ) x +2 \sin \left (x \right ) x^{2}+2 x +2 y^{2}+4 y \cos \left (x \right ) x -4 y x +x^{2} \cos \left (2 x \right )+3 x^{2}-4 x^{2} \cos \left (x \right )}{2 x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

10179

\[ {}y^{\prime } = \frac {2 x^{2} \cos \left (x \right )+2 \sin \left (x \right ) x^{3}-2 x \sin \left (x \right )+2 x +2 x^{2} y^{2}-4 y \sin \left (x \right ) x +4 y \cos \left (x \right ) x^{2}+4 y x +3-\cos \left (2 x \right )-2 \sin \left (2 x \right ) x -4 \sin \left (x \right )+x^{2} \cos \left (2 x \right )+x^{2}+4 \cos \left (x \right ) x}{2 x^{3}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

10219

\[ {}y^{\prime } = -F \left (x \right ) \left (-a \,x^{2}+y^{2}\right )+\frac {y}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

10220

\[ {}y^{\prime } = -F \left (x \right ) \left (-x^{2}-2 y x +y^{2}\right )+\frac {y}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

10221

\[ {}y^{\prime } = -F \left (x \right ) \left (-a y^{2}-b \,x^{2}\right )+\frac {y}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

10222

\[ {}y^{\prime } = -F \left (x \right ) \left (-y^{2}+2 x^{2} y+1-x^{4}\right )+2 x \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

10223

\[ {}y^{\prime } = -F \left (x \right ) \left (x^{2}+2 y x -y^{2}\right )+\frac {y}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

10224

\[ {}y^{\prime } = -F \left (x \right ) \left (-7 x y^{2}-x^{3}\right )+\frac {y}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

10225

\[ {}y^{\prime } = -F \left (x \right ) \left (-y^{2}-2 y \ln \left (x \right )-\ln \left (x \right )^{2}\right )+\frac {y}{\ln \left (x \right ) x} \]

[_Riccati]

10226

\[ {}y^{\prime } = -x^{3} \left (-y^{2}-2 y \ln \left (x \right )-\ln \left (x \right )^{2}\right )+\frac {y}{\ln \left (x \right ) x} \]

[_Riccati]

10227

\[ {}y^{\prime } = \left (y-{\mathrm e}^{x}\right )^{2}+{\mathrm e}^{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

10228

\[ {}y^{\prime } = \frac {\left (y-\operatorname {Si}\left (x \right )\right )^{2}+\sin \left (x \right )}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

10229

\[ {}y^{\prime } = \left (y+\cos \left (x \right )\right )^{2}+\sin \left (x \right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

10230

\[ {}y^{\prime } = \frac {\left (y-\ln \left (x \right )-\operatorname {Ci}\left (x \right )\right )^{2}+\cos \left (x \right )}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

10231

\[ {}y^{\prime } = \frac {\left (y-x +\ln \left (x +1\right )\right )^{2}+x}{x +1} \]

[[_1st_order, _with_linear_symmetries], _Riccati]

10232

\[ {}y^{\prime } = \frac {2 x^{2} y+x^{3}+y \ln \left (x \right ) x -y^{2}-y x}{x^{2} \left (x +\ln \left (x \right )\right )} \]

[_Riccati]

11229

\[ {}y^{\prime } = a y^{2}+b x +c \]

[_Riccati]

11230

\[ {}y^{\prime } = y^{2}-a^{2} x^{2}+3 a \]

[_Riccati]

11231

\[ {}y^{\prime } = y^{2}+a^{2} x^{2}+b x +c \]

[_Riccati]

11232

\[ {}y^{\prime } = a y^{2}+b \,x^{n} \]

[[_Riccati, _special]]

11235

\[ {}y^{\prime } = a \,x^{n} y^{2}+b \,x^{-n -2} \]

[[_homogeneous, ‘class G‘], _Riccati]

11236

\[ {}y^{\prime } = a \,x^{n} y^{2}+b \,x^{m} \]

[_Riccati]

11239

\[ {}y^{\prime } = \left (a \,x^{2 n}+b \,x^{n -1}\right ) y^{2}+c \]

[_Riccati]

11240

\[ {}\left (a_{2} x +b_{2} \right ) \left (y^{\prime }+\lambda y^{2}\right )+a_{0} x +b_{0} = 0 \]

[_rational, _Riccati]

11241

\[ {}x^{2} y^{\prime } = a \,x^{2} y^{2}+b \]

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

11242

\[ {}x^{2} y^{\prime } = x^{2} y^{2}-a^{2} x^{4}+a \left (1-2 b \right ) x^{2}-b \left (b +1\right ) \]

[_rational, _Riccati]

11243

\[ {}x^{2} y^{\prime } = a \,x^{2} y^{2}+b \,x^{n}+c \]

[_rational, _Riccati]

11245

\[ {}\left (c_{2} x^{2}+b_{2} x +a_{2} \right ) \left (y^{\prime }+\lambda y^{2}\right )+a_{0} = 0 \]

[_rational, _Riccati]

11246

\[ {}x^{4} y^{\prime } = -x^{4} y^{2}-a^{2} \]

[_rational, [_Riccati, _special]]

11247

\[ {}a \,x^{2} \left (x -1\right )^{2} \left (y^{\prime }+\lambda y^{2}\right )+b \,x^{2}+c x +s = 0 \]

[_rational, _Riccati]

11248

\[ {}\left (a \,x^{2}+b x +c \right )^{2} \left (y^{\prime }+y^{2}\right )+A = 0 \]

[_rational, _Riccati]

11249

\[ {}x^{n +1} y^{\prime } = a \,x^{2 n} y^{2}+c \,x^{m}+d \]

[_Riccati]

11250

\[ {}\left (a \,x^{n}+b \right ) y^{\prime } = b y^{2}+a \,x^{n -2} \]

[_rational, _Riccati]

11251

\[ {}\left (a \,x^{n}+b \,x^{m}+c \right ) \left (y^{\prime }-y^{2}\right )+a n \left (n -1\right ) x^{n -2}+b m \left (m -1\right ) x^{m -2} = 0 \]

[_rational, _Riccati]

11252

\[ {}y^{\prime } = a y^{2}+b y+c x +k \]

[_Riccati]

11254

\[ {}y^{\prime } = y^{2}+a \,x^{n} y+b \,x^{n -1} \]

[_Riccati]

11255

\[ {}y^{\prime } = y^{2}+\left (\alpha x +\beta \right ) y+a \,x^{2}+b x +c \]

[_Riccati]

11259

\[ {}y^{\prime } = a \,x^{n} y^{2}-a \,x^{n} \left (b \,x^{m}+c \right ) y+b m \,x^{m -1} \]

[_Riccati]

11260

\[ {}y^{\prime } = -a n \,x^{n -1} y^{2}+c \,x^{m} \left (a \,x^{n}+b \right ) y-c \,x^{m} \]

[_Riccati]

11262

\[ {}y^{\prime } x = a y^{2}+b y+c \,x^{2 b} \]

[_rational, _Riccati]

11263

\[ {}y^{\prime } x = a y^{2}+b y+c \,x^{n} \]

[_rational, _Riccati]

11264

\[ {}y^{\prime } x = a y^{2}+\left (n +b \,x^{n}\right ) y+c \,x^{2 n} \]

[_rational, _Riccati]

11265

\[ {}y^{\prime } x = x y^{2}+a y+b \,x^{n} \]

[_rational, _Riccati]

11266

\[ {}y^{\prime } x +a_{3} x y^{2}+a_{2} y+a_{1} x +a_{0} = 0 \]

[_rational, _Riccati]

11267

\[ {}y^{\prime } x = a \,x^{n} y^{2}+b y+c \,x^{-n} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

11268

\[ {}y^{\prime } x = a \,x^{n} y^{2}+m y-a \,b^{2} x^{n +2 m} \]

[_rational, _Riccati]

11269

\[ {}y^{\prime } x = x^{2 n} y^{2}+\left (m -n \right ) y+x^{2 m} \]

[_rational, _Riccati]

11270

\[ {}y^{\prime } x = a \,x^{n} y^{2}+b y+c \,x^{m} \]

[_rational, _Riccati]

11271

\[ {}y^{\prime } x = a \,x^{2 n} y^{2}+\left (b \,x^{n}-n \right ) y+c \]

[_rational, _Riccati]

11272

\[ {}y^{\prime } x = a \,x^{2 n +m} y^{2}+\left (b \,x^{n +m}-n \right ) y+c \,x^{m} \]

[_rational, _Riccati]

11273

\[ {}\left (a_{2} x +b_{2} \right ) \left (y^{\prime }+\lambda y^{2}\right )+\left (a_{1} x +b_{1} \right ) y+a_{0} x +b_{0} = 0 \]

[_rational, _Riccati]

11274

\[ {}\left (a x +c \right ) y^{\prime } = \alpha \left (b x +a y\right )^{2}+\beta \left (b x +a y\right )-b x +\gamma \]

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

11275

\[ {}2 x^{2} y^{\prime } = 2 y^{2}+y x -2 a^{2} x \]

[_rational, _Riccati]

11276

\[ {}2 x^{2} y^{\prime } = 2 y^{2}+3 y x -2 a^{2} x \]

[_rational, _Riccati]

11277

\[ {}x^{2} y^{\prime } = a \,x^{2} y^{2}+b x y+c \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

11279

\[ {}x^{2} y^{\prime } = a \,x^{2} y^{2}+b x y+c \,x^{n}+s \]

[_rational, _Riccati]

11280

\[ {}x^{2} y^{\prime } = a \,x^{2} y^{2}+b x y+c \,x^{2 n}+s \,x^{n} \]

[_rational, _Riccati]

11286

\[ {}\left (a \,x^{2}+b \right ) y^{\prime }+y^{2}-2 y x +\left (1-a \right ) x^{2}-b = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

11287

\[ {}\left (a \,x^{2}+b x +c \right ) y^{\prime } = y^{2}+\left (2 \lambda x +b \right ) y+\lambda \left (\lambda -a \right ) x^{2}+\mu \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

11289

\[ {}\left (a_{2} x^{2}+b_{2} x +c_{2} \right ) y^{\prime } = y^{2}+\left (a_{1} x +b_{1} \right ) y-\lambda \left (\lambda +a_{1} -a_{2} \right ) x^{2}+\lambda \left (b_{2} -b_{1} \right ) x +\lambda c_{2} \]

[_rational, _Riccati]

11290

\[ {}\left (a_{2} x^{2}+b_{2} x +c_{2} \right ) y^{\prime } = y^{2}+\left (a_{1} x +b_{1} \right ) y+a_{0} x^{2}+b_{0} x +c_{0} \]

[_rational, _Riccati]

11291

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }+k \left (y+x -a \right ) \left (x +y-b \right )+y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

11292

\[ {}\left (c_{2} x^{2}+b_{2} x +a_{2} \right ) \left (y^{\prime }+\lambda y^{2}\right )+\left (b_{1} x +a_{1} \right ) y+a_{0} = 0 \]

[_rational, _Riccati]

11293

\[ {}x^{3} y^{\prime } = x^{3} a y^{2}+\left (b \,x^{2}+c \right ) y+s x \]

[_rational, _Riccati]

11295

\[ {}x \left (x^{2}+a \right ) \left (y^{\prime }+\lambda y^{2}\right )+\left (b \,x^{2}+c \right ) y+s x = 0 \]

[_rational, _Riccati]

11296

\[ {}x^{2} \left (x +a \right ) \left (y^{\prime }+\lambda y^{2}\right )+x \left (b x +c \right ) y+\alpha x +\beta = 0 \]

[_rational, _Riccati]

11297

\[ {}\left (a \,x^{2}+b x +e \right ) \left (-y+y^{\prime } x \right )-y^{2}+x^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

11298

\[ {}x^{2} \left (x^{2}+a \right ) \left (y^{\prime }+\lambda y^{2}\right )+x \left (b \,x^{2}+c \right ) y+s = 0 \]

[_rational, _Riccati]

11300

\[ {}x^{n +1} y^{\prime } = a \,x^{2 n} y^{2}+b \,x^{n} y+c \,x^{m}+d \]

[_Riccati]

11301

\[ {}x \left (a \,x^{k}+b \right ) y^{\prime } = \alpha \,x^{n} y^{2}+\left (\beta -a n \,x^{k}\right ) y+\gamma \,x^{-n} \]

[_rational, _Riccati]

11302

\[ {}x^{2} \left (a \,x^{n}-1\right ) \left (y^{\prime }+\lambda y^{2}\right )+\left (p \,x^{n}+q \right ) x y+r \,x^{n}+s = 0 \]

[_rational, _Riccati]

11306

\[ {}\left (a \,x^{n}+b \,x^{m}+c \right ) \left (-y+y^{\prime } x \right )+s \,x^{k} \left (y^{2}-\lambda \,x^{2}\right ) = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

11307

\[ {}y^{\prime } = a y^{2}+b \,{\mathrm e}^{\lambda x} \]

[_Riccati]

11308

\[ {}y^{\prime } = y^{2}+a \lambda \,{\mathrm e}^{\lambda x}-a^{2} {\mathrm e}^{2 \lambda x} \]

[_Riccati]

11310

\[ {}y^{\prime } = \sigma y^{2}+a y+b \,{\mathrm e}^{x}+c \]

[_Riccati]

11311

\[ {}y^{\prime } = y^{2}+b y+a \left (\lambda -b \right ) {\mathrm e}^{\lambda x}-a^{2} {\mathrm e}^{2 \lambda x} \]

[_Riccati]

11314

\[ {}y^{\prime } = y^{2}+a \,{\mathrm e}^{8 \lambda x}+b \,{\mathrm e}^{6 \lambda x}+c \,{\mathrm e}^{4 \lambda x}-\lambda ^{2} \]

[_Riccati]

11315

\[ {}y^{\prime } = a \,{\mathrm e}^{k x} y^{2}+b \,{\mathrm e}^{s x} \]

[_Riccati]

11317

\[ {}y^{\prime } = a \,{\mathrm e}^{\lambda x} y^{2}+b y+c \,{\mathrm e}^{-\lambda x} \]

[[_1st_order, _with_linear_symmetries], _Riccati]

11318

\[ {}y^{\prime } = a \,{\mathrm e}^{\mu x} y^{2}+\lambda y-a \,b^{2} {\mathrm e}^{\left (\mu +2 \lambda \right ) x} \]

[_Riccati]

11319

\[ {}y^{\prime } = {\mathrm e}^{\lambda x} y^{2}+a \,{\mathrm e}^{\mu x} y+a \lambda \,{\mathrm e}^{\left (\mu -\lambda \right ) x} \]

[_Riccati]

11320

\[ {}y^{\prime } = -\lambda \,{\mathrm e}^{\lambda x} y^{2}+a \,{\mathrm e}^{\mu x} y-a \,{\mathrm e}^{\left (\mu -\lambda \right ) x} \]

[_Riccati]

11322

\[ {}y^{\prime } = a \,{\mathrm e}^{k x} y^{2}+b y+c \,{\mathrm e}^{s x}+d \,{\mathrm e}^{-k x} \]

[_Riccati]

11323

\[ {}y^{\prime } = a \,{\mathrm e}^{\left (\mu +2 \lambda \right ) x} y^{2}+\left (b \,{\mathrm e}^{\left (\lambda +\mu \right ) x}-\lambda \right ) y+c \,{\mathrm e}^{\mu x} \]

[_Riccati]

11325

\[ {}y^{\prime } = {\mathrm e}^{\mu x} \left (y-b \,{\mathrm e}^{\lambda x}\right )^{2}+b \lambda \,{\mathrm e}^{\lambda x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

11327

\[ {}\left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}+c \right ) \left (y^{\prime }-y^{2}\right )+a \,\lambda ^{2} {\mathrm e}^{\lambda x}+b \,\mu ^{2} {\mathrm e}^{\mu x} = 0 \]

[_Riccati]

11328

\[ {}y^{\prime } = y^{2}+a x \,{\mathrm e}^{\lambda x} y+a \,{\mathrm e}^{\lambda x} \]

[_Riccati]

11329

\[ {}y^{\prime } = a \,{\mathrm e}^{\lambda x} y^{2}+b \,{\mathrm e}^{-\lambda x} \]

[[_1st_order, _with_linear_symmetries], _Riccati]

11332

\[ {}y^{\prime } = -\lambda \,{\mathrm e}^{\lambda x} y^{2}+a \,x^{n} {\mathrm e}^{\lambda x} y-a \,x^{n} \]

[_Riccati]

11333

\[ {}y^{\prime } = a \,{\mathrm e}^{\lambda x} y^{2}-a b \,x^{n} {\mathrm e}^{\lambda x} y+b n \,x^{n -1} \]

[_Riccati]

11335

\[ {}y^{\prime } = a \,x^{n} y^{2}+\lambda y-a \,b^{2} x^{n} {\mathrm e}^{2 \lambda x} \]

[_Riccati]

11337

\[ {}y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+a \,x^{k +1} {\mathrm e}^{\lambda x} y-a \,{\mathrm e}^{\lambda x} \]

[_Riccati]

11339

\[ {}y^{\prime } = a \,x^{n} {\mathrm e}^{2 \lambda x} y^{2}+\left (b \,x^{n} {\mathrm e}^{\lambda x}-\lambda \right ) y+c \,x^{n} \]

[_Riccati]

11340

\[ {}y^{\prime } = a \,{\mathrm e}^{\lambda x} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

11341

\[ {}y^{\prime } x = a \,{\mathrm e}^{\lambda x} y^{2}+k y+a \,b^{2} x^{2 k} {\mathrm e}^{\lambda x} \]

[_Riccati]

11344

\[ {}y^{\prime } = a \,{\mathrm e}^{-\lambda \,x^{2}} y^{2}+\lambda x y+a \,b^{2} \]

[_Riccati]

11345

\[ {}y^{\prime } = a \,x^{n} y^{2}+\lambda x y+a \,b^{2} x^{n} {\mathrm e}^{\lambda \,x^{2}} \]

[_Riccati]

11347

\[ {}y^{\prime } = y^{2}-a^{2}+a \lambda \sinh \left (\lambda x \right )-a^{2} \sinh \left (\lambda x \right )^{2} \]

[_Riccati]

11348

\[ {}y^{\prime } = y^{2}+a \sinh \left (\beta x \right ) y+a b \sinh \left (\beta x \right )-b^{2} \]

[_Riccati]

11349

\[ {}y^{\prime } = y^{2}+a x \sinh \left (b x \right )^{m} y+a \sinh \left (b x \right )^{m} \]

[_Riccati]

11350

\[ {}y^{\prime } = \lambda \sinh \left (\lambda x \right ) y^{2}-\lambda \sinh \left (\lambda x \right )^{3} \]

[_Riccati]

11351

\[ {}y^{\prime } = \left (a \sinh \left (\lambda x \right )^{2}-\lambda \right ) y^{2}-a \sinh \left (\lambda x \right )^{2}+\lambda -a \]

[_Riccati]

11353

\[ {}\left (a \sinh \left (\lambda x \right )+b \right ) \left (y^{\prime }-y^{2}\right )+a \,\lambda ^{2} \sinh \left (\lambda x \right ) = 0 \]

[_Riccati]

11354

\[ {}y^{\prime } = \alpha y^{2}+\beta +\gamma \cosh \left (x \right ) \]

[_Riccati]

11355

\[ {}y^{\prime } = y^{2}+a \cosh \left (\beta x \right ) y+a b \cosh \left (\beta x \right )-b^{2} \]

[_Riccati]

11356

\[ {}y^{\prime } = y^{2}+a x \cosh \left (b x \right )^{m} y+a \cosh \left (b x \right )^{m} \]

[_Riccati]

11357

\[ {}y^{\prime } = \left (a \cosh \left (\lambda x \right )^{2}-\lambda \right ) y^{2}+a +\lambda -a \cosh \left (\lambda x \right )^{2} \]

[_Riccati]

11358

\[ {}2 y^{\prime } = \left (a -\lambda +a \cosh \left (\lambda x \right )\right ) y^{2}+a +\lambda -a \cosh \left (\lambda x \right ) \]

[_Riccati]

11360

\[ {}y^{\prime } = a \sinh \left (\lambda x \right ) y^{2}+b \sinh \left (\lambda x \right ) \cosh \left (\lambda x \right )^{n} \]

[_Riccati]

11361

\[ {}y^{\prime } = a \cosh \left (\lambda x \right ) y^{2}+b \cosh \left (\lambda x \right ) \sinh \left (\lambda x \right )^{n} \]

[_Riccati]

11363

\[ {}\left (a \cosh \left (\lambda x \right )+b \right ) \left (y^{\prime }-y^{2}\right )+a \,\lambda ^{2} \cosh \left (\lambda x \right ) = 0 \]

[_Riccati]

11366

\[ {}y^{\prime } = y^{2}+a x \tanh \left (b x \right )^{m} y+a \tanh \left (b x \right )^{m} \]

[_Riccati]

11370

\[ {}y^{\prime } = y^{2}+a x \coth \left (b x \right )^{m} y+a \coth \left (b x \right )^{m} \]

[_Riccati]

11372

\[ {}y^{\prime } = y^{2}-2 \lambda ^{2} \tanh \left (\lambda x \right )^{2}-2 \lambda ^{2} \coth \left (\lambda x \right )^{2} \]

[_Riccati]

11373

\[ {}y^{\prime } = y^{2}+a \lambda +b \lambda -2 a b -a \left (a +\lambda \right ) \tanh \left (\lambda x \right )^{2}-b \left (b +\lambda \right ) \coth \left (\lambda x \right )^{2} \]

[_Riccati]

11375

\[ {}y^{\prime } x = a y^{2}+b \ln \left (x \right )+c \]

[_Riccati]

11376

\[ {}y^{\prime } x = a y^{2}+b \ln \left (x \right )^{k}+c \ln \left (x \right )^{2 k +2} \]

[_Riccati]

11380

\[ {}x^{2} y^{\prime } = x^{2} y^{2}+a \ln \left (x \right )^{2}+b \ln \left (x \right )+c \]

[_Riccati]

11382

\[ {}x^{2} \ln \left (a x \right ) \left (y^{\prime }-y^{2}\right ) = 1 \]

[_Riccati]

11383

\[ {}y^{\prime } = y^{2}+a \ln \left (\beta x \right ) y-a b \ln \left (\beta x \right )-b^{2} \]

[_Riccati]

11384

\[ {}y^{\prime } = y^{2}+a x \ln \left (b x \right )^{m} y+a \ln \left (b x \right )^{m} \]

[_Riccati]

11385

\[ {}y^{\prime } = a \,x^{n} y^{2}-a b \,x^{n +1} \ln \left (x \right ) y+b \ln \left (x \right )+b \]

[_Riccati]

11386

\[ {}y^{\prime } = -\left (n +1\right ) x^{n} y^{2}+a \,x^{n +1} \ln \left (x \right )^{m} y-a \ln \left (x \right )^{m} \]

[_Riccati]

11388

\[ {}y^{\prime } = a \ln \left (x \right )^{k} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

11390

\[ {}y^{\prime } x = \left (a y+b \ln \left (x \right )\right )^{2} \]

[[_1st_order, _with_linear_symmetries], _Riccati]

11391

\[ {}y^{\prime } x = a \ln \left (\lambda x \right )^{m} y^{2}+k y+a \,b^{2} x^{2 k} \ln \left (\lambda x \right )^{m} \]

[_Riccati]

11392

\[ {}y^{\prime } x = a \,x^{n} \left (y+b \ln \left (x \right )\right )^{2}-b \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

11393

\[ {}y^{\prime } x = a \,x^{2 n} \ln \left (x \right ) y^{2}+\left (b \,x^{n} \ln \left (x \right )-n \right ) y+c \ln \left (x \right ) \]

[_Riccati]

11394

\[ {}x^{2} y^{\prime } = a^{2} x^{2} y^{2}-y x +b^{2} \ln \left (x \right )^{n} \]

[_Riccati]

11397

\[ {}y^{\prime } = \alpha y^{2}+\beta +\gamma \sin \left (\lambda x \right ) \]

[_Riccati]

11398

\[ {}y^{\prime } = y^{2}-a^{2}+a \lambda \sin \left (\lambda x \right )+a^{2} \sin \left (\lambda x \right )^{2} \]

[_Riccati]

11400

\[ {}y^{\prime } = y^{2}+a \sin \left (\beta x \right ) y+a b \sin \left (\beta x \right )-b^{2} \]

[_Riccati]

11402

\[ {}y^{\prime } = \lambda \sin \left (\lambda x \right ) y^{2}+\lambda \sin \left (\lambda x \right )^{3} \]

[_Riccati]

11403

\[ {}2 y^{\prime } = \left (\lambda +a -a \sin \left (\lambda x \right )\right ) y^{2}+\lambda -a -a \sin \left (\lambda x \right ) \]

[_Riccati]

11404

\[ {}y^{\prime } = \left (\lambda +a \sin \left (\lambda x \right )^{2}\right ) y^{2}+\lambda -a +a \sin \left (\lambda x \right )^{2} \]

[_Riccati]

11405

\[ {}y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+a \,x^{k +1} \sin \left (x \right )^{m} y-a \sin \left (x \right )^{m} \]

[_Riccati]

11407

\[ {}y^{\prime } x = a \sin \left (\lambda x \right )^{m} y^{2}+k y+a \,b^{2} x^{2 k} \sin \left (\lambda x \right )^{m} \]

[_Riccati]

11409

\[ {}\left (a \sin \left (\lambda x \right )+b \right ) \left (y^{\prime }-y^{2}\right )-a \,\lambda ^{2} \sin \left (\lambda x \right ) = 0 \]

[_Riccati]

11410

\[ {}y^{\prime } = \alpha y^{2}+\beta +\gamma \cos \left (\lambda x \right ) \]

[_Riccati]

11411

\[ {}y^{\prime } = y^{2}-a^{2}+a \lambda \cos \left (\lambda x \right )+a^{2} \cos \left (\lambda x \right )^{2} \]

[_Riccati]

11413

\[ {}y^{\prime } = y^{2}+a \cos \left (\beta x \right ) y+a b \cos \left (\beta x \right )-b^{2} \]

[_Riccati]

11415

\[ {}y^{\prime } = \lambda \cos \left (\lambda x \right ) y^{2}+\lambda \cos \left (\lambda x \right )^{3} \]

[_Riccati]

11416

\[ {}2 y^{\prime } = \left (\lambda +a -a \cos \left (\lambda x \right )\right ) y^{2}+\lambda -a -a \cos \left (\lambda x \right ) \]

[_Riccati]

11417

\[ {}y^{\prime } = \left (\lambda +a \cos \left (\lambda x \right )^{2}\right ) y^{2}+\lambda -a +a \cos \left (\lambda x \right )^{2} \]

[_Riccati]

11418

\[ {}y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+a \,x^{k +1} \cos \left (x \right )^{m} y-a \cos \left (x \right )^{m} \]

[_Riccati]

11419

\[ {}y^{\prime } = a \cos \left (\lambda x +\mu \right )^{k} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

11420

\[ {}y^{\prime } x = a \cos \left (\lambda x \right )^{m} y^{2}+k y+a \,b^{2} x^{2 k} \cos \left (\lambda x \right )^{m} \]

[_Riccati]

11422

\[ {}\left (a \cos \left (\lambda x \right )+b \right ) \left (y^{\prime }-y^{2}\right )-a \,\lambda ^{2} \cos \left (\lambda x \right ) = 0 \]

[_Riccati]

11425

\[ {}y^{\prime } = a y^{2}+b \tan \left (x \right ) y+c \]

[_Riccati]

11426

\[ {}y^{\prime } = a y^{2}+2 a b \tan \left (x \right ) y+b \left (a b -1\right ) \tan \left (x \right )^{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

11427

\[ {}y^{\prime } = y^{2}+a \tan \left (\beta x \right ) y+a b \tan \left (\beta x \right )-b^{2} \]

[_Riccati]

11428

\[ {}y^{\prime } = y^{2}+a x \tan \left (b x \right )^{m} y+a \tan \left (b x \right )^{m} \]

[_Riccati]

11429

\[ {}y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+a \,x^{k +1} \tan \left (x \right )^{m} y-a \tan \left (x \right )^{m} \]

[_Riccati]

11430

\[ {}y^{\prime } = a \tan \left (\lambda x \right )^{n} y^{2}-a \,b^{2} \tan \left (\lambda x \right )^{n +2}+b \lambda \tan \left (\lambda x \right )^{2}+b \lambda \]

[_Riccati]

11431

\[ {}y^{\prime } = a \tan \left (\lambda x +\mu \right )^{k} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

11432

\[ {}y^{\prime } x = a \tan \left (\lambda x \right )^{m} y^{2}+k y+a \,b^{2} x^{2 k} \tan \left (\lambda x \right )^{m} \]

[_Riccati]

11437

\[ {}y^{\prime } = y^{2}+a \cot \left (\beta x \right ) y+a b \cot \left (\beta x \right )-b^{2} \]

[_Riccati]

11438

\[ {}y^{\prime } = y^{2}+a x \cot \left (b x \right )^{m} y+a \cot \left (b x \right )^{m} \]

[_Riccati]

11439

\[ {}y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+a \,x^{k +1} \cot \left (x \right )^{m} y-a \cot \left (x \right )^{m} \]

[_Riccati]

11441

\[ {}y^{\prime } x = a \cot \left (\lambda x \right )^{m} y^{2}+k y+a \,b^{2} x^{2 k} \cot \left (\lambda x \right )^{m} \]

[_Riccati]

11444

\[ {}y^{\prime } = a \sin \left (\lambda x \right ) y^{2}+b \sin \left (\lambda x \right ) \cos \left (\lambda x \right )^{n} \]

[_Riccati]

11446

\[ {}y^{\prime } = a \cos \left (\lambda x \right ) y^{2}+b \cos \left (\lambda x \right ) \sin \left (\lambda x \right )^{n} \]

[_Riccati]

11447

\[ {}y^{\prime } = \lambda \sin \left (\lambda x \right ) y^{2}+a \,x^{n} \cos \left (\lambda x \right ) y-a \,x^{n} \]

[_Riccati]

11449

\[ {}y^{\prime } = y^{2}-y \tan \left (x \right )+a \left (1-a \right ) \cot \left (x \right )^{2} \]

[_Riccati]

11450

\[ {}y^{\prime } = y^{2}-m y \tan \left (x \right )+b^{2} \cos \left (x \right )^{2 m} \]

[_Riccati]

11451

\[ {}y^{\prime } = y^{2}+m y \cot \left (x \right )+b^{2} \sin \left (x \right )^{2 m} \]

[_Riccati]

11453

\[ {}y^{\prime } = y^{2}+a \lambda +b \lambda +2 a b +a \left (\lambda -a \right ) \tan \left (\lambda x \right )^{2}+b \left (\lambda -b \right ) \cot \left (\lambda x \right )^{2} \]

[_Riccati]

11454

\[ {}y^{\prime } = y^{2}-\frac {\lambda ^{2}}{2}-\frac {3 \lambda ^{2} \tan \left (\lambda x \right )^{2}}{4}+a \cos \left (\lambda x \right )^{2} \sin \left (\lambda x \right )^{n} \]

[_Riccati]

11455

\[ {}y^{\prime } = \lambda \sin \left (\lambda x \right ) y^{2}+a \sin \left (\lambda x \right ) y-a \tan \left (\lambda x \right ) \]

[_Riccati]

11456

\[ {}y^{\prime } = y^{2}+\lambda \arcsin \left (x \right )^{n} y-a^{2}+a \lambda \arcsin \left (x \right )^{n} \]

[_Riccati]

11457

\[ {}y^{\prime } = y^{2}+\lambda x \arcsin \left (x \right )^{n} y+\lambda \arcsin \left (x \right )^{n} \]

[_Riccati]

11458

\[ {}y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+\lambda \arcsin \left (x \right )^{n} \left (x^{k +1} y-1\right ) \]

[_Riccati]

11463

\[ {}y^{\prime } x = \lambda \arcsin \left (x \right )^{n} y^{2}+k y+\lambda \,b^{2} x^{2 k} \arcsin \left (x \right )^{n} \]

[_Riccati]

11466

\[ {}y^{\prime } = y^{2}+\lambda x \arccos \left (x \right )^{n} y+\lambda \arccos \left (x \right )^{n} \]

[_Riccati]

11467

\[ {}y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+\lambda \arccos \left (x \right )^{n} \left (x^{k +1} y-1\right ) \]

[_Riccati]

11472

\[ {}y^{\prime } x = \lambda \arccos \left (x \right )^{n} y^{2}+k y+\lambda \,b^{2} x^{2 k} \arccos \left (x \right )^{n} \]

[_Riccati]

11474

\[ {}y^{\prime } = y^{2}+\lambda \arctan \left (x \right )^{n} y-a^{2}+a \lambda \arctan \left (x \right )^{n} \]

[_Riccati]

11475

\[ {}y^{\prime } = y^{2}+\lambda x \arctan \left (x \right )^{n} y+\lambda \arctan \left (x \right )^{n} \]

[_Riccati]

11476

\[ {}y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+\lambda \arctan \left (x \right )^{n} \left (x^{k +1} y-1\right ) \]

[_Riccati]

11481

\[ {}y^{\prime } x = \lambda \arctan \left (x \right )^{n} y^{2}+k y+\lambda \,b^{2} x^{2 k} \arctan \left (x \right )^{n} \]

[_Riccati]

11483

\[ {}y^{\prime } = y^{2}+\lambda \operatorname {arccot}\left (x \right )^{n} y-a^{2}+a \lambda \operatorname {arccot}\left (x \right )^{n} \]

[_Riccati]

11484

\[ {}y^{\prime } = y^{2}+\lambda x \operatorname {arccot}\left (x \right )^{n} y+\lambda \operatorname {arccot}\left (x \right )^{n} \]

[_Riccati]

11485

\[ {}y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+\lambda \operatorname {arccot}\left (x \right )^{n} \left (x^{k +1} y-1\right ) \]

[_Riccati]

11490

\[ {}y^{\prime } x = \lambda \operatorname {arccot}\left (x \right )^{n} y^{2}+k y+\lambda \,b^{2} x^{2 k} \operatorname {arccot}\left (x \right )^{n} \]

[_Riccati]

11492

\[ {}y^{\prime } = y^{2}+f \left (x \right ) y-a^{2}-a f \left (x \right ) \]

[_Riccati]

11493

\[ {}y^{\prime } = f \left (x \right ) y^{2}-a y-a b -b^{2} f \left (x \right ) \]

[_Riccati]

11494

\[ {}y^{\prime } = f \left (x \right )+x f \left (x \right ) y+y^{2} \]

[_Riccati]

11495

\[ {}y^{\prime } = f \left (x \right ) y^{2}-a \,x^{n} f \left (x \right ) y+a n \,x^{n -1} \]

[_Riccati]

11497

\[ {}y^{\prime } = -\left (n +1\right ) x^{n} y^{2}+x^{n +1} f \left (x \right ) y-f \left (x \right ) \]

[_Riccati]

11498

\[ {}y^{\prime } x = f \left (x \right ) y^{2}+n y+a \,x^{2 n} f \left (x \right ) \]

[_Riccati]

11500

\[ {}y^{\prime } = f \left (x \right ) y^{2}+g \left (x \right ) y-a^{2} f \left (x \right )-a g \left (x \right ) \]

[_Riccati]

11503

\[ {}y^{\prime } = a \,{\mathrm e}^{\lambda x} y^{2}+a \,{\mathrm e}^{\lambda x} f \left (x \right ) y+\lambda f \left (x \right ) \]

[_Riccati]

11504

\[ {}y^{\prime } = f \left (x \right ) y^{2}-a \,{\mathrm e}^{\lambda x} f \left (x \right ) y+a \lambda \,{\mathrm e}^{\lambda x} \]

[_Riccati]

11506

\[ {}y^{\prime } = f \left (x \right ) y^{2}+\lambda y+a^{2} {\mathrm e}^{2 \lambda x} f \left (x \right ) \]

[_Riccati]

11507

\[ {}y^{\prime } = f \left (x \right ) y^{2}-f \left (x \right ) \left (a \,{\mathrm e}^{\lambda x}+b \right ) y+a \lambda \,{\mathrm e}^{\lambda x} \]

[_Riccati]

11508

\[ {}y^{\prime } = {\mathrm e}^{\lambda x} f \left (x \right ) y^{2}+\left (a f \left (x \right )-\lambda \right ) y+b \,{\mathrm e}^{-\lambda x} f \left (x \right ) \]

[_Riccati]

11519

\[ {}y^{\prime } = -a \ln \left (x \right ) y^{2}+a f \left (x \right ) \left (x \ln \left (x \right )-x \right ) y-f \left (x \right ) \]

[_Riccati]

11520

\[ {}y^{\prime } = \lambda \sin \left (\lambda x \right ) y^{2}+f \left (x \right ) \cos \left (\lambda x \right ) y-f \left (x \right ) \]

[_Riccati]

11525

\[ {}y^{\prime } = y^{2}-f \left (x \right )^{2}+f^{\prime }\left (x \right ) \]

[_Riccati]

11526

\[ {}y^{\prime } = f \left (x \right ) y^{2}-f \left (x \right ) g \left (x \right ) y+g^{\prime }\left (x \right ) \]

[_Riccati]

11527

\[ {}y^{\prime } = -f^{\prime }\left (x \right ) y^{2}+f \left (x \right ) g \left (x \right ) y-g \left (x \right ) \]

[_Riccati]

11528

\[ {}y^{\prime } = g \left (x \right ) \left (y-f \left (x \right )\right )^{2}+f^{\prime }\left (x \right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

11531

\[ {}y^{\prime } = f^{\prime }\left (x \right ) y^{2}+a \,{\mathrm e}^{\lambda x} f \left (x \right ) y+a \,{\mathrm e}^{\lambda x} \]

[_Riccati]

11532

\[ {}y^{\prime } = f \left (x \right ) y^{2}+g^{\prime }\left (x \right ) y+a f \left (x \right ) {\mathrm e}^{2 g \left (x \right )} \]

[_Riccati]

11533

\[ {}y^{\prime } = y^{2}-\frac {f^{\prime \prime }\left (x \right )}{f \left (x \right )} \]

[_Riccati]

12026

\[ {}\left (x +1\right ) y^{2}-x^{3} y^{\prime } = 0 \]

[_separable]

12031

\[ {}y^{2}-y x +x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12038

\[ {}y+2 x y^{2}-y^{3} x^{2}+2 x^{2} y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

12054

\[ {}y^{2}-y x +x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12059

\[ {}-y+y^{\prime } x = x^{2}+y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

12068

\[ {}y^{\prime } x -a y+b y^{2} = c \,x^{2 a} \]

[_rational, _Riccati]

12081

\[ {}\left (-x^{2}+1\right ) y^{\prime }-y x = a x y^{2} \]

[_separable]

12086

\[ {}x y^{2}+y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

12095

\[ {}y^{\prime } x +y-y^{2} \ln \left (x \right ) = 0 \]

[_Bernoulli]

12107

\[ {}y^{\prime }+2 y x = x^{2}+y^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

12257

\[ {}x^{\prime } = t^{2}+x^{2} \]

[[_Riccati, _special]]

12277

\[ {}R^{\prime } = \left (1+t \right ) \left (1+R^{2}\right ) \]

[_separable]

12279

\[ {}\left (1+t \right ) x^{\prime }+x^{2} = 0 \]

[_separable]

12281

\[ {}x^{\prime } = \left (4 t -x\right )^{2} \]
i.c.

[[_homogeneous, ‘class C‘], _Riccati]

12282

\[ {}x^{\prime } = 2 t x^{2} \]
i.c.

[_separable]

12286

\[ {}T^{\prime } = 2 a t \left (T^{2}-a^{2}\right ) \]
i.c.

[_separable]

12289

\[ {}y^{\prime } = \frac {2 t y^{2}}{t^{2}+1} \]
i.c.

[_separable]

12295

\[ {}y^{\prime } = \frac {y^{2}+2 t y}{t^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12296

\[ {}y^{\prime } = -y^{2} {\mathrm e}^{-t^{2}} \]
i.c.

[_separable]

12299

\[ {}x^{\prime } = t -x^{2} \]

[[_Riccati, _special]]

12319

\[ {}x^{\prime } = \left (t +x\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

12323

\[ {}x^{\prime } = x \left (1+x \,{\mathrm e}^{t}\right ) \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

12325

\[ {}t^{2} y^{\prime }+2 t y-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12332

\[ {}x^{2}-t^{2} x^{\prime } = 0 \]

[_separable]

12492

\[ {}y^{\prime } = \frac {y^{2}}{x -2} \]
i.c.

[_separable]

12510

\[ {}y^{2}+2 y x -x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12514

\[ {}2 r \left (s^{2}+1\right )+\left (r^{4}+1\right ) s^{\prime } = 0 \]

[_separable]

12550

\[ {}y^{\prime }-\frac {y}{x} = -\frac {y^{2}}{x} \]

[_separable]

12570

\[ {}y^{\prime } = \left (1-x \right ) y^{2}+\left (2 x -1\right ) y-x \]

[_Riccati]

12571

\[ {}y^{\prime } = -y^{2}+y x +1 \]

[_Riccati]

12572

\[ {}y^{\prime } = -8 x y^{2}+4 x \left (4 x +1\right ) y-8 x^{3}-4 x^{2}+1 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

12580

\[ {}2 x^{2}+y x +y^{2}+2 x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

12882

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (x \right ) \]
i.c.

[_separable]

12885

\[ {}y^{\prime } = y^{2} {\mathrm e}^{-t^{2}} \]

[_separable]

12909

\[ {}y x +y^{2}+x^{2}-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

13030

\[ {}y^{\prime }-\frac {y}{x +1}+y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

13031

\[ {}y^{\prime } = x +y^{2} \]
i.c.

[[_Riccati, _special]]

13033

\[ {}y^{\prime } = x^{2}-y^{2} \]

[_Riccati]

13037

\[ {}y^{\prime } = x -y^{2} \]
i.c.

[[_Riccati, _special]]

13039

\[ {}\left (x -y\right ) y-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13041

\[ {}x^{\prime } = \frac {x}{t}+\frac {x^{2}}{t^{3}} \]
i.c.

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

13047

\[ {}y^{\prime }-\frac {3 y}{x}+x^{3} y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

13051

\[ {}\left (x -y\right ) y-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13053

\[ {}y^{\prime } x +y-y^{2} \ln \left (x \right ) = 0 \]

[_Bernoulli]

13111

\[ {}x^{2} y^{\prime } = 1+y^{2} \]

[_separable]

13115

\[ {}y^{\prime } x +y = x y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

13330

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

13331

\[ {}1+s^{2}-\sqrt {t}\, s^{\prime } = 0 \]

[_separable]

13363

\[ {}\left (-x^{2}+1\right ) y^{\prime }-y x +a x y^{2} = 0 \]

[_separable]

13366

\[ {}y^{\prime } x = \left (y \ln \left (x \right )-2\right ) y \]

[_Bernoulli]

13367

\[ {}y-y^{\prime } \cos \left (x \right ) = y^{2} \cos \left (x \right ) \left (1-\sin \left (x \right )\right ) \]

[_Bernoulli]

13375

\[ {}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0 \]

[_separable]

13438

\[ {}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0 \]

[_separable]

13444

\[ {}y^{\prime } x +y-y^{2} \ln \left (x \right ) = 0 \]

[_Bernoulli]

13450

\[ {}y^{\prime } = x +y^{2} \]
i.c.

[[_Riccati, _special]]

13521

\[ {}y^{\prime } = x^{2}-y^{2} \]

[_Riccati]

13522

\[ {}y^{\prime } = y^{2}-x^{2} \]

[_Riccati]

13594

\[ {}x y \left (1-y\right )-2 y^{\prime } = 0 \]

[_separable]

13764

\[ {}y^{\prime } = t^{2} y^{2} \]

[_separable]

13770

\[ {}y^{\prime } = 2 t y^{2}+3 y^{2} \]

[_separable]

13791

\[ {}y^{\prime } = t y^{2}+2 y^{2} \]
i.c.

[_separable]

13794

\[ {}y^{\prime } = \left (1+y^{2}\right ) t \]
i.c.

[_separable]

13796

\[ {}y^{\prime } = 2 t y^{2}+3 t^{2} y^{2} \]
i.c.

[_separable]

13806

\[ {}y^{\prime } = \left (y+\frac {1}{2}\right ) \left (y+t \right ) \]
i.c.

[_Riccati]

13817

\[ {}y^{\prime } = t y+t y^{2} \]

[_separable]

13828

\[ {}y^{\prime } = t -y^{2} \]
i.c.

[[_Riccati, _special]]

13829

\[ {}y^{\prime } = y^{2}-4 t \]
i.c.

[[_Riccati, _special]]

13950

\[ {}y^{\prime } = 2 t y^{2}+3 t^{2} y^{2} \]
i.c.

[_separable]

13954

\[ {}y^{\prime } = \left (y-2\right ) \left (y+1-\cos \left (t \right )\right ) \]

[_Riccati]

14189

\[ {}x^{2} y^{\prime }+x y^{2} = x \]

[_separable]

14190

\[ {}y^{\prime }-y^{2} = x \]

[[_Riccati, _special]]

14195

\[ {}y^{\prime }+\left (8-x \right ) y-y^{2} = -8 x \]

[_Riccati]

14197

\[ {}y^{\prime } = 3 y^{2}-y^{2} \sin \left (x \right ) \]

[_separable]

14199

\[ {}y^{\prime } x = \left (x -y\right )^{2} \]

[_rational, _Riccati]

14210

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

14225

\[ {}y^{\prime } = 3 y^{2}-y^{2} \sin \left (x \right ) \]

[_separable]

14229

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

14235

\[ {}y^{\prime }-3 x^{2} y^{2} = -3 x^{2} \]

[_separable]

14236

\[ {}y^{\prime }-3 x^{2} y^{2} = 3 x^{2} \]

[_separable]

14241

\[ {}y^{\prime } x = y^{2}-y \]
i.c.

[_separable]

14242

\[ {}y^{\prime } x = y^{2}-y \]
i.c.

[_separable]

14247

\[ {}y^{\prime }-x y^{2} = \sqrt {x} \]

[_Riccati]

14248

\[ {}y^{\prime } = 1+\left (y x +3 y\right )^{2} \]

[_Riccati]

14277

\[ {}y^{\prime } = 1+\left (-x +y\right )^{2} \]
i.c.

[[_homogeneous, ‘class C‘], _Riccati]

14278

\[ {}x^{2} y^{\prime }-y x = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14283

\[ {}y^{\prime }-\frac {3 y}{x} = \frac {y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14298

\[ {}y^{\prime } = \left (x -y+3\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

14301

\[ {}y^{\prime } = x \left (1+\frac {2 y}{x^{2}}+\frac {y^{2}}{x^{4}}\right ) \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

14322

\[ {}y^{\prime } x = 2 y^{2}-6 y \]

[_separable]

14323

\[ {}4 y^{2}-x^{2} y^{2}+y^{\prime } = 0 \]

[_separable]

14327

\[ {}y^{\prime } = y^{2}-2 y x +x^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

14338

\[ {}y^{\prime } = \frac {3 y}{x +1}-y^{2} \]

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

14346

\[ {}y^{\prime } = x y^{2}+3 y^{2}+x +3 \]

[_separable]

14360

\[ {}y^{2}-y^{2} \cos \left (x \right )+y^{\prime } = 0 \]

[_separable]

14995

\[ {}y^{\prime } = \frac {y^{2}+2 y x}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15023

\[ {}y^{\prime }+t^{2} = y^{2} \]
i.c.

[_Riccati]

15028

\[ {}y^{\prime } = 4 t^{2}-t y^{2} \]
i.c.

[_Riccati]

15053

\[ {}y^{\prime } = t y^{2} \]
i.c.

[_separable]

15086

\[ {}y^{\prime } = t^{2} y^{2}+y^{2}-t^{2}-1 \]

[_separable]

15088

\[ {}4 \left (x -1\right )^{2} y^{\prime }-3 \left (3+y\right )^{2} = 0 \]

[_separable]

15113

\[ {}y^{\prime } = y^{2} \cos \left (t \right ) \]
i.c.

[_separable]

15119

\[ {}y^{\prime } = \left (x +y-4\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

15230

\[ {}2 t y+y^{2}-t^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15233

\[ {}5 t y^{2}+y+\left (2 t^{3}-t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

15241

\[ {}y^{\prime }+y = t y^{2} \]

[_Bernoulli]

15246

\[ {}y^{\prime }-\frac {y}{t} = t y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

15247

\[ {}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15248

\[ {}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t} \]

[_separable]

15253

\[ {}\frac {2}{t}+\frac {1}{y}+\frac {t y^{\prime }}{y^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15301

\[ {}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t} \]

[_separable]

15325

\[ {}y-t y^{\prime } = 2 y^{2} \ln \left (t \right ) \]

[[_homogeneous, ‘class D‘], _Bernoulli]

15334

\[ {}y^{\prime } = y^{2}-x \]
i.c.

[[_Riccati, _special]]

15826

\[ {}y^{\prime } = x^{2}+y^{2} \]

[[_Riccati, _special]]

15846

\[ {}y^{\prime } = x^{2}-y^{2} \]

[_Riccati]

15860

\[ {}y^{\prime } = x^{2}-y^{2} \]
i.c.

[_Riccati]

15861

\[ {}y^{\prime } = x +y^{2} \]
i.c.

[[_Riccati, _special]]

15865

\[ {}1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

15868

\[ {}1+y^{2} = y^{\prime } x \]

[_separable]

15882

\[ {}a^{2}+y^{2}+2 x \sqrt {a x -x^{2}}\, y^{\prime } = 0 \]
i.c.

[_separable]

15902

\[ {}x^{2} y^{\prime } = y^{2}-y x +x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

15904

\[ {}2 x^{2} y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

15942

\[ {}y^{\prime }+2 y x = 2 x y^{2} \]

[_separable]

15950

\[ {}y^{\prime }-y \cos \left (x \right ) = y^{2} \cos \left (x \right ) \]

[_separable]

16010

\[ {}y^{\prime } {\mathrm e}^{-x}+y^{2}-2 y \,{\mathrm e}^{x} = 1-{\mathrm e}^{2 x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

16011

\[ {}y^{\prime }+y^{2}-2 y \sin \left (x \right )+\sin \left (x \right )^{2}-\cos \left (x \right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

16012

\[ {}y^{\prime } x -y^{2}+\left (2 x +1\right ) y = x^{2}+2 x \]

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

16013

\[ {}x^{2} y^{\prime } = x^{2} y^{2}+y x +1 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

16029

\[ {}y^{\prime } = \left (x -y\right )^{2}+1 \]

[[_homogeneous, ‘class C‘], _Riccati]

16035

\[ {}y-x y^{2} \ln \left (x \right )+y^{\prime } x = 0 \]

[_Bernoulli]

16049

\[ {}x y^{2}+y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

16059

\[ {}y^{\prime } x +y = y^{2} \ln \left (x \right ) \]
i.c.

[_Bernoulli]