2.2.199 Problems 19801 to 19900

Table 2.411: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

19801

\begin{align*} y^{\prime }-\tan \left (x \right ) y&=y^{4} \sec \left (x \right ) \\ \end{align*}

[_Bernoulli]

4.575

19802

\begin{align*} y \sqrt {x^{2}-1}+x \sqrt {-1+y^{2}}\, y^{\prime }&=0 \\ \end{align*}

[_separable]

4.997

19803

\begin{align*} \left (1+{\mathrm e}^{y}\right ) \cos \left (x \right )+{\mathrm e}^{y} \sin \left (x \right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

2.567

19804

\begin{align*} \sqrt {2 a y-y^{2}}\, \csc \left (x \right )+y \tan \left (x \right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

9.373

19805

\begin{align*} y \left (3+y\right ) y^{\prime }&=x \left (3+2 y\right ) \\ \end{align*}

[_separable]

3.230

19806

\begin{align*} x^{3}-3 x^{2} y+5 x y^{2}-7 y^{3}+\left (y^{4}+2 y^{2}-x^{3}+5 x^{2} y-21 x y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, _rational]

2.912

19807

\begin{align*} x^{3}+4 y x +y^{2}+\left (2 x^{2}+2 y x +4 y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, _rational]

2.544

19808

\begin{align*} \cos \left (y\right ) \sin \left (x \right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

2.898

19809

\begin{align*} x^{2}+\ln \left (y\right )+\frac {x y^{\prime }}{y}&=0 \\ \end{align*}

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4.804

19810

\begin{align*} x \left (x -2 y\right ) y^{\prime }+x^{2}+2 y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12.552

19811

\begin{align*} 5 y y^{\prime } x -x^{2}-y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14.191

19812

\begin{align*} \left (x^{2}+3 y x -y^{2}\right ) y^{\prime }-3 y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

14.026

19813

\begin{align*} \left (x^{2}+2 y x \right ) y^{\prime }-3 x^{2}+2 y x -y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

14.816

19814

\begin{align*} \left (x^{2}-2 y x \right ) y^{\prime }+x^{2}-3 y x +2 y^{2}&=0 \\ \end{align*}

[_linear]

0.107

19815

\begin{align*} 3 x^{2} y^{\prime }+2 x^{2}-3 y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

4.574

19816

\begin{align*} \left (3 x +2 y-7\right ) y^{\prime }&=2 x -3 y+6 \\ \end{align*}

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.928

19817

\begin{align*} \left (6 x -5 y+4\right ) y^{\prime }&=1+2 x -y \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

49.236

19818

\begin{align*} \left (5 x -2 y+7\right ) y^{\prime }&=x -3 y+2 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

46.079

19819

\begin{align*} \left (x -3 y+4\right ) y^{\prime }&=5 x -7 y \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

39.766

19820

\begin{align*} \left (x -3 y+4\right ) y^{\prime }&=2 x -6 y+7 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7.362

19821

\begin{align*} \left (5 x -2 y+7\right ) y^{\prime }&=10 x -4 y+6 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7.487

19822

\begin{align*} \left (2 x -2 y+5\right ) y^{\prime }&=x -y+3 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7.164

19823

\begin{align*} \left (6 x -4 y+1\right ) y^{\prime }&=3 x -2 y+1 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7.310

19824

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.273

19825

\begin{align*} y^{\prime \prime }+2 y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

5.292

19826

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.067

19827

\begin{align*} 2 y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-3 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.063

19828

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.055

19829

\begin{align*} y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime }-5 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.064

19830

\begin{align*} 2 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime }+2 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.063

19831

\begin{align*} y^{\prime \prime \prime \prime }-y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.049

19832

\begin{align*} y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.068

19833

\begin{align*} y^{\prime \prime }+4 y^{\prime }+3 y&=2 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

28.105

19834

\begin{align*} y^{\prime \prime \prime }+4 y^{\prime \prime }+3 y^{\prime }&=x^{2} \\ \end{align*}

[[_3rd_order, _missing_y]]

0.145

19835

\begin{align*} y^{\prime \prime }-4 y^{\prime }+2 y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

32.642

19836

\begin{align*} y^{\prime \prime }+3 y^{\prime }-y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

32.827

19837

\begin{align*} y^{\prime \prime \prime }+5 y^{\prime \prime }+6 y^{\prime }&=x \\ \end{align*}

[[_3rd_order, _missing_y]]

0.124

19838

\begin{align*} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y&=x \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.123

19839

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

27.811

19840

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

16.866

19841

\begin{align*} y^{\prime \prime }+y&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.651

19842

\begin{align*} y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-4 y&=x \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.123

19843

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

5.401

19844

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=\cos \left (x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.372

19845

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y&={\mathrm e}^{x} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.135

19846

\begin{align*} y^{\prime \prime \prime \prime }-y&=x^{4} \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.154

19847

\begin{align*} e y^{\prime \prime }&=\frac {P \left (\frac {L}{2}-x \right )}{2} \\ \end{align*}

[[_2nd_order, _quadrature]]

2.030

19848

\begin{align*} e y^{\prime \prime }&=\frac {w \left (\frac {L^{2}}{4}-x^{2}\right )}{2} \\ \end{align*}

[[_2nd_order, _quadrature]]

2.059

19849

\begin{align*} e y^{\prime \prime }&=-\frac {\left (w L +P \right ) x}{2}-\frac {w \,x^{2}}{2} \\ \end{align*}

[[_2nd_order, _quadrature]]

2.615

19850

\begin{align*} e y^{\prime \prime }&=-P \left (L -x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

1.717

19851

\begin{align*} e y^{\prime \prime }&=-P L +\left (w L +P \right ) x -\frac {w \left (L^{2}+x^{2}\right )}{2} \\ \end{align*}

[[_2nd_order, _quadrature]]

2.994

19852

\begin{align*} e y^{\prime \prime }&=P \left (-y+a \right ) \\ \end{align*}

[[_2nd_order, _missing_x]]

6.353

19853

\begin{align*} x^{3} y^{\prime \prime \prime }+7 x^{2} y^{\prime \prime }+8 y^{\prime } x&=\ln \left (x \right )^{2} \\ \end{align*}

[[_3rd_order, _missing_y]]

0.330

19854

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x -8 y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.385

19855

\begin{align*} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y&=x^{3} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.309

19856

\begin{align*} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y&=\ln \left (x \right ) \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.332

19857

\begin{align*} x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_3rd_order, _exact, _linear, _homogeneous]]

0.145

19858

\begin{align*} y^{\prime \prime } x +2 y^{\prime }&=2 x \\ \end{align*}

[[_2nd_order, _missing_y]]

2.615

19859

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.141

19860

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=2 x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

50.074

19861

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

20.473

19862

\begin{align*} y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+\csc \left (x \right )^{2} y&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.798

19863

\begin{align*} \left (x^{2}-x \right ) y^{\prime \prime }+\left (3 x -2\right ) y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

58.930

19864

\begin{align*} \left (3 x^{2}+x \right ) y^{\prime \prime }+2 \left (1+6 x \right ) y^{\prime }+6 y&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

30.242

19865

\begin{align*} \left (x^{3}+x^{2}-3 x +1\right ) y^{\prime \prime \prime }+\left (9 x^{2}+6 x -9\right ) y^{\prime \prime }+\left (18 x +6\right ) y^{\prime }+6 y&=x^{3} \\ \end{align*}

[[_3rd_order, _fully, _exact, _linear]]

0.296

19866

\begin{align*} 4 y^{\prime }+5 y^{\prime \prime } x +x^{2} y^{\prime \prime \prime }&=-\frac {1}{x^{2}} \\ \end{align*}

[[_3rd_order, _missing_y]]

0.235

19867

\begin{align*} y^{\prime \prime }&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

1.133

19868

\begin{align*} x^{2} y^{\prime \prime }&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

1.491

19869

\begin{align*} y^{\prime \prime }&=-a^{2} y \\ \end{align*}

[[_2nd_order, _missing_x]]

5.582

19870

\begin{align*} y^{\prime \prime }&=\frac {1}{y^{2}} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

59.641

19871

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3.280

19872

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}&=1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

4.102

19873

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }-1-{y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

9.434

19874

\begin{align*} y^{\prime \prime } x +3 y^{\prime }&=3 x \\ \end{align*}

[[_2nd_order, _missing_y]]

2.804

19875

\begin{align*} x&=y^{\prime \prime }+y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

3.203

19876

\begin{align*} x&={y^{\prime }}^{2}+y \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

1.138

19877

\begin{align*} y&=y^{\prime } x -{y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.230

19878

\begin{align*} V^{\prime \prime }+\frac {2 V^{\prime }}{r}&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

10.318

19879

\begin{align*} V^{\prime \prime }+\frac {V^{\prime }}{r}&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

10.473

19880

\begin{align*} z^{\prime }+7 y-3 z&=0 \\ 7 y^{\prime }+63 y-36 z&=0 \\ \end{align*}

system_of_ODEs

0.402

19881

\begin{align*} z^{\prime }+2 y^{\prime }+3 y&=0 \\ y^{\prime }+3 y-2 z&=0 \\ \end{align*}

system_of_ODEs

0.454

19882

\begin{align*} y^{\prime }+3 y+z&=0 \\ z^{\prime }+3 y+5 z&=0 \\ \end{align*}

system_of_ODEs

0.486

19883

\begin{align*} y^{\prime }+3 y+2 z&=0 \\ z^{\prime }+2 y-4 z&=0 \\ \end{align*}

system_of_ODEs

0.643

19884

\begin{align*} y^{\prime }-3 y-2 z&=0 \\ z^{\prime }+y-2 z&=0 \\ \end{align*}

system_of_ODEs

1.157

19885

\begin{align*} y^{\prime }+z^{\prime }+6 y&=0 \\ z^{\prime }+5 y+z&=0 \\ \end{align*}

system_of_ODEs

0.555

19886

\begin{align*} z^{\prime }+y^{\prime }+5 y-3 z&=x +{\mathrm e}^{x} \\ y^{\prime }+2 y-z&={\mathrm e}^{x} \\ \end{align*}

system_of_ODEs

1.017

19887

\begin{align*} z^{\prime }+y+3 z&={\mathrm e}^{x} \\ y^{\prime }+3 y+4 z&={\mathrm e}^{2 x} \\ \end{align*}

system_of_ODEs

0.931

19888

\begin{align*} z^{\prime }-3 y+2 z&={\mathrm e}^{x} \\ y^{\prime }+2 y-z&={\mathrm e}^{3 x} \\ \end{align*}

system_of_ODEs

1.399

19889

\begin{align*} z^{\prime }+5 y-2 z&=x \\ y^{\prime }+4 y+z&=x \\ \end{align*}

system_of_ODEs

2.148

19890

\begin{align*} z^{\prime }+7 y-9 z&={\mathrm e}^{x} \\ y^{\prime }-y-3 z&={\mathrm e}^{2 x} \\ \end{align*}

system_of_ODEs

2.707

19891

\begin{align*} y^{\prime }-2 y-2 z&={\mathrm e}^{3 x} \\ z^{\prime }+5 y-2 z&={\mathrm e}^{4 x} \\ \end{align*}

system_of_ODEs

1.722

19892

\begin{align*} {y^{\prime }}^{2}+y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.266

19893

\begin{align*} y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}}&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

30.926

19894

\begin{align*} v^{\prime \prime }+\frac {2 v^{\prime }}{r}&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

9.358

19895

\begin{align*} y^{\prime \prime }-k^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.628

19896

\begin{align*} \left (1-x \right ) y^{\prime }-1-y&=0 \\ \end{align*}

[_separable]

3.419

19897

\begin{align*} y^{\prime }+\sqrt {\frac {1-y^{2}}{-x^{2}+1}}&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

7.993

19898

\begin{align*} -y^{\prime } x +y&=a \left (y^{\prime }+y^{2}\right ) \\ \end{align*}

[_separable]

4.814

19899

\begin{align*} 3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime }&=0 \\ \end{align*}

[_separable]

3.924

19900

\begin{align*} x^{2}+y^{2}-2 y y^{\prime } x&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13.066