| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime }-\tan \left (x \right ) y&=y^{4} \sec \left (x \right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.575 |
|
| \begin{align*}
y \sqrt {x^{2}-1}+x \sqrt {-1+y^{2}}\, y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.997 |
|
| \begin{align*}
\left (1+{\mathrm e}^{y}\right ) \cos \left (x \right )+{\mathrm e}^{y} \sin \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.567 |
|
| \begin{align*}
\sqrt {2 a y-y^{2}}\, \csc \left (x \right )+y \tan \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
9.373 |
|
| \begin{align*}
y \left (3+y\right ) y^{\prime }&=x \left (3+2 y\right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.230 |
|
| \begin{align*}
x^{3}-3 x^{2} y+5 x y^{2}-7 y^{3}+\left (y^{4}+2 y^{2}-x^{3}+5 x^{2} y-21 x y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, _rational] |
✓ |
✓ |
✓ |
✗ |
2.912 |
|
| \begin{align*}
x^{3}+4 y x +y^{2}+\left (2 x^{2}+2 y x +4 y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, _rational] |
✓ |
✓ |
✓ |
✗ |
2.544 |
|
| \begin{align*}
\cos \left (y\right ) \sin \left (x \right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.898 |
|
| \begin{align*}
x^{2}+\ln \left (y\right )+\frac {x y^{\prime }}{y}&=0 \\
\end{align*} |
[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
4.804 |
|
| \begin{align*}
x \left (x -2 y\right ) y^{\prime }+x^{2}+2 y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
12.552 |
|
| \begin{align*}
5 y y^{\prime } x -x^{2}-y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
14.191 |
|
| \begin{align*}
\left (x^{2}+3 y x -y^{2}\right ) y^{\prime }-3 y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
14.026 |
|
| \begin{align*}
\left (x^{2}+2 y x \right ) y^{\prime }-3 x^{2}+2 y x -y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
14.816 |
|
| \begin{align*}
\left (x^{2}-2 y x \right ) y^{\prime }+x^{2}-3 y x +2 y^{2}&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
0.107 |
|
| \begin{align*}
3 x^{2} y^{\prime }+2 x^{2}-3 y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
4.574 |
|
| \begin{align*}
\left (3 x +2 y-7\right ) y^{\prime }&=2 x -3 y+6 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
6.928 |
|
| \begin{align*}
\left (6 x -5 y+4\right ) y^{\prime }&=1+2 x -y \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
49.236 |
|
| \begin{align*}
\left (5 x -2 y+7\right ) y^{\prime }&=x -3 y+2 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
46.079 |
|
| \begin{align*}
\left (x -3 y+4\right ) y^{\prime }&=5 x -7 y \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
39.766 |
|
| \begin{align*}
\left (x -3 y+4\right ) y^{\prime }&=2 x -6 y+7 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
7.362 |
|
| \begin{align*}
\left (5 x -2 y+7\right ) y^{\prime }&=10 x -4 y+6 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
7.487 |
|
| \begin{align*}
\left (2 x -2 y+5\right ) y^{\prime }&=x -y+3 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
7.164 |
|
| \begin{align*}
\left (6 x -4 y+1\right ) y^{\prime }&=3 x -2 y+1 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
7.310 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
4.273 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
5.292 |
|
| \begin{align*}
y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime }&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.067 |
|
| \begin{align*}
2 y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-3 y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.063 |
|
| \begin{align*}
y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.055 |
|
| \begin{align*}
y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime }-5 y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.064 |
|
| \begin{align*}
2 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime }+2 y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.063 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.049 |
|
| \begin{align*}
y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime }&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.068 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+3 y&=2 \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
28.105 |
|
| \begin{align*}
y^{\prime \prime \prime }+4 y^{\prime \prime }+3 y^{\prime }&=x^{2} \\
\end{align*} |
[[_3rd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.145 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+2 y&=x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
32.642 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-y&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
32.827 |
|
| \begin{align*}
y^{\prime \prime \prime }+5 y^{\prime \prime }+6 y^{\prime }&=x \\
\end{align*} |
[[_3rd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.124 |
|
| \begin{align*}
y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y&=x \\
\end{align*} |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.123 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
27.811 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
16.866 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.651 |
|
| \begin{align*}
y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-4 y&=x \\
\end{align*} |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.123 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
5.401 |
|
| \begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=\cos \left (x \right ) \\
\end{align*} |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.372 |
|
| \begin{align*}
y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y&={\mathrm e}^{x} \\
\end{align*} |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.135 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-y&=x^{4} \\
\end{align*} |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.154 |
|
| \begin{align*}
e y^{\prime \prime }&=\frac {P \left (\frac {L}{2}-x \right )}{2} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
2.030 |
|
| \begin{align*}
e y^{\prime \prime }&=\frac {w \left (\frac {L^{2}}{4}-x^{2}\right )}{2} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
2.059 |
|
| \begin{align*}
e y^{\prime \prime }&=-\frac {\left (w L +P \right ) x}{2}-\frac {w \,x^{2}}{2} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
2.615 |
|
| \begin{align*}
e y^{\prime \prime }&=-P \left (L -x \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.717 |
|
| \begin{align*}
e y^{\prime \prime }&=-P L +\left (w L +P \right ) x -\frac {w \left (L^{2}+x^{2}\right )}{2} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
2.994 |
|
| \begin{align*}
e y^{\prime \prime }&=P \left (-y+a \right ) \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
6.353 |
|
| \begin{align*}
x^{3} y^{\prime \prime \prime }+7 x^{2} y^{\prime \prime }+8 y^{\prime } x&=\ln \left (x \right )^{2} \\
\end{align*} |
[[_3rd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.330 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x -8 y&=x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
2.385 |
|
| \begin{align*}
x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y&=x^{3} \\
\end{align*} |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.309 |
|
| \begin{align*}
x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y&=\ln \left (x \right ) \\
\end{align*} |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| \begin{align*}
x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.145 |
|
| \begin{align*}
y^{\prime \prime } x +2 y^{\prime }&=2 x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
2.615 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=\ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
5.141 |
|
| \begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=2 x \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
50.074 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=x \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
20.473 |
|
| \begin{align*}
y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+\csc \left (x \right )^{2} y&=\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.798 |
|
| \begin{align*}
\left (x^{2}-x \right ) y^{\prime \prime }+\left (3 x -2\right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
58.930 |
|
| \begin{align*}
\left (3 x^{2}+x \right ) y^{\prime \prime }+2 \left (1+6 x \right ) y^{\prime }+6 y&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
30.242 |
|
| \begin{align*}
\left (x^{3}+x^{2}-3 x +1\right ) y^{\prime \prime \prime }+\left (9 x^{2}+6 x -9\right ) y^{\prime \prime }+\left (18 x +6\right ) y^{\prime }+6 y&=x^{3} \\
\end{align*} |
[[_3rd_order, _fully, _exact, _linear]] |
✓ |
✓ |
✓ |
✗ |
0.296 |
|
| \begin{align*}
4 y^{\prime }+5 y^{\prime \prime } x +x^{2} y^{\prime \prime \prime }&=-\frac {1}{x^{2}} \\
\end{align*} |
[[_3rd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.235 |
|
| \begin{align*}
y^{\prime \prime }&=\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.133 |
|
| \begin{align*}
x^{2} y^{\prime \prime }&=\ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.491 |
|
| \begin{align*}
y^{\prime \prime }&=-a^{2} y \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
5.582 |
|
| \begin{align*}
y^{\prime \prime }&=\frac {1}{y^{2}} \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✓ |
59.641 |
|
| \begin{align*}
y y^{\prime \prime }-{y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
3.280 |
|
| \begin{align*}
y y^{\prime \prime }-{y^{\prime }}^{2}&=1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
4.102 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }-1-{y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✓ |
9.434 |
|
| \begin{align*}
y^{\prime \prime } x +3 y^{\prime }&=3 x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
2.804 |
|
| \begin{align*}
x&=y^{\prime \prime }+y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
3.203 |
|
| \begin{align*}
x&={y^{\prime }}^{2}+y \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.138 |
|
| \begin{align*}
y&=y^{\prime } x -{y^{\prime }}^{2} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✓ |
0.230 |
|
| \begin{align*}
V^{\prime \prime }+\frac {2 V^{\prime }}{r}&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
10.318 |
|
| \begin{align*}
V^{\prime \prime }+\frac {V^{\prime }}{r}&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
10.473 |
|
| \begin{align*}
z^{\prime }+7 y-3 z&=0 \\
7 y^{\prime }+63 y-36 z&=0 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.402 |
|
| \begin{align*}
z^{\prime }+2 y^{\prime }+3 y&=0 \\
y^{\prime }+3 y-2 z&=0 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.454 |
|
| \begin{align*}
y^{\prime }+3 y+z&=0 \\
z^{\prime }+3 y+5 z&=0 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.486 |
|
| \begin{align*}
y^{\prime }+3 y+2 z&=0 \\
z^{\prime }+2 y-4 z&=0 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.643 |
|
| \begin{align*}
y^{\prime }-3 y-2 z&=0 \\
z^{\prime }+y-2 z&=0 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.157 |
|
| \begin{align*}
y^{\prime }+z^{\prime }+6 y&=0 \\
z^{\prime }+5 y+z&=0 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.555 |
|
| \begin{align*}
z^{\prime }+y^{\prime }+5 y-3 z&=x +{\mathrm e}^{x} \\
y^{\prime }+2 y-z&={\mathrm e}^{x} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.017 |
|
| \begin{align*}
z^{\prime }+y+3 z&={\mathrm e}^{x} \\
y^{\prime }+3 y+4 z&={\mathrm e}^{2 x} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.931 |
|
| \begin{align*}
z^{\prime }-3 y+2 z&={\mathrm e}^{x} \\
y^{\prime }+2 y-z&={\mathrm e}^{3 x} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.399 |
|
| \begin{align*}
z^{\prime }+5 y-2 z&=x \\
y^{\prime }+4 y+z&=x \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
2.148 |
|
| \begin{align*}
z^{\prime }+7 y-9 z&={\mathrm e}^{x} \\
y^{\prime }-y-3 z&={\mathrm e}^{2 x} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
2.707 |
|
| \begin{align*}
y^{\prime }-2 y-2 z&={\mathrm e}^{3 x} \\
z^{\prime }+5 y-2 z&={\mathrm e}^{4 x} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.722 |
|
| \begin{align*}
{y^{\prime }}^{2}+y^{\prime } x -y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✓ |
0.266 |
|
| \begin{align*}
y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}}&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
30.926 |
|
| \begin{align*}
v^{\prime \prime }+\frac {2 v^{\prime }}{r}&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
9.358 |
|
| \begin{align*}
y^{\prime \prime }-k^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.628 |
|
| \begin{align*}
\left (1-x \right ) y^{\prime }-1-y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.419 |
|
| \begin{align*}
y^{\prime }+\sqrt {\frac {1-y^{2}}{-x^{2}+1}}&=0 \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
7.993 |
|
| \begin{align*}
-y^{\prime } x +y&=a \left (y^{\prime }+y^{2}\right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.814 |
|
| \begin{align*}
3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.924 |
|
| \begin{align*}
x^{2}+y^{2}-2 y y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
13.066 |
|