2.3.21 first order ode riccati

Table 2.415: first order ode riccati

#

ODE

CAS classification

Solved?

50

\[ {}\left (x +1\right )^{2} y^{\prime } = \left (y+1\right )^{2} \]

[_separable]

58

\[ {}x^{2} y^{\prime } = 1-x^{2}+y^{2}-x^{2} y^{2} \]

[_separable]

60

\[ {}y^{\prime } = 3 x^{2} \left (1+y^{2}\right ) \]
i.c.

[_separable]

121

\[ {}y^{\prime } = \left (4 x +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

167

\[ {}y^{2}+y^{\prime } = x^{2}+1 \]

[_Riccati]

168

\[ {}y^{\prime }+2 x y = x^{2}+y^{2}+1 \]

[[_homogeneous, ‘class C‘], _Riccati]

188

\[ {}y^{\prime } = 1+x^{2}+y^{2}+x^{2} y^{2} \]

[_separable]

194

\[ {}y^{\prime } = x^{2}-2 x y+y^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

686

\[ {}\left (x^{2}+1\right ) y^{\prime } = \left (y+1\right )^{2} \]

[_separable]

693

\[ {}x^{2} y^{\prime } = 1-x^{2}+y^{2}-x^{2} y^{2} \]

[_separable]

695

\[ {}y^{\prime } = 3 x^{2} \left (1+y^{2}\right ) \]
i.c.

[_separable]

745

\[ {}y^{\prime } = \left (4 x +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

780

\[ {}y^{\prime } = 1+x^{2}+y^{2}+x^{2} y^{2} \]

[_separable]

786

\[ {}y^{\prime } = x^{2}-2 x y+y^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

1154

\[ {}y^{\prime } = 2 \left (x +1\right ) \left (1+y^{2}\right ) \]
i.c.

[_separable]

1158

\[ {}y^{\prime } = \frac {y^{2}+x y+x^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1163

\[ {}x^{2}+3 x y+y^{2}-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1181

\[ {}y^{\prime } = t -1-y^{2} \]

[_Riccati]

1230

\[ {}y^{\prime } = 1+2 x +y^{2}+2 x y^{2} \]

[_separable]

1522

\[ {}2 y^{\prime }+x \left (y^{2}-1\right ) = 0 \]

[_separable]

1523

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

[_separable]

1532

\[ {}y^{\prime } = x \left (1+y^{2}\right ) \]
i.c.

[_separable]

1577

\[ {}\frac {y^{\prime }}{\left (y+1\right )^{2}}-\frac {1}{x \left (y+1\right )} = -\frac {3}{x^{2}} \]

[[_homogeneous, ‘class C‘], _rational, _Riccati]

1583

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

[_separable]

1585

\[ {}y^{\prime } = \left (x -1\right ) \left (y-1\right ) \left (y-2\right ) \]

[_separable]

1593

\[ {}y^{\prime } \left (x^{2}+2\right ) = 4 x \left (y^{2}+2 y+1\right ) \]

[_separable]

1600

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

1627

\[ {}x^{2} y^{\prime } = y^{2}+x y-x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1628

\[ {}x^{2} y^{\prime } = y^{2}+x y-x^{2} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1646

\[ {}x^{2} y^{\prime } = y^{2}+x y+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1652

\[ {}y^{\prime } = \frac {y^{2}-3 x y-5 x^{2}}{x^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1653

\[ {}x^{2} y^{\prime } = 2 x^{2}+y^{2}+4 x y \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1662

\[ {}x^{2} y^{\prime } = y^{2}+x y-4 x^{2} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1671

\[ {}x^{3} y^{\prime } = 2 y^{2}+2 x^{2} y-2 x^{4} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

1672

\[ {}y^{\prime } = y^{2} {\mathrm e}^{-x}+4 y+2 \,{\mathrm e}^{x} \]

[[_1st_order, _with_linear_symmetries], _Riccati]

1673

\[ {}y^{\prime } = \frac {y^{2}+y \tan \left (x \right )+\tan \left (x \right )^{2}}{\sin \left (x \right )^{2}} \]

[_Riccati]

1674

\[ {}x \ln \left (x \right )^{2} y^{\prime } = -4 \ln \left (x \right )^{2}+y \ln \left (x \right )+y^{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _Riccati]

1679

\[ {}y^{\prime } = 1+x -\left (2 x +1\right ) y+x y^{2} \]

[_Riccati]

1799

\[ {}x^{2} \left (y^{2}+y^{\prime }\right )-x \left (x +2\right ) y+x +2 = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

1800

\[ {}y^{\prime }+y^{2}+4 x y+4 x^{2}+2 = 0 \]

[[_homogeneous, ‘class C‘], _Riccati]

1801

\[ {}\left (2 x +1\right ) \left (y^{2}+y^{\prime }\right )-2 y-2 x -3 = 0 \]

[_rational, _Riccati]

1802

\[ {}\left (3 x -1\right ) \left (y^{2}+y^{\prime }\right )-\left (2+3 x \right ) y-6 x +8 = 0 \]

[_rational, _Riccati]

1803

\[ {}x^{2} \left (y^{2}+y^{\prime }\right )+x y+x^{2}-\frac {1}{4} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

1804

\[ {}x^{2} \left (y^{2}+y^{\prime }\right )-7 x y+7 = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

2318

\[ {}\left (t^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

2320

\[ {}y^{\prime } = 1-t +y^{2}-t y^{2} \]

[_separable]

2489

\[ {}\left (t^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

2491

\[ {}y^{\prime } = 1-t +y^{2}-t y^{2} \]

[_separable]

2521

\[ {}y^{\prime } = {\mathrm e}^{t}+y^{2} \]
i.c.

[_Riccati]

2522

\[ {}y^{\prime } = y^{2}+\cos \left (t \right )^{2} \]
i.c.

[_Riccati]

2539

\[ {}y^{\prime } = 1-t +y^{2} \]
i.c.

[_Riccati]

2843

\[ {}1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

2867

\[ {}1+y^{2} = \frac {y^{\prime }}{x^{3} \left (x -1\right )} \]
i.c.

[_separable]

2869

\[ {}\left (x^{2}+x +1\right ) y^{\prime } = y^{2}+2 y+5 \]
i.c.

[_separable]

2870

\[ {}\left (x^{2}-2 x -8\right ) y^{\prime } = y^{2}+y-2 \]
i.c.

[_separable]

3476

\[ {}y^{\prime }-\frac {y^{2}}{x^{2}} = {\frac {1}{4}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3477

\[ {}y^{\prime }-\frac {y^{2}}{x^{2}} = {\frac {1}{4}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3523

\[ {}y^{\prime } = \frac {x \left (y^{2}-1\right )}{2 \left (-2+x \right ) \left (x -1\right )} \]

[_separable]

3526

\[ {}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1 \]
i.c.

[_separable]

3545

\[ {}y^{\prime } = \frac {\left (x +y\right )^{2}}{2 x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3553

\[ {}x^{2} y^{\prime } = y^{2}+3 x y+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3601

\[ {}y^{\prime } = \frac {x \left (y^{2}-1\right )}{2 \left (-2+x \right ) \left (x -1\right )} \]

[_separable]

3604

\[ {}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1 \]
i.c.

[_separable]

3636

\[ {}y^{\prime } = \frac {y^{2}+x y+x^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3638

\[ {}y^{\prime } = \frac {\left (x +y\right )^{2}}{2 x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3646

\[ {}x^{2} y^{\prime } = y^{2}+3 x y+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3672

\[ {}y^{\prime } = \left (-y+9 x \right )^{2} \]
i.c.

[[_homogeneous, ‘class C‘], _Riccati]

3673

\[ {}y^{\prime } = \left (4 x +y+2\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

3676

\[ {}y^{\prime } = 2 x \left (x +y\right )^{2}-1 \]
i.c.

[[_1st_order, _with_linear_symmetries], _Riccati]

3679

\[ {}y^{\prime }+\frac {2 y}{x}-y^{2} = -\frac {2}{x^{2}} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

3680

\[ {}y^{\prime }+\frac {7 y}{x}-3 y^{2} = \frac {3}{x^{2}} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

4090

\[ {}x^{2} y^{\prime } = x \left (y-1\right )+\left (y-1\right )^{2} \]

[[_homogeneous, ‘class C‘], _rational, _Riccati]

4103

\[ {}y^{\prime } = \frac {y^{2}+x^{2}}{2 x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

4232

\[ {}2 x y^{\prime } = 1-y^{2} \]
i.c.

[_separable]

4235

\[ {}y^{\prime } = {\mathrm e}^{x} \left (1+y^{2}\right ) \]

[_separable]

4246

\[ {}y^{\prime } = \left (x +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

4260

\[ {}1 = \frac {y}{1-x^{2} y^{2}}+\frac {x y^{\prime }}{1-x^{2} y^{2}} \]

[_exact, _rational, _Riccati]

4266

\[ {}x y^{\prime } = x^{5}+x^{3} y^{2}+y \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

4268

\[ {}x y^{\prime } = y+x^{2}+9 y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

4325

\[ {}y^{\prime } = \left (x +1\right )^{2}+\left (4 y+1\right )^{2}+8 x y+1 \]

[[_homogeneous, ‘class C‘], _Riccati]

4346

\[ {}x^{2}+y+y^{2}-x y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

4374

\[ {}y^{2}+y^{\prime } = x^{2}+1 \]

[_Riccati]

4648

\[ {}y^{\prime }+f \left (x \right )^{2} = f^{\prime }\left (x \right )+y^{2} \]

[_Riccati]

4649

\[ {}y^{\prime }+1-x = \left (x +y\right ) y \]

[_Riccati]

4650

\[ {}y^{\prime } = \left (x +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

4651

\[ {}y^{\prime } = \left (x -y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

4652

\[ {}y^{\prime } = 3-3 x +3 y+\left (x -y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

4653

\[ {}y^{\prime } = 2 x -\left (x^{2}+1\right ) y+y^{2} \]

[_Riccati]

4654

\[ {}y^{\prime } = x \left (x^{3}+2\right )-\left (2 x^{2}-y\right ) y \]

[[_1st_order, _with_linear_symmetries], _Riccati]

4655

\[ {}y^{\prime } = 1+x \left (-x^{3}+2\right )+\left (2 x^{2}-y\right ) y \]

[[_1st_order, _with_linear_symmetries], _Riccati]

4656

\[ {}y^{\prime } = \cos \left (x \right )-\left (\sin \left (x \right )-y\right ) y \]

[_Riccati]

4657

\[ {}y^{\prime } = \cos \left (2 x \right )+\left (\sin \left (2 x \right )+y\right ) y \]

[_Riccati]

4658

\[ {}y^{\prime } = f \left (x \right )+x f \left (x \right ) y+y^{2} \]

[_Riccati]

4659

\[ {}y^{\prime } = \left (3+x -4 y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

4660

\[ {}y^{\prime } = \left (1+4 x +9 y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

4661

\[ {}y^{\prime } = 3 a +3 b x +3 b y^{2} \]

[_Riccati]

4664

\[ {}y^{\prime } = a +b x +c y^{2} \]

[_Riccati]

4665

\[ {}y^{\prime } = a \,x^{n -1}+b \,x^{2 n}+c y^{2} \]

[_Riccati]

4669

\[ {}y^{\prime } = 1+a \left (x -y\right ) y \]

[_Riccati]

4672

\[ {}y^{\prime } = 1-x -x^{3}+\left (2 x^{2}+1\right ) y-x y^{2} \]

[_Riccati]

4673

\[ {}y^{\prime } = x \left (2+x^{2} y-y^{2}\right ) \]

[_Riccati]

4674

\[ {}y^{\prime } = x +\left (-2 x +1\right ) y-\left (1-x \right ) y^{2} \]

[_Riccati]

4676

\[ {}y^{\prime } = x^{n} \left (a +b y^{2}\right ) \]

[_separable]

4677

\[ {}y^{\prime } = a \,x^{m}+b \,x^{n} y^{2} \]

[_Riccati]

4680

\[ {}y^{\prime }+4 \csc \left (x \right ) = \left (3-\cot \left (x \right )\right ) y+y^{2} \sin \left (x \right ) \]

[_Riccati]

4682

\[ {}y^{\prime }+\tan \left (x \right ) \left (1-y^{2}\right ) = 0 \]

[_separable]

4684

\[ {}y^{\prime } = \left (a +b y+c y^{2}\right ) f \left (x \right ) \]

[_separable]

4763

\[ {}x y^{\prime }+x^{2}+y^{2} = 0 \]

[_rational, _Riccati]

4764

\[ {}x y^{\prime } = x^{2}+y \left (y+1\right ) \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

4765

\[ {}x y^{\prime }-y+y^{2} = x^{{2}/{3}} \]

[_rational, _Riccati]

4766

\[ {}x y^{\prime } = a +b y^{2} \]

[_separable]

4767

\[ {}x y^{\prime } = a \,x^{2}+y+b y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

4768

\[ {}x y^{\prime } = a \,x^{2 n}+\left (n +b y\right ) y \]

[_rational, _Riccati]

4769

\[ {}x y^{\prime } = a \,x^{n}+b y+c y^{2} \]

[_rational, _Riccati]

4770

\[ {}x y^{\prime } = k +a \,x^{n}+b y+c y^{2} \]

[_rational, _Riccati]

4776

\[ {}x y^{\prime } = x^{3}+\left (2 x^{2}+1\right ) y+x y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

4778

\[ {}x y^{\prime }+b x +\left (2+a x y\right ) y = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

4779

\[ {}x y^{\prime }+\operatorname {a0} +\operatorname {a1} x +\left (\operatorname {a2} +\operatorname {a3} x y\right ) y = 0 \]

[_rational, _Riccati]

4780

\[ {}x y^{\prime }+a \,x^{2} y^{2}+2 y = b \]

[_rational, _Riccati]

4781

\[ {}x y^{\prime }+x^{m}+\frac {\left (n -m \right ) y}{2}+x^{n} y^{2} = 0 \]

[_rational, _Riccati]

4783

\[ {}x y^{\prime } = a \,x^{m}-b y-c \,x^{n} y^{2} \]

[_rational, _Riccati]

4784

\[ {}x y^{\prime } = 2 x -y+a \,x^{n} \left (x -y\right )^{2} \]

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

4786

\[ {}x y^{\prime } = y+\left (x^{2}-y^{2}\right ) f \left (x \right ) \]

[[_homogeneous, ‘class D‘], _Riccati]

4837

\[ {}2 x y^{\prime }+1 = 4 i x y+y^{2} \]

[_rational, _Riccati]

4846

\[ {}3 x y^{\prime } = 3 x^{{2}/{3}}+\left (1-3 y\right ) y \]

[_rational, _Riccati]

4857

\[ {}x^{2} y^{\prime }+x^{2}+x y+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

4858

\[ {}x^{2} y^{\prime } = \left (1+2 x -y\right )^{2} \]

[[_homogeneous, ‘class C‘], _rational, _Riccati]

4859

\[ {}x^{2} y^{\prime } = a +b y^{2} \]

[_separable]

4862

\[ {}x^{2} y^{\prime }+a \,x^{2}+b x y+c y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

4863

\[ {}x^{2} y^{\prime } = a +b \,x^{n}+x^{2} y^{2} \]

[_rational, _Riccati]

4864

\[ {}x^{2} y^{\prime }+2+x y \left (4+x y\right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

4865

\[ {}x^{2} y^{\prime }+2+a x \left (1-x y\right )-x^{2} y^{2} = 0 \]

[_rational, _Riccati]

4867

\[ {}x^{2} y^{\prime } = a +b \,x^{n}+c \,x^{2} y^{2} \]

[_rational, _Riccati]

4868

\[ {}x^{2} y^{\prime } = a +b x y+c \,x^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

4869

\[ {}x^{2} y^{\prime } = a +b x y+c \,x^{4} y^{2} \]

[_rational, _Riccati]

4895

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

4896

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 1-y^{2} \]

[_separable]

4897

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 1-\left (2 x -y\right ) y \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

4908

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime } = a^{2}+3 x y-2 y^{2} \]

[_rational, _Riccati]

4921

\[ {}\left (x -a \right )^{2} y^{\prime }+k \left (x +y-a \right )^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class C‘], _rational, _Riccati]

4925

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }+k \left (y-a \right ) \left (y-b \right ) = 0 \]

[_separable]

4926

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }+k \left (x +y-a \right ) \left (x +y-b \right )+y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

4929

\[ {}2 x^{2} y^{\prime }+1+2 x y-x^{2} y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

4933

\[ {}x \left (-2 x +1\right ) y^{\prime } = 4 x -\left (1+4 x \right ) y+y^{2} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

4935

\[ {}2 x \left (1-x \right ) y^{\prime }+x +\left (1-x \right ) y^{2} = 0 \]

[_rational, _Riccati]

4938

\[ {}a \,x^{2} y^{\prime } = x^{2}+a x y+b^{2} y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

4939

\[ {}\left (b \,x^{2}+a \right ) y^{\prime } = A +B y^{2} \]

[_separable]

4945

\[ {}x^{3} y^{\prime } = x^{4}+y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

4947

\[ {}x^{3} y^{\prime } = x^{2} \left (y-1\right )+y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

4949

\[ {}x^{3} y^{\prime }+20+x^{2} y \left (1-x^{2} y\right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

4950

\[ {}x^{3} y^{\prime }+3+\left (3-2 x \right ) x^{2} y-x^{6} y^{2} = 0 \]

[_rational, _Riccati]

4963

\[ {}x \left (-x^{2}+1\right ) y^{\prime }+x^{2}+\left (-x^{2}+1\right ) y^{2} = 0 \]

[_rational, _Riccati]

4968

\[ {}x \left (c \,x^{2}+b x +a \right ) y^{\prime }+x^{2}-\left (c \,x^{2}+b x +a \right ) y = y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

4972

\[ {}\left (-x^{4}+1\right ) y^{\prime } = 2 x \left (1-y^{2}\right ) \]

[_separable]

4974

\[ {}x \left (-x^{3}+1\right ) y^{\prime } = x^{2}+\left (1-2 x y\right ) y \]

[_rational, _Riccati]

4977

\[ {}\left (c \,x^{2}+b x +a \right )^{2} \left (y^{2}+y^{\prime }\right )+A = 0 \]

[_rational, _Riccati]

4979

\[ {}x \left (-x^{4}+1\right ) y^{\prime } = 2 x \left (x^{2}-y^{2}\right )+\left (-x^{4}+1\right ) y \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

4982

\[ {}x^{n} y^{\prime } = x^{2 n -1}-y^{2} \]

[_Riccati]

4983

\[ {}x^{n} y^{\prime }+x^{-2+2 n}+y^{2}+\left (1-n \right ) x^{n -1} = 0 \]

[_Riccati]

4984

\[ {}x^{n} y^{\prime } = a^{2} x^{-2+2 n}+b^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _Riccati]

4985

\[ {}x^{n} y^{\prime } = x^{n -1} \left (a \,x^{2 n}+n y-b y^{2}\right ) \]

[_rational, _Riccati]

4988

\[ {}y^{\prime } \sqrt {-x^{2}+1} = 1+y^{2} \]

[_separable]

5744

\[ {}x y^{\prime }-a y+y^{2} = x^{-2 a} \]

[_rational, _Riccati]

5745

\[ {}x y^{\prime }-a y+y^{2} = x^{-\frac {2 a}{3}} \]

[_rational, _Riccati]

5746

\[ {}u^{\prime }+u^{2} = \frac {c}{x^{{4}/{3}}} \]

[_rational, [_Riccati, _special]]

5747

\[ {}u^{\prime }+b u^{2} = \frac {c}{x^{4}} \]

[_rational, [_Riccati, _special]]

5748

\[ {}u^{\prime }-u^{2} = \frac {2}{x^{{8}/{3}}} \]

[_rational, [_Riccati, _special]]

5862

\[ {}y^{\prime } = x^{3}+\frac {2 y}{x}-\frac {y^{2}}{x} \]

[_rational, _Riccati]

5863

\[ {}y^{\prime } = 2 \tan \left (x \right ) \sec \left (x \right )-y^{2} \sin \left (x \right ) \]

[_Riccati]

5864

\[ {}y^{\prime } = \frac {1}{x^{2}}-\frac {y}{x}-y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

5865

\[ {}y^{\prime } = 1+\frac {y}{x}-\frac {y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

5882

\[ {}y^{\prime } = \left (x +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

5886

\[ {}x y^{\prime }-y^{2}+1 = 0 \]

[_separable]

5896

\[ {}x^{2} y^{\prime }+x^{2}+x y+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

6037

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

6132

\[ {}y^{\prime } = x y^{2}-\frac {2 y}{x}-\frac {1}{x^{3}} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

6133

\[ {}y^{\prime } = \frac {2 y^{2}}{x}+\frac {y}{x}-2 x \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

6134

\[ {}y^{\prime } = y^{2} {\mathrm e}^{-x}+y-{\mathrm e}^{x} \]

[[_1st_order, _with_linear_symmetries], _Riccati]

6272

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (x \right ) \]
i.c.

[_separable]

6284

\[ {}y^{\prime } = \sqrt {\sin \left (x \right )+1}\, \left (1+y^{2}\right ) \]
i.c.

[_separable]

6420

\[ {}\left (x +1\right )^{2} y^{\prime } = 1+y^{2} \]

[_separable]

6473

\[ {}y^{\prime }+x +x y^{2} = 0 \]
i.c.

[_separable]

6604

\[ {}y^{\prime } = -2 \left (2 x +3 y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

6633

\[ {}1+y^{2} = \left (x^{2}+x \right ) y^{\prime } \]

[_separable]

7090

\[ {}y^{\prime } = \left (x +y+1\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

7108

\[ {}y^{2}+x y+x^{2} = x^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

7178

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

[_separable]

7188

\[ {}y^{\prime } = -\frac {2}{t}+\frac {y}{t}+\frac {y^{2}}{t} \]

[_separable]

7189

\[ {}y^{\prime } = -\frac {y}{t}-1-y^{2} \]

[_rational, _Riccati]

7228

\[ {}\left (\phi ^{\prime }-\frac {\phi ^{2}}{2}\right ) \sin \left (\theta \right )^{2}-\phi \sin \left (\theta \right ) \cos \left (\theta \right ) = \frac {\cos \left (2 \theta \right )}{2}+1 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

7238

\[ {}-y+x y^{\prime } = y^{2}+x^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

7411

\[ {}y^{\prime } = x^{2} y^{2}-4 x^{2} \]

[_separable]

7417

\[ {}y^{\prime } = \frac {y^{2}+x y+x^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

7422

\[ {}y^{\prime } = \frac {\left (y-1+x \right )^{2}}{2 \left (x +2\right )^{2}} \]

[[_homogeneous, ‘class C‘], _rational, _Riccati]

7456

\[ {}x y^{\prime } = y+x^{2}+y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

7486

\[ {}1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

7536

\[ {}\frac {y}{1-x^{2} y^{2}}+\frac {x y^{\prime }}{1-x^{2} y^{2}} = 1 \]

[_exact, _rational, _Riccati]

7538

\[ {}\frac {x y^{\prime }+y}{1-x^{2} y^{2}}+x = 0 \]

[_exact, _rational, _Riccati]

8374

\[ {}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1 \]
i.c.

[_separable]

8418

\[ {}y^{\prime } = \frac {5 x^{2}-x y+y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

8424

\[ {}x y^{\prime }-2 y+b y^{2} = c \,x^{4} \]

[_rational, _Riccati]

8425

\[ {}x y^{\prime }-y+y^{2} = x^{{2}/{3}} \]

[_rational, _Riccati]

8426

\[ {}u^{\prime }+u^{2} = \frac {1}{x^{{4}/{5}}} \]

[_rational, _Riccati]

8473

\[ {}y^{\prime } = x^{2}+y^{2}-1 \]

[_Riccati]

8480

\[ {}y^{\prime }-y^{2}-x -x^{2} = 0 \]

[_Riccati]

8681

\[ {}c y^{\prime } = \frac {a x +b y^{2}}{r x} \]

[_rational, _Riccati]

8682

\[ {}c y^{\prime } = \frac {a x +b y^{2}}{r \,x^{2}} \]

[_rational, _Riccati]

8687

\[ {}y^{\prime } = \sin \left (x \right )+y^{2} \]

[_Riccati]

8690

\[ {}y^{\prime } = x +y+b y^{2} \]

[_Riccati]

9703

\[ {}y^{\prime }+y^{2}-a x -b = 0 \]

[_Riccati]

9705

\[ {}y^{\prime }+y^{2}-2 x^{2} y+x^{4}-2 x -1 = 0 \]

[[_1st_order, _with_linear_symmetries], _Riccati]

9706

\[ {}y^{\prime }+y^{2}+\left (x y-1\right ) f \left (x \right ) = 0 \]

[_Riccati]

9708

\[ {}y^{\prime }-y^{2}-x y-x +1 = 0 \]

[_Riccati]

9709

\[ {}y^{\prime }-\left (x +y\right )^{2} = 0 \]

[[_homogeneous, ‘class C‘], _Riccati]

9710

\[ {}y^{\prime }-y^{2}+\left (x^{2}+1\right ) y-2 x = 0 \]

[_Riccati]

9711

\[ {}y^{\prime }-y^{2}+\sin \left (x \right ) y-\cos \left (x \right ) = 0 \]

[_Riccati]

9712

\[ {}y^{\prime }-y^{2}-y \sin \left (2 x \right )-\cos \left (2 x \right ) = 0 \]

[_Riccati]

9715

\[ {}y^{\prime }+y^{2} a -b \,x^{2 \nu }-c \,x^{\nu -1} = 0 \]

[_Riccati]

9717

\[ {}y^{\prime }+a y \left (y-x \right )-1 = 0 \]

[_Riccati]

9718

\[ {}y^{\prime }+x y^{2}-x^{3} y-2 x = 0 \]

[_Riccati]

9720

\[ {}y^{\prime }+x^{-a -1} y^{2}-x^{a} = 0 \]

[_Riccati]

9721

\[ {}y^{\prime }-a \,x^{n} \left (1+y^{2}\right ) = 0 \]

[_separable]

9722

\[ {}y^{\prime }+y^{2} \sin \left (x \right )-\frac {2 \sin \left (x \right )}{\cos \left (x \right )^{2}} = 0 \]

[_Riccati]

9725

\[ {}y^{\prime }+f \left (x \right ) \left (y^{2}+2 a y+b \right ) = 0 \]

[_separable]

9778

\[ {}2 y^{\prime }-3 y^{2}-4 a y-b -c \,{\mathrm e}^{-2 a x} = 0 \]

[_Riccati]

9785

\[ {}x y^{\prime }+x^{2}+y^{2} = 0 \]

[_rational, _Riccati]

9786

\[ {}x y^{\prime }-y^{2}+1 = 0 \]

[_separable]

9787

\[ {}x y^{\prime }+y^{2} a -y+b \,x^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

9788

\[ {}x y^{\prime }+y^{2} a -b y+c \,x^{2 b} = 0 \]

[_rational, _Riccati]

9789

\[ {}x y^{\prime }+y^{2} a -b y-c \,x^{\beta } = 0 \]

[_rational, _Riccati]

9792

\[ {}x y^{\prime }+x y^{2}-y-a \,x^{3} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

9793

\[ {}x y^{\prime }+x y^{2}-\left (2 x^{2}+1\right ) y-x^{3} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

9794

\[ {}x y^{\prime }+a x y^{2}+2 y+b x = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

9795

\[ {}x y^{\prime }+a x y^{2}+b y+c x +d = 0 \]

[_rational, _Riccati]

9796

\[ {}x y^{\prime }+x^{a} y^{2}+\frac {\left (a -b \right ) y}{2}+x^{b} = 0 \]

[_rational, _Riccati]

9797

\[ {}x y^{\prime }+a \,x^{\alpha } y^{2}+b y-c \,x^{\beta } = 0 \]

[_rational, _Riccati]

9800

\[ {}x y^{\prime }+f \left (x \right ) \left (y^{2}-x^{2}\right )-y = 0 \]

[[_homogeneous, ‘class D‘], _Riccati]

9825

\[ {}x^{2} y^{\prime }+x^{2}+x y+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

9827

\[ {}x^{2} y^{\prime }-y^{2}-x y-x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

9828

\[ {}x^{2} \left (y^{2}+y^{\prime }\right )+a \,x^{k}-b \left (b -1\right ) = 0 \]

[_rational, _Riccati]

9829

\[ {}x^{2} \left (y^{2}+y^{\prime }\right )+4 x y+2 = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

9830

\[ {}x^{2} \left (y^{2}+y^{\prime }\right )+a x y+b = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

9831

\[ {}x^{2} \left (y^{\prime }-y^{2}\right )-a \,x^{2} y+a x +2 = 0 \]

[_rational, _Riccati]

9833

\[ {}x^{2} \left (y^{\prime }+y^{2} a \right )+b \,x^{\alpha }+c = 0 \]

[_rational, _Riccati]

9844

\[ {}\left (x^{2}-1\right ) y^{\prime }+y^{2}-2 x y+1 = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

9851

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }+k \left (x +y-a \right ) \left (x +y-b \right )+y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

9852

\[ {}2 x^{2} y^{\prime }-2 y^{2}-x y+2 a^{2} x = 0 \]

[_rational, _Riccati]

9853

\[ {}2 x^{2} y^{\prime }-2 y^{2}-3 x y+2 a^{2} x = 0 \]

[_rational, _Riccati]

9854

\[ {}x \left (2 x -1\right ) y^{\prime }+y^{2}-\left (1+4 x \right ) y+4 x = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

9855

\[ {}2 x \left (x -1\right ) y^{\prime }+\left (x -1\right ) y^{2}-x = 0 \]

[_rational, _Riccati]

9856

\[ {}3 x^{2} y^{\prime }-7 y^{2}-3 x y-x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

9857

\[ {}3 \left (x^{2}-4\right ) y^{\prime }+y^{2}-x y-3 = 0 \]

[_rational, _Riccati]

9859

\[ {}x^{3} y^{\prime }-y^{2}-x^{4} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

9861

\[ {}x^{3} y^{\prime }-x^{4} y^{2}+x^{2} y+20 = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

9862

\[ {}x^{3} y^{\prime }-x^{6} y^{2}-\left (2 x -3\right ) x^{2} y+3 = 0 \]

[_rational, _Riccati]

9865

\[ {}x \left (x^{2}-1\right ) y^{\prime }+\left (x^{2}-1\right ) y^{2}-x^{2} = 0 \]

[_rational, _Riccati]

9867

\[ {}2 x \left (x^{2}-1\right ) y^{\prime }+2 \left (x^{2}-1\right ) y^{2}-\left (3 x^{2}-5\right ) y+x^{2}-3 = 0 \]

[_rational, _Riccati]

9868

\[ {}3 x \left (x^{2}-1\right ) y^{\prime }+x y^{2}-\left (x^{2}+1\right ) y-3 x = 0 \]

[_rational, _Riccati]

9869

\[ {}\left (a \,x^{2}+b x +c \right ) \left (-y+x y^{\prime }\right )-y^{2}+x^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

9871

\[ {}x \left (x^{3}-1\right ) y^{\prime }-2 x y^{2}+y+x^{2} = 0 \]

[_rational, _Riccati]

9873

\[ {}\left (a \,x^{2}+b x +c \right )^{2} \left (y^{2}+y^{\prime }\right )+A = 0 \]

[_rational, _Riccati]

9875

\[ {}x^{n} y^{\prime }+y^{2}-\left (n -1\right ) x^{n -1} y+x^{-2+2 n} = 0 \]

[[_homogeneous, ‘class G‘], _Riccati]

9876

\[ {}x^{n} y^{\prime }-y^{2} a -b \,x^{-2+2 n} = 0 \]

[[_homogeneous, ‘class G‘], _Riccati]

9883

\[ {}x y^{\prime } \ln \left (x \right )-y^{2} \ln \left (x \right )-\left (2 \ln \left (x \right )^{2}+1\right ) y-\ln \left (x \right )^{3} = 0 \]

[_Riccati]

9884

\[ {}\sin \left (x \right ) y^{\prime }-y^{2} \sin \left (x \right )^{2}+\left (\cos \left (x \right )-3 \sin \left (x \right )\right ) y+4 = 0 \]

[_Riccati]

9890

\[ {}2 f \left (x \right ) y^{\prime }+2 f \left (x \right ) y^{2}-f^{\prime }\left (x \right ) y-2 f \left (x \right )^{2} = 0 \]

[_Riccati]

10314

\[ {}y^{\prime } = \frac {\left (-1+y \ln \left (x \right )\right )^{2}}{x} \]

[_Riccati]

10316

\[ {}y^{\prime } = \frac {\left (2 y \ln \left (x \right )-1\right )^{2}}{x} \]

[_Riccati]

10362

\[ {}y^{\prime } = \frac {y+x^{3} a \,{\mathrm e}^{x}+a \,x^{4}+a \,x^{3}-x y^{2} {\mathrm e}^{x}-x^{2} y^{2}-x y^{2}}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

10364

\[ {}y^{\prime } = \frac {y+x^{3} a \ln \left (x +1\right )+a \,x^{4}+a \,x^{3}-x y^{2} \ln \left (x +1\right )-x^{2} y^{2}-x y^{2}}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

10366

\[ {}y^{\prime } = \frac {y+x^{3} \ln \left (x \right )+x^{4}+x^{3}+7 x y^{2} \ln \left (x \right )+7 x^{2} y^{2}+7 x y^{2}}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

10368

\[ {}y^{\prime } = \frac {y+x^{3} b \ln \left (\frac {1}{x}\right )+x^{4} b +b \,x^{3}+x a y^{2} \ln \left (\frac {1}{x}\right )+x^{2} a y^{2}+a x y^{2}}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

10372

\[ {}y^{\prime } = \frac {y+\ln \left (\left (x -1\right ) \left (x +1\right )\right ) x^{3}+7 \ln \left (\left (x -1\right ) \left (x +1\right )\right ) x y^{2}}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

10374

\[ {}y^{\prime } = \frac {y-\ln \left (\frac {x +1}{x -1}\right ) x^{3}+\ln \left (\frac {x +1}{x -1}\right ) x y^{2}}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

10375

\[ {}y^{\prime } = \frac {y+{\mathrm e}^{\frac {x +1}{x -1}} x^{3}+{\mathrm e}^{\frac {x +1}{x -1}} x y^{2}}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

10376

\[ {}y^{\prime } = \frac {x y-y-{\mathrm e}^{x +1} x^{3}+{\mathrm e}^{x +1} x y^{2}}{\left (x -1\right ) x} \]

[[_homogeneous, ‘class D‘], _Riccati]

10382

\[ {}y^{\prime } = \frac {y \ln \left (x -1\right )+x^{4}+x^{3}+x^{2} y^{2}+x y^{2}}{\ln \left (x -1\right ) x} \]

[[_homogeneous, ‘class D‘], _Riccati]

10383

\[ {}y^{\prime } = \frac {y \ln \left (x -1\right )+{\mathrm e}^{x +1} x^{3}+7 \,{\mathrm e}^{x +1} x y^{2}}{\ln \left (x -1\right ) x} \]

[[_homogeneous, ‘class D‘], _Riccati]

10389

\[ {}y^{\prime } = \frac {-y \,{\mathrm e}^{x}+x y-x^{3} \ln \left (x \right )-x^{3}-x y^{2} \ln \left (x \right )-x y^{2}}{\left (-{\mathrm e}^{x}+x \right ) x} \]

[[_homogeneous, ‘class D‘], _Riccati]

10391

\[ {}y^{\prime } = \frac {y \ln \left (x \right ) x -y+2 x^{5} b +2 x^{3} a y^{2}}{\left (x \ln \left (x \right )-1\right ) x} \]

[[_homogeneous, ‘class D‘], _Riccati]

10408

\[ {}y^{\prime } = \frac {\left (18 x^{{3}/{2}}+36 y^{2}-12 x^{3} y+x^{6}\right ) \sqrt {x}}{36} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

10423

\[ {}y^{\prime } = \frac {2 x^{2}+2 x +x^{4}-2 x^{2} y-1+y^{2}}{x +1} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

10473

\[ {}y^{\prime } = \frac {y \ln \left (x \right )+\cosh \left (x \right ) x a y^{2}+\cosh \left (x \right ) x^{3} b}{x \ln \left (x \right )} \]

[[_homogeneous, ‘class D‘], _Riccati]

10497

\[ {}y^{\prime } = \frac {x +y+y^{2}-2 y \ln \left (x \right ) x +x^{2} \ln \left (x \right )^{2}}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

10509

\[ {}y^{\prime } = \frac {\left (4 \,{\mathrm e}^{-x^{2}}-4 x^{2} {\mathrm e}^{-x^{2}}+4 y^{2}-4 x^{2} {\mathrm e}^{-x^{2}} y+x^{4} {\mathrm e}^{-2 x^{2}}\right ) x}{4} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

10525

\[ {}y^{\prime } = \frac {30 x^{3}+25 \sqrt {x}+25 y^{2}-20 x^{3} y-100 \sqrt {x}\, y+4 x^{6}+40 x^{{7}/{2}}+100 x}{25 x} \]

[_rational, _Riccati]

10529

\[ {}y^{\prime } = \frac {y+x^{2} \ln \left (x \right )^{3}+2 x^{2} \ln \left (x \right )^{2} y+x^{2} \ln \left (x \right ) y^{2}}{x \ln \left (x \right )} \]

[_Riccati]

10530

\[ {}y^{\prime } = \frac {y+x^{3} \ln \left (x \right )^{3}+2 x^{3} \ln \left (x \right )^{2} y+x^{3} \ln \left (x \right ) y^{2}}{x \ln \left (x \right )} \]

[_Riccati]

10557

\[ {}y^{\prime } = \frac {2 x y^{2}+4 y \ln \left (2 x +1\right ) x +2 \ln \left (2 x +1\right )^{2} x +y^{2}-2+\ln \left (2 x +1\right )^{2}+2 y \ln \left (2 x +1\right )}{2 x +1} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

10593

\[ {}y^{\prime } = \frac {-2 \cos \left (x \right ) x +2 \sin \left (x \right ) x^{2}+2 x +2 y^{2}+4 y \cos \left (x \right ) x -4 x y+x^{2} \cos \left (2 x \right )+3 x^{2}-4 x^{2} \cos \left (x \right )}{2 x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

10633

\[ {}y^{\prime } = \frac {2 x^{2} \cos \left (x \right )+2 \sin \left (x \right ) x^{3}-2 x \sin \left (x \right )+2 x +2 x^{2} y^{2}-4 y \sin \left (x \right ) x +4 y \cos \left (x \right ) x^{2}+4 x y+3-\cos \left (2 x \right )-2 \sin \left (2 x \right ) x -4 \sin \left (x \right )+x^{2} \cos \left (2 x \right )+x^{2}+4 \cos \left (x \right ) x}{2 x^{3}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

10673

\[ {}y^{\prime } = -F \left (x \right ) \left (-a \,x^{2}+y^{2}\right )+\frac {y}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

10674

\[ {}y^{\prime } = -F \left (x \right ) \left (-x^{2}-2 x y+y^{2}\right )+\frac {y}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

10675

\[ {}y^{\prime } = -F \left (x \right ) \left (-y^{2} a -b \,x^{2}\right )+\frac {y}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

10676

\[ {}y^{\prime } = -F \left (x \right ) \left (-y^{2}+2 x^{2} y+1-x^{4}\right )+2 x \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

10677

\[ {}y^{\prime } = -F \left (x \right ) \left (x^{2}+2 x y-y^{2}\right )+\frac {y}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

10678

\[ {}y^{\prime } = -F \left (x \right ) \left (-7 x y^{2}-x^{3}\right )+\frac {y}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

10679

\[ {}y^{\prime } = -F \left (x \right ) \left (-y^{2}-2 y \ln \left (x \right )-\ln \left (x \right )^{2}\right )+\frac {y}{\ln \left (x \right ) x} \]

[_Riccati]

10680

\[ {}y^{\prime } = -x^{3} \left (-y^{2}-2 y \ln \left (x \right )-\ln \left (x \right )^{2}\right )+\frac {y}{\ln \left (x \right ) x} \]

[_Riccati]

10681

\[ {}y^{\prime } = \left (y-{\mathrm e}^{x}\right )^{2}+{\mathrm e}^{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

10682

\[ {}y^{\prime } = \frac {\left (y-\operatorname {Si}\left (x \right )\right )^{2}+\sin \left (x \right )}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

10683

\[ {}y^{\prime } = \left (y+\cos \left (x \right )\right )^{2}+\sin \left (x \right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

10684

\[ {}y^{\prime } = \frac {\left (y-\ln \left (x \right )-\operatorname {Ci}\left (x \right )\right )^{2}+\cos \left (x \right )}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

10685

\[ {}y^{\prime } = \frac {\left (y-x +\ln \left (x +1\right )\right )^{2}+x}{x +1} \]

[[_1st_order, _with_linear_symmetries], _Riccati]

10686

\[ {}y^{\prime } = \frac {2 x^{2} y+x^{3}+y \ln \left (x \right ) x -y^{2}-x y}{x^{2} \left (x +\ln \left (x \right )\right )} \]

[_Riccati]

11683

\[ {}y^{\prime } = y^{2} a +b x +c \]

[_Riccati]

11684

\[ {}y^{\prime } = y^{2}-a^{2} x^{2}+3 a \]

[_Riccati]

11685

\[ {}y^{\prime } = y^{2}+a^{2} x^{2}+b x +c \]

[_Riccati]

11688

\[ {}y^{\prime } = y^{2} a +b \,x^{2 n}+c \,x^{n -1} \]

[_Riccati]

11689

\[ {}y^{\prime } = a \,x^{n} y^{2}+b \,x^{-n -2} \]

[[_homogeneous, ‘class G‘], _Riccati]

11690

\[ {}y^{\prime } = a \,x^{n} y^{2}+b \,x^{m} \]

[_Riccati]

11693

\[ {}y^{\prime } = \left (a \,x^{2 n}+b \,x^{n -1}\right ) y^{2}+c \]

[_Riccati]

11694

\[ {}\left (a_{2} x +b_{2} \right ) \left (y^{\prime }+\lambda y^{2}\right )+a_{0} x +b_{0} = 0 \]

[_rational, _Riccati]

11696

\[ {}x^{2} y^{\prime } = x^{2} y^{2}-a^{2} x^{4}+a \left (-2 b +1\right ) x^{2}-b \left (b +1\right ) \]

[_rational, _Riccati]

11697

\[ {}x^{2} y^{\prime } = x^{2} a y^{2}+b \,x^{n}+c \]

[_rational, _Riccati]

11699

\[ {}\left (c_{2} x^{2}+b_{2} x +a_{2} \right ) \left (y^{\prime }+\lambda y^{2}\right )+a_{0} = 0 \]

[_rational, _Riccati]

11701

\[ {}a \,x^{2} \left (x -1\right )^{2} \left (y^{\prime }+\lambda y^{2}\right )+b \,x^{2}+c x +s = 0 \]

[_rational, _Riccati]

11702

\[ {}\left (a \,x^{2}+b x +c \right )^{2} \left (y^{2}+y^{\prime }\right )+A = 0 \]

[_rational, _Riccati]

11703

\[ {}x^{n +1} y^{\prime } = a \,x^{2 n} y^{2}+c \,x^{m}+d \]

[_Riccati]

11704

\[ {}\left (a \,x^{n}+b \right ) y^{\prime } = b y^{2}+a \,x^{n -2} \]

[_rational, _Riccati]

11705

\[ {}\left (a \,x^{n}+b \,x^{m}+c \right ) \left (y^{\prime }-y^{2}\right )+a n \left (n -1\right ) x^{n -2}+b m \left (m -1\right ) x^{m -2} = 0 \]

[_rational, _Riccati]

11706

\[ {}y^{\prime } = y^{2} a +b y+c x +k \]

[_Riccati]

11707

\[ {}y^{\prime } = y^{2}+a \,x^{n} y+a \,x^{n -1} \]

[_Riccati]

11708

\[ {}y^{\prime } = y^{2}+a \,x^{n} y+b \,x^{n -1} \]

[_Riccati]

11709

\[ {}y^{\prime } = y^{2}+\left (\alpha x +\beta \right ) y+a \,x^{2}+b x +c \]

[_Riccati]

11713

\[ {}y^{\prime } = a \,x^{n} y^{2}-a \,x^{n} \left (b \,x^{m}+c \right ) y+b m \,x^{m -1} \]

[_Riccati]

11714

\[ {}y^{\prime } = -a n \,x^{n -1} y^{2}+c \,x^{m} \left (a \,x^{n}+b \right ) y-c \,x^{m} \]

[_Riccati]

11716

\[ {}x y^{\prime } = y^{2} a +b y+c \,x^{2 b} \]

[_rational, _Riccati]

11717

\[ {}x y^{\prime } = y^{2} a +b y+c \,x^{n} \]

[_rational, _Riccati]

11718

\[ {}x y^{\prime } = y^{2} a +\left (n +b \,x^{n}\right ) y+c \,x^{2 n} \]

[_rational, _Riccati]

11719

\[ {}x y^{\prime } = x y^{2}+a y+b \,x^{n} \]

[_rational, _Riccati]

11720

\[ {}x y^{\prime }+a_{3} x y^{2}+a_{2} y+a_{1} x +a_{0} = 0 \]

[_rational, _Riccati]

11721

\[ {}x y^{\prime } = a \,x^{n} y^{2}+b y+c \,x^{-n} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

11722

\[ {}x y^{\prime } = a \,x^{n} y^{2}+m y-a \,b^{2} x^{n +2 m} \]

[_rational, _Riccati]

11723

\[ {}x y^{\prime } = x^{2 n} y^{2}+\left (m -n \right ) y+x^{2 m} \]

[_rational, _Riccati]

11724

\[ {}x y^{\prime } = a \,x^{n} y^{2}+b y+c \,x^{m} \]

[_rational, _Riccati]

11725

\[ {}x y^{\prime } = a \,x^{2 n} y^{2}+\left (b \,x^{n}-n \right ) y+c \]

[_rational, _Riccati]

11726

\[ {}x y^{\prime } = a \,x^{2 n +m} y^{2}+\left (b \,x^{m +n}-n \right ) y+c \,x^{m} \]

[_rational, _Riccati]

11727

\[ {}\left (a_{2} x +b_{2} \right ) \left (y^{\prime }+\lambda y^{2}\right )+\left (a_{1} x +b_{1} \right ) y+a_{0} x +b_{0} = 0 \]

[_rational, _Riccati]

11728

\[ {}\left (a x +c \right ) y^{\prime } = \alpha \left (b x +a y\right )^{2}+\beta \left (b x +a y\right )-b x +\gamma \]

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

11729

\[ {}2 x^{2} y^{\prime } = 2 y^{2}+x y-2 a^{2} x \]

[_rational, _Riccati]

11730

\[ {}2 x^{2} y^{\prime } = 2 y^{2}+3 x y-2 a^{2} x \]

[_rational, _Riccati]

11731

\[ {}x^{2} y^{\prime } = x^{2} a y^{2}+b x y+c \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

11732

\[ {}x^{2} y^{\prime } = c \,x^{2} y^{2}+\left (a \,x^{2}+b x \right ) y+\alpha \,x^{2}+\beta x +\gamma \]

[_rational, _Riccati]

11733

\[ {}x^{2} y^{\prime } = x^{2} a y^{2}+b x y+c \,x^{n}+s \]

[_rational, _Riccati]

11734

\[ {}x^{2} y^{\prime } = x^{2} a y^{2}+b x y+c \,x^{2 n}+s \,x^{n} \]

[_rational, _Riccati]

11735

\[ {}x^{2} y^{\prime } = c \,x^{2} y^{2}+\left (a \,x^{n}+b \right ) x y+\alpha \,x^{2 n}+\beta \,x^{n}+\gamma \]

[_rational, _Riccati]

11738

\[ {}\left (a \,x^{2}+b \right ) y^{\prime }+\alpha y^{2}+\beta x y+\frac {b \left (a +\beta \right )}{\alpha } = 0 \]

[_rational, _Riccati]

11739

\[ {}\left (a \,x^{2}+b \right ) y^{\prime }+\alpha y^{2}+\beta x y+\gamma = 0 \]

[_rational, _Riccati]

11740

\[ {}\left (a \,x^{2}+b \right ) y^{\prime }+y^{2}-2 x y+\left (-a +1\right ) x^{2}-b = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

11741

\[ {}\left (a \,x^{2}+b x +c \right ) y^{\prime } = y^{2}+\left (2 \lambda x +b \right ) y+\lambda \left (\lambda -a \right ) x^{2}+\mu \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

11743

\[ {}\left (a_{2} x^{2}+b_{2} x +c_{2} \right ) y^{\prime } = y^{2}+\left (a_{1} x +b_{1} \right ) y-\lambda \left (\lambda +a_{1} -a_{2} \right ) x^{2}+\lambda \left (b_{2} -b_{1} \right ) x +\lambda c_{2} \]

[_rational, _Riccati]

11744

\[ {}\left (a_{2} x^{2}+b_{2} x +c_{2} \right ) y^{\prime } = y^{2}+\left (a_{1} x +b_{1} \right ) y+a_{0} x^{2}+b_{0} x +c_{0} \]

[_rational, _Riccati]

11745

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }+k \left (x +y-a \right ) \left (x +y-b \right )+y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

11746

\[ {}\left (c_{2} x^{2}+b_{2} x +a_{2} \right ) \left (y^{\prime }+\lambda y^{2}\right )+\left (b_{1} x +a_{1} \right ) y+a_{0} = 0 \]

[_rational, _Riccati]

11747

\[ {}x^{3} y^{\prime } = x^{3} a y^{2}+\left (b \,x^{2}+c \right ) y+s x \]

[_rational, _Riccati]

11748

\[ {}x^{3} y^{\prime } = x^{3} a y^{2}+x \left (b x +c \right ) y+\alpha x +\beta \]

[_rational, _Riccati]

11749

\[ {}x \left (x^{2}+a \right ) \left (y^{\prime }+\lambda y^{2}\right )+\left (b \,x^{2}+c \right ) y+s x = 0 \]

[_rational, _Riccati]

11750

\[ {}x^{2} \left (x +a \right ) \left (y^{\prime }+\lambda y^{2}\right )+x \left (b x +c \right ) y+\alpha x +\beta = 0 \]

[_rational, _Riccati]

11751

\[ {}\left (a \,x^{2}+b x +e \right ) \left (-y+x y^{\prime }\right )-y^{2}+x^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

11752

\[ {}x^{2} \left (x^{2}+a \right ) \left (y^{\prime }+\lambda y^{2}\right )+x \left (b \,x^{2}+c \right ) y+s = 0 \]

[_rational, _Riccati]

11754

\[ {}x^{n +1} y^{\prime } = a \,x^{2 n} y^{2}+b \,x^{n} y+c \,x^{m}+d \]

[_Riccati]

11755

\[ {}x \left (a \,x^{k}+b \right ) y^{\prime } = \alpha \,x^{n} y^{2}+\left (\beta -a n \,x^{k}\right ) y+\gamma \,x^{-n} \]

[_rational, _Riccati]

11756

\[ {}x^{2} \left (a \,x^{n}-1\right ) \left (y^{\prime }+\lambda y^{2}\right )+\left (p \,x^{n}+q \right ) x y+r \,x^{n}+s = 0 \]

[_rational, _Riccati]

11760

\[ {}\left (a \,x^{n}+b \,x^{m}+c \right ) \left (-y+x y^{\prime }\right )+s \,x^{k} \left (y^{2}-\lambda \,x^{2}\right ) = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

11761

\[ {}y^{\prime } = y^{2} a +b \,{\mathrm e}^{\lambda x} \]

[_Riccati]

11762

\[ {}y^{\prime } = y^{2}+a \lambda \,{\mathrm e}^{\lambda x}-a^{2} {\mathrm e}^{2 \lambda x} \]

[_Riccati]

11763

\[ {}y^{\prime } = \sigma y^{2}+a +b \,{\mathrm e}^{\lambda x}+c \,{\mathrm e}^{2 \lambda x} \]

[_Riccati]

11764

\[ {}y^{\prime } = \sigma y^{2}+a y+b \,{\mathrm e}^{x}+c \]

[_Riccati]

11765

\[ {}y^{\prime } = y^{2}+b y+a \left (\lambda -b \right ) {\mathrm e}^{\lambda x}-a^{2} {\mathrm e}^{2 \lambda x} \]

[_Riccati]

11766

\[ {}y^{\prime } = y^{2}+a \,{\mathrm e}^{\lambda x} y-a b \,{\mathrm e}^{\lambda x}-b^{2} \]

[_Riccati]

11767

\[ {}y^{\prime } = y^{2}+a \,{\mathrm e}^{2 \lambda x} \left ({\mathrm e}^{\lambda x}+b \right )^{n}-\frac {\lambda ^{2}}{4} \]

[_Riccati]

11768

\[ {}y^{\prime } = y^{2}+a \,{\mathrm e}^{8 \lambda x}+b \,{\mathrm e}^{6 \lambda x}+c \,{\mathrm e}^{4 \lambda x}-\lambda ^{2} \]

[_Riccati]

11769

\[ {}y^{\prime } = a \,{\mathrm e}^{k x} y^{2}+b \,{\mathrm e}^{s x} \]

[_Riccati]

11771

\[ {}y^{\prime } = a \,{\mathrm e}^{\lambda x} y^{2}+b y+c \,{\mathrm e}^{-\lambda x} \]

[[_1st_order, _with_linear_symmetries], _Riccati]

11772

\[ {}y^{\prime } = a \,{\mathrm e}^{\mu x} y^{2}+\lambda y-a \,b^{2} {\mathrm e}^{\left (\mu +2 \lambda \right ) x} \]

[_Riccati]

11773

\[ {}y^{\prime } = {\mathrm e}^{\lambda x} y^{2}+a \,{\mathrm e}^{\mu x} y+a \lambda \,{\mathrm e}^{\left (\mu -\lambda \right ) x} \]

[_Riccati]

11774

\[ {}y^{\prime } = -\lambda \,{\mathrm e}^{\lambda x} y^{2}+a \,{\mathrm e}^{\mu x} y-a \,{\mathrm e}^{\left (\mu -\lambda \right ) x} \]

[_Riccati]

11776

\[ {}y^{\prime } = a \,{\mathrm e}^{k x} y^{2}+b y+c \,{\mathrm e}^{s x}+d \,{\mathrm e}^{-k x} \]

[_Riccati]

11777

\[ {}y^{\prime } = a \,{\mathrm e}^{\left (\mu +2 \lambda \right ) x} y^{2}+\left (b \,{\mathrm e}^{\left (\lambda +\mu \right ) x}-\lambda \right ) y+c \,{\mathrm e}^{\mu x} \]

[_Riccati]

11779

\[ {}y^{\prime } = {\mathrm e}^{\mu x} \left (y-b \,{\mathrm e}^{\lambda x}\right )^{2}+b \lambda \,{\mathrm e}^{\lambda x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

11781

\[ {}\left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}+c \right ) \left (y^{\prime }-y^{2}\right )+a \,\lambda ^{2} {\mathrm e}^{\lambda x}+b \,\mu ^{2} {\mathrm e}^{\mu x} = 0 \]

[_Riccati]

11782

\[ {}y^{\prime } = y^{2}+a x \,{\mathrm e}^{\lambda x} y+a \,{\mathrm e}^{\lambda x} \]

[_Riccati]

11783

\[ {}y^{\prime } = a \,{\mathrm e}^{\lambda x} y^{2}+b \,{\mathrm e}^{-\lambda x} \]

[[_1st_order, _with_linear_symmetries], _Riccati]

11786

\[ {}y^{\prime } = -\lambda \,{\mathrm e}^{\lambda x} y^{2}+a \,x^{n} {\mathrm e}^{\lambda x} y-a \,x^{n} \]

[_Riccati]

11787

\[ {}y^{\prime } = a \,{\mathrm e}^{\lambda x} y^{2}-a b \,x^{n} {\mathrm e}^{\lambda x} y+b n \,x^{n -1} \]

[_Riccati]

11789

\[ {}y^{\prime } = a \,x^{n} y^{2}+\lambda y-a \,b^{2} x^{n} {\mathrm e}^{2 \lambda x} \]

[_Riccati]

11791

\[ {}y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+a \,x^{k +1} {\mathrm e}^{\lambda x} y-a \,{\mathrm e}^{\lambda x} \]

[_Riccati]

11793

\[ {}y^{\prime } = a \,x^{n} {\mathrm e}^{2 \lambda x} y^{2}+\left (b \,x^{n} {\mathrm e}^{\lambda x}-\lambda \right ) y+c \,x^{n} \]

[_Riccati]

11794

\[ {}y^{\prime } = a \,{\mathrm e}^{\lambda x} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

11795

\[ {}x y^{\prime } = a \,{\mathrm e}^{\lambda x} y^{2}+k y+a \,b^{2} x^{2 k} {\mathrm e}^{\lambda x} \]

[_Riccati]

11798

\[ {}y^{\prime } = a \,{\mathrm e}^{-\lambda \,x^{2}} y^{2}+\lambda x y+b^{2} a \]

[_Riccati]

11799

\[ {}y^{\prime } = a \,x^{n} y^{2}+\lambda x y+a \,b^{2} x^{n} {\mathrm e}^{\lambda \,x^{2}} \]

[_Riccati]

11800

\[ {}x^{4} \left (y^{\prime }-y^{2}\right ) = a +b \,{\mathrm e}^{\frac {k}{x}}+c \,{\mathrm e}^{\frac {2 k}{x}} \]

[_Riccati]

11801

\[ {}y^{\prime } = y^{2}-a^{2}+a \lambda \sinh \left (\lambda x \right )-a^{2} \sinh \left (\lambda x \right )^{2} \]

[_Riccati]

11802

\[ {}y^{\prime } = y^{2}+a \sinh \left (\beta x \right ) y+a b \sinh \left (\beta x \right )-b^{2} \]

[_Riccati]

11803

\[ {}y^{\prime } = y^{2}+a x \sinh \left (b x \right )^{m} y+a \sinh \left (b x \right )^{m} \]

[_Riccati]

11804

\[ {}y^{\prime } = \lambda \sinh \left (\lambda x \right ) y^{2}-\lambda \sinh \left (\lambda x \right )^{3} \]

[_Riccati]

11805

\[ {}y^{\prime } = \left (a \sinh \left (\lambda x \right )^{2}-\lambda \right ) y^{2}-a \sinh \left (\lambda x \right )^{2}+\lambda -a \]

[_Riccati]

11807

\[ {}\left (a \sinh \left (\lambda x \right )+b \right ) \left (y^{\prime }-y^{2}\right )+a \,\lambda ^{2} \sinh \left (\lambda x \right ) = 0 \]

[_Riccati]

11808

\[ {}y^{\prime } = \alpha y^{2}+\beta +\gamma \cosh \left (x \right ) \]

[_Riccati]

11809

\[ {}y^{\prime } = y^{2}+a \cosh \left (\beta x \right ) y+a b \cosh \left (\beta x \right )-b^{2} \]

[_Riccati]

11810

\[ {}y^{\prime } = y^{2}+a x \cosh \left (b x \right )^{m} y+a \cosh \left (b x \right )^{m} \]

[_Riccati]

11811

\[ {}y^{\prime } = \left (a \cosh \left (\lambda x \right )^{2}-\lambda \right ) y^{2}+a +\lambda -a \cosh \left (\lambda x \right )^{2} \]

[_Riccati]

11812

\[ {}2 y^{\prime } = \left (a -\lambda +a \cosh \left (\lambda x \right )\right ) y^{2}+a +\lambda -a \cosh \left (\lambda x \right ) \]

[_Riccati]

11814

\[ {}y^{\prime } = a \sinh \left (\lambda x \right ) y^{2}+b \sinh \left (\lambda x \right ) \cosh \left (\lambda x \right )^{n} \]

[_Riccati]

11815

\[ {}y^{\prime } = a \cosh \left (\lambda x \right ) y^{2}+b \cosh \left (\lambda x \right ) \sinh \left (\lambda x \right )^{n} \]

[_Riccati]

11817

\[ {}\left (a \cosh \left (\lambda x \right )+b \right ) \left (y^{\prime }-y^{2}\right )+a \,\lambda ^{2} \cosh \left (\lambda x \right ) = 0 \]

[_Riccati]

11818

\[ {}y^{\prime } = y^{2}+a \lambda -a \left (a +\lambda \right ) \tanh \left (\lambda x \right )^{2} \]

[_Riccati]

11819

\[ {}y^{\prime } = y^{2}+3 a \lambda -\lambda ^{2}-a \left (a +\lambda \right ) \tanh \left (\lambda x \right )^{2} \]

[_Riccati]

11820

\[ {}y^{\prime } = y^{2}+a x \tanh \left (b x \right )^{m} y+a \tanh \left (b x \right )^{m} \]

[_Riccati]

11822

\[ {}y^{\prime } = y^{2}+a \lambda -a \left (a +\lambda \right ) \coth \left (\lambda x \right )^{2} \]

[_Riccati]

11823

\[ {}y^{\prime } = y^{2}-\lambda ^{2}+3 a \lambda -a \left (a +\lambda \right ) \coth \left (\lambda x \right )^{2} \]

[_Riccati]

11824

\[ {}y^{\prime } = y^{2}+a x \coth \left (b x \right )^{m} y+a \coth \left (b x \right )^{m} \]

[_Riccati]

11826

\[ {}y^{\prime } = y^{2}-2 \lambda ^{2} \tanh \left (\lambda x \right )^{2}-2 \lambda ^{2} \coth \left (\lambda x \right )^{2} \]

[_Riccati]

11827

\[ {}y^{\prime } = y^{2}+a \lambda +b \lambda -2 a b -a \left (a +\lambda \right ) \tanh \left (\lambda x \right )^{2}-b \left (b +\lambda \right ) \coth \left (\lambda x \right )^{2} \]

[_Riccati]

11829

\[ {}x y^{\prime } = y^{2} a +b \ln \left (x \right )+c \]

[_Riccati]

11830

\[ {}x y^{\prime } = y^{2} a +b \ln \left (x \right )^{k}+c \ln \left (x \right )^{2 k +2} \]

[_Riccati]

11834

\[ {}x^{2} y^{\prime } = x^{2} y^{2}+a \ln \left (x \right )^{2}+b \ln \left (x \right )+c \]

[_Riccati]

11836

\[ {}x^{2} \ln \left (a x \right ) \left (y^{\prime }-y^{2}\right ) = 1 \]

[_Riccati]

11837

\[ {}y^{\prime } = y^{2}+a \ln \left (\beta x \right ) y-a b \ln \left (\beta x \right )-b^{2} \]

[_Riccati]

11838

\[ {}y^{\prime } = y^{2}+a x \ln \left (b x \right )^{m} y+a \ln \left (b x \right )^{m} \]

[_Riccati]

11839

\[ {}y^{\prime } = a \,x^{n} y^{2}-a b \,x^{n +1} \ln \left (x \right ) y+b \ln \left (x \right )+b \]

[_Riccati]

11840

\[ {}y^{\prime } = -\left (n +1\right ) x^{n} y^{2}+a \,x^{n +1} \ln \left (x \right )^{m} y-a \ln \left (x \right )^{m} \]

[_Riccati]

11842

\[ {}y^{\prime } = a \ln \left (x \right )^{k} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

11844

\[ {}x y^{\prime } = \left (a y+b \ln \left (x \right )\right )^{2} \]

[[_1st_order, _with_linear_symmetries], _Riccati]

11845

\[ {}x y^{\prime } = a \ln \left (\lambda x \right )^{m} y^{2}+k y+a \,b^{2} x^{2 k} \ln \left (\lambda x \right )^{m} \]

[_Riccati]

11846

\[ {}x y^{\prime } = a \,x^{n} \left (y+b \ln \left (x \right )\right )^{2}-b \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

11847

\[ {}x y^{\prime } = a \,x^{2 n} \ln \left (x \right ) y^{2}+\left (b \,x^{n} \ln \left (x \right )-n \right ) y+c \ln \left (x \right ) \]

[_Riccati]

11848

\[ {}x^{2} y^{\prime } = a^{2} x^{2} y^{2}-x y+b^{2} \ln \left (x \right )^{n} \]

[_Riccati]

11851

\[ {}y^{\prime } = \alpha y^{2}+\beta +\gamma \sin \left (\lambda x \right ) \]

[_Riccati]

11852

\[ {}y^{\prime } = y^{2}-a^{2}+a \lambda \sin \left (\lambda x \right )+a^{2} \sin \left (\lambda x \right )^{2} \]

[_Riccati]

11854

\[ {}y^{\prime } = y^{2}+a \sin \left (\beta x \right ) y+a b \sin \left (\beta x \right )-b^{2} \]

[_Riccati]

11856

\[ {}y^{\prime } = \lambda \sin \left (\lambda x \right ) y^{2}+\lambda \sin \left (\lambda x \right )^{3} \]

[_Riccati]

11857

\[ {}2 y^{\prime } = \left (\lambda +a -a \sin \left (\lambda x \right )\right ) y^{2}+\lambda -a -a \sin \left (\lambda x \right ) \]

[_Riccati]

11858

\[ {}y^{\prime } = \left (\lambda +a \sin \left (\lambda x \right )^{2}\right ) y^{2}+\lambda -a +a \sin \left (\lambda x \right )^{2} \]

[_Riccati]

11859

\[ {}y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+a \,x^{k +1} \sin \left (x \right )^{m} y-a \sin \left (x \right )^{m} \]

[_Riccati]

11860

\[ {}y^{\prime } = a \sin \left (\lambda x +\mu \right )^{k} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

11861

\[ {}x y^{\prime } = a \sin \left (\lambda x \right )^{m} y^{2}+k y+a \,b^{2} x^{2 k} \sin \left (\lambda x \right )^{m} \]

[_Riccati]

11863

\[ {}\left (a \sin \left (\lambda x \right )+b \right ) \left (y^{\prime }-y^{2}\right )-a \,\lambda ^{2} \sin \left (\lambda x \right ) = 0 \]

[_Riccati]

11864

\[ {}y^{\prime } = \alpha y^{2}+\beta +\gamma \cos \left (\lambda x \right ) \]

[_Riccati]

11865

\[ {}y^{\prime } = y^{2}-a^{2}+a \lambda \cos \left (\lambda x \right )+a^{2} \cos \left (\lambda x \right )^{2} \]

[_Riccati]

11867

\[ {}y^{\prime } = y^{2}+a \cos \left (\beta x \right ) y+a b \cos \left (\beta x \right )-b^{2} \]

[_Riccati]

11869

\[ {}y^{\prime } = \lambda \cos \left (\lambda x \right ) y^{2}+\lambda \cos \left (\lambda x \right )^{3} \]

[_Riccati]

11870

\[ {}2 y^{\prime } = \left (\lambda +a -a \cos \left (\lambda x \right )\right ) y^{2}+\lambda -a -a \cos \left (\lambda x \right ) \]

[_Riccati]

11871

\[ {}y^{\prime } = \left (\lambda +a \cos \left (\lambda x \right )^{2}\right ) y^{2}+\lambda -a +a \cos \left (\lambda x \right )^{2} \]

[_Riccati]

11872

\[ {}y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+a \,x^{k +1} \cos \left (x \right )^{m} y-a \cos \left (x \right )^{m} \]

[_Riccati]

11873

\[ {}y^{\prime } = a \cos \left (\lambda x +\mu \right )^{k} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

11874

\[ {}x y^{\prime } = a \cos \left (\lambda x \right )^{m} y^{2}+k y+a \,b^{2} x^{2 k} \cos \left (\lambda x \right )^{m} \]

[_Riccati]

11876

\[ {}\left (a \cos \left (\lambda x \right )+b \right ) \left (y^{\prime }-y^{2}\right )-a \,\lambda ^{2} \cos \left (\lambda x \right ) = 0 \]

[_Riccati]

11877

\[ {}y^{\prime } = y^{2}+a \lambda +a \left (\lambda -a \right ) \tan \left (\lambda x \right )^{2} \]

[_Riccati]

11878

\[ {}y^{\prime } = y^{2}+\lambda ^{2}+3 a \lambda +a \left (\lambda -a \right ) \tan \left (\lambda x \right )^{2} \]

[_Riccati]

11879

\[ {}y^{\prime } = y^{2} a +b \tan \left (x \right ) y+c \]

[_Riccati]

11880

\[ {}y^{\prime } = y^{2} a +2 a b \tan \left (x \right ) y+b \left (a b -1\right ) \tan \left (x \right )^{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

11881

\[ {}y^{\prime } = y^{2}+a \tan \left (\beta x \right ) y+a b \tan \left (\beta x \right )-b^{2} \]

[_Riccati]

11882

\[ {}y^{\prime } = y^{2}+a x \tan \left (b x \right )^{m} y+a \tan \left (b x \right )^{m} \]

[_Riccati]

11883

\[ {}y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+a \,x^{k +1} \tan \left (x \right )^{m} y-a \tan \left (x \right )^{m} \]

[_Riccati]

11884

\[ {}y^{\prime } = a \tan \left (\lambda x \right )^{n} y^{2}-a \,b^{2} \tan \left (\lambda x \right )^{2+n}+b \lambda \tan \left (\lambda x \right )^{2}+b \lambda \]

[_Riccati]

11885

\[ {}y^{\prime } = a \tan \left (\lambda x +\mu \right )^{k} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

11886

\[ {}x y^{\prime } = a \tan \left (\lambda x \right )^{m} y^{2}+k y+a \,b^{2} x^{2 k} \tan \left (\lambda x \right )^{m} \]

[_Riccati]

11888

\[ {}y^{\prime } = y^{2}+a \lambda +a \left (\lambda -a \right ) \cot \left (\lambda x \right )^{2} \]

[_Riccati]

11889

\[ {}y^{\prime } = y^{2}+\lambda ^{2}+3 a \lambda +a \left (\lambda -a \right ) \cot \left (\lambda x \right )^{2} \]

[_Riccati]

11890

\[ {}y^{\prime } = y^{2}-2 a b \cot \left (a x \right ) y+b^{2}-a^{2} \]

[_Riccati]

11891

\[ {}y^{\prime } = y^{2}+a \cot \left (\beta x \right ) y+a b \cot \left (\beta x \right )-b^{2} \]

[_Riccati]

11892

\[ {}y^{\prime } = y^{2}+a x \cot \left (b x \right )^{m} y+a \cot \left (b x \right )^{m} \]

[_Riccati]

11893

\[ {}y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+a \,x^{k +1} \cot \left (x \right )^{m} y-a \cot \left (x \right )^{m} \]

[_Riccati]

11895

\[ {}x y^{\prime } = a \cot \left (\lambda x \right )^{m} y^{2}+k y+a \,b^{2} x^{2 k} \cot \left (\lambda x \right )^{m} \]

[_Riccati]

11898

\[ {}y^{\prime } = a \sin \left (\lambda x \right ) y^{2}+b \sin \left (\lambda x \right ) \cos \left (\lambda x \right )^{n} \]

[_Riccati]

11900

\[ {}y^{\prime } = a \cos \left (\lambda x \right ) y^{2}+b \cos \left (\lambda x \right ) \sin \left (\lambda x \right )^{n} \]

[_Riccati]

11901

\[ {}y^{\prime } = \lambda \sin \left (\lambda x \right ) y^{2}+a \,x^{n} \cos \left (\lambda x \right ) y-a \,x^{n} \]

[_Riccati]

11903

\[ {}y^{\prime } = y^{2}-y \tan \left (x \right )+a \left (-a +1\right ) \cot \left (x \right )^{2} \]

[_Riccati]

11904

\[ {}y^{\prime } = y^{2}-m y \tan \left (x \right )+b^{2} \cos \left (x \right )^{2 m} \]

[_Riccati]

11905

\[ {}y^{\prime } = y^{2}+m y \cot \left (x \right )+b^{2} \sin \left (x \right )^{2 m} \]

[_Riccati]

11907

\[ {}y^{\prime } = y^{2}+a \lambda +b \lambda +2 a b +a \left (\lambda -a \right ) \tan \left (\lambda x \right )^{2}+b \left (\lambda -b \right ) \cot \left (\lambda x \right )^{2} \]

[_Riccati]

11908

\[ {}y^{\prime } = y^{2}-\frac {\lambda ^{2}}{2}-\frac {3 \lambda ^{2} \tan \left (\lambda x \right )^{2}}{4}+a \cos \left (\lambda x \right )^{2} \sin \left (\lambda x \right )^{n} \]

[_Riccati]

11909

\[ {}y^{\prime } = \lambda \sin \left (\lambda x \right ) y^{2}+a \sin \left (\lambda x \right ) y-a \tan \left (\lambda x \right ) \]

[_Riccati]

11910

\[ {}y^{\prime } = y^{2}+\lambda \arcsin \left (x \right )^{n} y-a^{2}+a \lambda \arcsin \left (x \right )^{n} \]

[_Riccati]

11911

\[ {}y^{\prime } = y^{2}+\lambda x \arcsin \left (x \right )^{n} y+\lambda \arcsin \left (x \right )^{n} \]

[_Riccati]

11912

\[ {}y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+\lambda \arcsin \left (x \right )^{n} \left (x^{k +1} y-1\right ) \]

[_Riccati]

11917

\[ {}x y^{\prime } = \lambda \arcsin \left (x \right )^{n} y^{2}+k y+\lambda \,b^{2} x^{2 k} \arcsin \left (x \right )^{n} \]

[_Riccati]

11920

\[ {}y^{\prime } = y^{2}+\lambda x \arccos \left (x \right )^{n} y+\lambda \arccos \left (x \right )^{n} \]

[_Riccati]

11921

\[ {}y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+\lambda \arccos \left (x \right )^{n} \left (x^{k +1} y-1\right ) \]

[_Riccati]

11926

\[ {}x y^{\prime } = \lambda \arccos \left (x \right )^{n} y^{2}+k y+\lambda \,b^{2} x^{2 k} \arccos \left (x \right )^{n} \]

[_Riccati]

11928

\[ {}y^{\prime } = y^{2}+\lambda \arctan \left (x \right )^{n} y-a^{2}+a \lambda \arctan \left (x \right )^{n} \]

[_Riccati]

11929

\[ {}y^{\prime } = y^{2}+\lambda x \arctan \left (x \right )^{n} y+\lambda \arctan \left (x \right )^{n} \]

[_Riccati]

11930

\[ {}y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+\lambda \arctan \left (x \right )^{n} \left (x^{k +1} y-1\right ) \]

[_Riccati]

11935

\[ {}x y^{\prime } = \lambda \arctan \left (x \right )^{n} y^{2}+k y+\lambda \,b^{2} x^{2 k} \arctan \left (x \right )^{n} \]

[_Riccati]

11937

\[ {}y^{\prime } = y^{2}+\lambda \operatorname {arccot}\left (x \right )^{n} y-a^{2}+a \lambda \operatorname {arccot}\left (x \right )^{n} \]

[_Riccati]

11938

\[ {}y^{\prime } = y^{2}+\lambda x \operatorname {arccot}\left (x \right )^{n} y+\lambda \operatorname {arccot}\left (x \right )^{n} \]

[_Riccati]

11939

\[ {}y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+\lambda \operatorname {arccot}\left (x \right )^{n} \left (x^{k +1} y-1\right ) \]

[_Riccati]

11944

\[ {}x y^{\prime } = \lambda \operatorname {arccot}\left (x \right )^{n} y^{2}+k y+\lambda \,b^{2} x^{2 k} \operatorname {arccot}\left (x \right )^{n} \]

[_Riccati]

11946

\[ {}y^{\prime } = y^{2}+f \left (x \right ) y-a^{2}-a f \left (x \right ) \]

[_Riccati]

11947

\[ {}y^{\prime } = f \left (x \right ) y^{2}-a y-a b -b^{2} f \left (x \right ) \]

[_Riccati]

11948

\[ {}y^{\prime } = y^{2}+x f \left (x \right ) y+f \left (x \right ) \]

[_Riccati]

11949

\[ {}y^{\prime } = f \left (x \right ) y^{2}-a \,x^{n} f \left (x \right ) y+a n \,x^{n -1} \]

[_Riccati]

11951

\[ {}y^{\prime } = -\left (n +1\right ) x^{n} y^{2}+x^{n +1} f \left (x \right ) y-f \left (x \right ) \]

[_Riccati]

11952

\[ {}x y^{\prime } = f \left (x \right ) y^{2}+n y+a \,x^{2 n} f \left (x \right ) \]

[_Riccati]

11954

\[ {}y^{\prime } = f \left (x \right ) y^{2}+g \left (x \right ) y-a^{2} f \left (x \right )-a g \left (x \right ) \]

[_Riccati]

11957

\[ {}y^{\prime } = a \,{\mathrm e}^{\lambda x} y^{2}+a \,{\mathrm e}^{\lambda x} f \left (x \right ) y+\lambda f \left (x \right ) \]

[_Riccati]

11958

\[ {}y^{\prime } = f \left (x \right ) y^{2}-a \,{\mathrm e}^{\lambda x} f \left (x \right ) y+a \lambda \,{\mathrm e}^{\lambda x} \]

[_Riccati]

11960

\[ {}y^{\prime } = f \left (x \right ) y^{2}+\lambda y+a^{2} {\mathrm e}^{2 \lambda x} f \left (x \right ) \]

[_Riccati]

11961

\[ {}y^{\prime } = f \left (x \right ) y^{2}-f \left (x \right ) \left (a \,{\mathrm e}^{\lambda x}+b \right ) y+a \lambda \,{\mathrm e}^{\lambda x} \]

[_Riccati]

11962

\[ {}y^{\prime } = {\mathrm e}^{\lambda x} f \left (x \right ) y^{2}+\left (a f \left (x \right )-\lambda \right ) y+b \,{\mathrm e}^{-\lambda x} f \left (x \right ) \]

[_Riccati]

11973

\[ {}y^{\prime } = -a \ln \left (x \right ) y^{2}+a f \left (x \right ) \left (x \ln \left (x \right )-x \right ) y-f \left (x \right ) \]

[_Riccati]

11974

\[ {}y^{\prime } = \lambda \sin \left (\lambda x \right ) y^{2}+f \left (x \right ) \cos \left (\lambda x \right ) y-f \left (x \right ) \]

[_Riccati]

11979

\[ {}y^{\prime } = y^{2}-f \left (x \right )^{2}+f^{\prime }\left (x \right ) \]

[_Riccati]

11980

\[ {}y^{\prime } = f \left (x \right ) y^{2}-f \left (x \right ) g \left (x \right ) y+g^{\prime }\left (x \right ) \]

[_Riccati]

11981

\[ {}y^{\prime } = -f^{\prime }\left (x \right ) y^{2}+f \left (x \right ) g \left (x \right ) y-g \left (x \right ) \]

[_Riccati]

11982

\[ {}y^{\prime } = g \left (x \right ) \left (y-f \left (x \right )\right )^{2}+f^{\prime }\left (x \right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

11985

\[ {}y^{\prime } = f^{\prime }\left (x \right ) y^{2}+a \,{\mathrm e}^{\lambda x} f \left (x \right ) y+a \,{\mathrm e}^{\lambda x} \]

[_Riccati]

11986

\[ {}y^{\prime } = f \left (x \right ) y^{2}+g^{\prime }\left (x \right ) y+a f \left (x \right ) {\mathrm e}^{2 g \left (x \right )} \]

[_Riccati]

11987

\[ {}y^{\prime } = y^{2}-\frac {f^{\prime \prime }\left (x \right )}{f \left (x \right )} \]

[_Riccati]

12492

\[ {}y+2 x y^{2}-y^{3} x^{2}+2 x^{2} y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

12513

\[ {}-y+x y^{\prime } = y^{2}+x^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

12522

\[ {}x y^{\prime }-a y+b y^{2} = c \,x^{2 a} \]

[_rational, _Riccati]

12561

\[ {}y^{\prime }+2 x y = y^{2}+x^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

12731

\[ {}R^{\prime } = \left (t +1\right ) \left (1+R^{2}\right ) \]

[_separable]

12735

\[ {}x^{\prime } = \left (4 t -x\right )^{2} \]
i.c.

[[_homogeneous, ‘class C‘], _Riccati]

12740

\[ {}T^{\prime } = 2 a t \left (T^{2}-a^{2}\right ) \]
i.c.

[_separable]

12773

\[ {}x^{\prime } = \left (t +x\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

12968

\[ {}2 r \left (s^{2}+1\right )+\left (r^{4}+1\right ) s^{\prime } = 0 \]

[_separable]

13024

\[ {}y^{\prime } = \left (1-x \right ) y^{2}+\left (2 x -1\right ) y-x \]

[_Riccati]

13025

\[ {}y^{\prime } = -y^{2}+x y+1 \]

[_Riccati]

13026

\[ {}y^{\prime } = -8 x y^{2}+4 x \left (1+4 x \right ) y-8 x^{3}-4 x^{2}+1 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

13034

\[ {}2 x^{2}+x y+y^{2}+2 x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

13396

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (x \right ) \]
i.c.

[_separable]

13423

\[ {}x y+y^{2}+x^{2}-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

13625

\[ {}x^{2} y^{\prime } = 1+y^{2} \]

[_separable]

13844

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

13845

\[ {}1+s^{2}-\sqrt {t}\, s^{\prime } = 0 \]

[_separable]

14308

\[ {}y^{\prime } = \left (1+y^{2}\right ) t \]
i.c.

[_separable]

14320

\[ {}y^{\prime } = \left (y+\frac {1}{2}\right ) \left (y+t \right ) \]
i.c.

[_Riccati]

14468

\[ {}y^{\prime } = \left (y-2\right ) \left (y+1-\cos \left (t \right )\right ) \]

[_Riccati]

14703

\[ {}x^{2} y^{\prime }+x y^{2} = x \]

[_separable]

14709

\[ {}y^{\prime }+\left (8-x \right ) y-y^{2} = -8 x \]

[_Riccati]

14713

\[ {}x y^{\prime } = \left (x -y\right )^{2} \]

[_rational, _Riccati]

14724

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

14743

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

14749

\[ {}y^{\prime }-3 x^{2} y^{2} = -3 x^{2} \]

[_separable]

14750

\[ {}y^{\prime }-3 x^{2} y^{2} = 3 x^{2} \]

[_separable]

14761

\[ {}y^{\prime }-x y^{2} = \sqrt {x} \]

[_Riccati]

14762

\[ {}y^{\prime } = 1+\left (x y+3 y\right )^{2} \]

[_Riccati]

14791

\[ {}y^{\prime } = 1+\left (y-x \right )^{2} \]
i.c.

[[_homogeneous, ‘class C‘], _Riccati]

14812

\[ {}y^{\prime } = \left (x -y+3\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

14815

\[ {}y^{\prime } = x \left (1+\frac {2 y}{x^{2}}+\frac {y^{2}}{x^{4}}\right ) \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

14841

\[ {}y^{\prime } = x^{2}-2 x y+y^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

14860

\[ {}y^{\prime } = x y^{2}+3 y^{2}+x +3 \]

[_separable]

15542

\[ {}y^{\prime } = 4 t^{2}-t y^{2} \]
i.c.

[_Riccati]

15600

\[ {}y^{\prime } = t^{2} y^{2}+y^{2}-t^{2}-1 \]

[_separable]

15602

\[ {}4 \left (x -1\right )^{2} y^{\prime }-3 \left (y+3\right )^{2} = 0 \]

[_separable]

15633

\[ {}y^{\prime } = \left (x +y-4\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

16379

\[ {}1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

16382

\[ {}1+y^{2} = x y^{\prime } \]

[_separable]

16396

\[ {}a^{2}+y^{2}+2 x \sqrt {a x -x^{2}}\, y^{\prime } = 0 \]
i.c.

[_separable]

16416

\[ {}x^{2} y^{\prime } = y^{2}-x y+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

16418

\[ {}2 x^{2} y^{\prime } = y^{2}+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

16524

\[ {}y^{\prime } {\mathrm e}^{-x}+y^{2}-2 y \,{\mathrm e}^{x} = 1-{\mathrm e}^{2 x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

16525

\[ {}y^{\prime }+y^{2}-2 y \sin \left (x \right )+\sin \left (x \right )^{2}-\cos \left (x \right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

16526

\[ {}x y^{\prime }-y^{2}+\left (2 x +1\right ) y = x^{2}+2 x \]

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

16527

\[ {}x^{2} y^{\prime } = x^{2} y^{2}+x y+1 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

16543

\[ {}y^{\prime } = \left (x -y\right )^{2}+1 \]

[[_homogeneous, ‘class C‘], _Riccati]

16996

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (2 x \right ) \]
i.c.

[_separable]

17009

\[ {}y^{\prime } = 2 \left (x +1\right ) \left (1+y^{2}\right ) \]
i.c.

[_separable]

17118

\[ {}y^{\prime }+3 t y = 4-4 t^{2}+y^{2} \]

[_Riccati]

17592

\[ {}y^{\prime }+y^{2}+\frac {y}{x}-\frac {4}{x^{2}} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

17593

\[ {}x y^{\prime }-3 y+y^{2} = 4 x^{2}-4 x \]

[_rational, _Riccati]

17739

\[ {}x y^{\prime } = y+x^{2}+y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

17762

\[ {}1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

17790

\[ {}y^{\prime } = \left (x +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

17809

\[ {}1 = \frac {y}{1-x^{2} y^{2}}+\frac {x y^{\prime }}{1-x^{2} y^{2}} \]

[_exact, _rational, _Riccati]

17811

\[ {}\frac {x y^{\prime }+y}{1-x^{2} y^{2}}+x = 0 \]

[_exact, _rational, _Riccati]

17833

\[ {}x y^{\prime } = x^{5}+x^{3} y^{2}+y \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

17835

\[ {}x y^{\prime } = y+x^{2}+9 y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

17902

\[ {}y^{\prime } = 1+\frac {y}{x}-\frac {y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

17917

\[ {}x^{2} y^{\prime } = y^{2}+x y+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

18240

\[ {}y^{\prime } = \left (x +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

18245

\[ {}y^{\prime } = x \left (y^{2} a +b \right ) \]

[_separable]

18246

\[ {}n^{\prime } = \left (n^{2}+1\right ) x \]

[_separable]

18322

\[ {}3 x^{2} y^{\prime }+2 x^{2}-3 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

18498

\[ {}y^{\prime }+2 x y = y^{2}+x^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]