2.2.207 Problems 20601 to 20700

Table 2.427: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

20601

\begin{align*} y y^{\prime \prime }+\sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}}&={y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x]]

59.983

20602

\begin{align*} \left (x^{3}-4 x \right ) y^{\prime \prime \prime }+\left (9 x^{2}-4\right ) y^{\prime \prime }+18 y^{\prime } x +6 y&=6 \\ \end{align*}

[[_3rd_order, _fully, _exact, _linear]]

0.365

20603

\begin{align*} y x -x^{2} y^{\prime }+y^{\prime \prime }&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.762

20604

\begin{align*} 3 y-\left (x +3\right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[_Laguerre]

3.857

20605

\begin{align*} y^{\prime \prime } x +\left (1-x \right ) y^{\prime }&={\mathrm e}^{x}+y \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

4.386

20606

\begin{align*} \left (x +1\right ) y^{\prime \prime }-2 \left (x +3\right ) y^{\prime }+\left (x +5\right ) y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

8.792

20607

\begin{align*} \left (-x +3\right ) y^{\prime \prime }-\left (9-4 x \right ) y^{\prime }+\left (6-3 x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.279

20608

\begin{align*} -y+y^{\prime } x +y^{\prime \prime }&=X \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.271

20609

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime } x -y^{\prime }+y x&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.040

20610

\begin{align*} x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_3rd_order, _exact, _linear, _homogeneous]]

0.159

20611

\begin{align*} x^{2} y^{\prime \prime }-\left (x^{2}+2 x \right ) y^{\prime }+\left (2+x \right ) y&={\mathrm e}^{x} x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.276

20612

\begin{align*} y^{\prime \prime }-a x y^{\prime }+a^{2} \left (x -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.200

20613

\begin{align*} \left (2 x^{3}-a \right ) y^{\prime \prime }-6 x^{2} y^{\prime }+6 y x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.131

20614

\begin{align*} y^{\prime \prime }+4 y^{\prime } x +4 x^{2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.455

20615

\begin{align*} y^{\prime \prime }+\frac {2 y^{\prime }}{x}+n^{2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.436

20616

\begin{align*} y^{\prime \prime }+\frac {2 y^{\prime }}{x}&=n^{2} y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

8.417

20617

\begin{align*} y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.892

20618

\begin{align*} y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y&=x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.606

20619

\begin{align*} 4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{3}+6 x^{2}+4\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

8.868

20620

\begin{align*} x^{2} y^{\prime \prime }+\left (-4 x^{2}+x \right ) y^{\prime }+\left (4 x^{2}-2 x +1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

21.374

20621

\begin{align*} y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y&={\mathrm e}^{x} \sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

18.078

20622

\begin{align*} -\left (a^{2}+1\right ) y-2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.457

20623

\begin{align*} y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\left (n^{2}+\frac {2}{x^{2}}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.475

20624

\begin{align*} y^{\prime \prime }+2 n \cot \left (x n \right ) y^{\prime }+\left (m^{2}-n^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.647

20625

\begin{align*} y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.664

20626

\begin{align*} x^{2} y^{\prime \prime }-2 n x y^{\prime }+\left (a^{2} x^{2}+n^{2}+n \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

10.572

20627

\begin{align*} y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-3\right ) y&={\mathrm e}^{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

3.719

20628

\begin{align*} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+y \cos \left (x \right )^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.121

20629

\begin{align*} y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}}&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

36.987

20630

\begin{align*} \left (x^{3}-x \right ) y^{\prime \prime }+y^{\prime }+n^{2} x^{3} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

78.960

20631

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +m^{2} y&=0 \\ \end{align*}

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7.214

20632

\begin{align*} y^{\prime \prime }-\cot \left (x \right ) y^{\prime }-y \sin \left (x \right )^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.996

20633

\begin{align*} \sin \left (x \right )^{2} y^{\prime \prime }+\cos \left (x \right ) \sin \left (x \right ) y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.425

20634

\begin{align*} 4 y+2 x \left (x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6.733

20635

\begin{align*} y^{\prime \prime }+\left (\tan \left (x \right )-1\right )^{2} y^{\prime }-n \left (n -1\right ) y \sec \left (x \right )^{4}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.040

20636

\begin{align*} y^{\prime \prime }+\left (3 \sin \left (x \right )-\cot \left (x \right )\right ) y^{\prime }+2 y \sin \left (x \right )^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.540

20637

\begin{align*} 3 x^{2} y^{\prime \prime }+\left (-6 x^{2}+2\right ) y^{\prime }-4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.615

20638

\begin{align*} y^{\prime \prime } x +\left (x -2\right ) y^{\prime }-2 y&=x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

4.194

20639

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime }-\left (x^{2}+1\right ) y&={\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

8.188

20640

\begin{align*} \left (2+x \right ) y^{\prime \prime }-\left (5+2 x \right ) y^{\prime }+2 y&={\mathrm e}^{x} \left (x +1\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

10.053

20641

\begin{align*} y^{\prime \prime }+y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.336

20642

\begin{align*} y^{\prime \prime }+y&=\csc \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

4.079

20643

\begin{align*} 4 y+y^{\prime \prime }&=4 \tan \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

22.976

20644

\begin{align*} \left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y&=\left (1-x \right )^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

9.562

20645

\begin{align*} y^{\prime \prime }-y&=\frac {2}{{\mathrm e}^{x}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

22.379

20646

\begin{align*} -\left (x^{2}+1\right ) y-4 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

39.897

20647

\begin{align*} 2 \left (x +1\right ) y-2 x \left (x +1\right ) y^{\prime }+x^{2} y^{\prime \prime }&=-4 x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.196

20648

\begin{align*} -y+y^{\prime } x&=\left (x -1\right ) \left (y^{\prime \prime }-x +1\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.629

20649

\begin{align*} \left (-y+y^{\prime } x \right )^{2}+x^{2} y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.379

20650

\begin{align*} 2 \left (x +1\right ) y-2 x \left (x +1\right ) y^{\prime }+x^{2} y^{\prime \prime }&=x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.306

20651

\begin{align*} \left (x^{2}+a \right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

36.234

20652

\begin{align*} y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\left (n^{2}+\frac {2}{x^{2}}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.720

20653

\begin{align*} y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}+1\right ) y&=x^{3}+3 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.766

20654

\begin{align*} \left (a^{2}-x^{2}\right ) y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2} y}{a}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

9.949

20655

\begin{align*} x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+n^{2} y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3.967

20656

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +\frac {a^{2} y}{-x^{2}+1}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

88.102

20657

\begin{align*} \left (2 x -1\right ) y^{\prime \prime }-2 y^{\prime }+\left (3-2 x \right ) y&=2 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

11.546

20658

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=8 x^{3} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3.834

20659

\begin{align*} y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}+5\right ) y&=x \,{\mathrm e}^{-\frac {x^{2}}{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

3.282

20660

\begin{align*} x \left (-x^{2}+1\right )^{2} y^{\prime \prime }+\left (-x^{2}+1\right ) \left (3 x^{2}+1\right ) y^{\prime }+4 x \left (x^{2}+1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

166.705

20661

\begin{align*} y^{\prime \prime }+\left (1-\frac {2}{x^{2}}\right ) y&=x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.628

20662

\begin{align*} \left (x^{3}-2 x^{2}\right ) y^{\prime \prime }+2 x^{2} y^{\prime }-12 \left (x -2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

101.343

20663

\begin{align*} y^{\prime \prime } x -2 \left (x +1\right ) y^{\prime }+\left (2+x \right ) y&=\left (x -2\right ) {\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

4.077

20664

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

2.735

20665

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -9 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.120

20666

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x -a^{2} y&=0 \\ \end{align*}

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

32.329

20667

\begin{align*} x y^{\prime \prime } \left (\cos \left (x \right ) x -2 \sin \left (x \right )\right )+\left (x^{2}+2\right ) y^{\prime } \sin \left (x \right )-2 y \left (x \sin \left (x \right )+\cos \left (x \right )\right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.217

20668

\begin{align*} y^{\prime \prime } x -y^{\prime }+4 x^{3} y&=x^{5} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

7.041

20669

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }-\left (4 x^{2}-3 x -5\right ) y^{\prime }+\left (4 x^{2}-6 x -5\right ) y&={\mathrm e}^{2 x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

175.077

20670

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x&=m^{2} y \\ \end{align*}

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7.246

20671

\begin{align*} y^{\prime \prime }+\left (1-\frac {1}{x}\right ) y^{\prime }+4 x^{2} y \,{\mathrm e}^{-2 x}&=4 \left (x^{3}+x^{2}\right ) {\mathrm e}^{-3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

9.112

20672

\begin{align*} y^{\prime \prime } x +\left (x^{2}+1\right ) y^{\prime }+2 y x&=2 x \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

36.316

20673

\begin{align*} \left (2+x \right ) y^{\prime \prime }-\left (5+2 x \right ) y^{\prime }+2 y&={\mathrm e}^{x} \left (x +1\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.655

20674

\begin{align*} -y+y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=x \left (-x^{2}+1\right )^{{3}/{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

37.660

20675

\begin{align*} x^{2} y^{\prime \prime }-\left (x^{2}+2 x \right ) y^{\prime }+\left (2+x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

24.298

20676

\begin{align*} t x^{\prime }+y&=0 \\ y^{\prime } t +x&=0 \\ \end{align*}

system_of_ODEs

0.033

20677

\begin{align*} -y^{\prime } x +y&=0 \\ \end{align*}

[_separable]

2.903

20678

\begin{align*} \cot \left (y\right )-\tan \left (x \right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

2.851

20679

\begin{align*} x^{3}+x y^{2}+a^{2} y+\left (y^{3}+x^{2} y-a^{2} x \right ) y^{\prime }&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational]

4.247

20680

\begin{align*} \left (x +2 y^{3}\right ) y^{\prime }&=y \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

5.049

20681

\begin{align*} \sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

32.674

20682

\begin{align*} 1+y^{2}-y y^{\prime } x&=0 \\ \end{align*}

[_separable]

5.990

20683

\begin{align*} y^{2}+\left (y x +x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

93.171

20684

\begin{align*} y^{\prime }&=\frac {6 x -2 y-7}{2 x +3 y-6} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

11.592

20685

\begin{align*} 2 x +y+1+\left (4 x +2 y-1\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8.782

20686

\begin{align*} \cos \left (x \right ) y^{\prime }+\sin \left (x \right ) y&=1 \\ \end{align*}

[_linear]

2.673

20687

\begin{align*} y^{\prime }+2 y x&={\mathrm e}^{-x^{2}} \\ \end{align*}

[_linear]

2.767

20688

\begin{align*} \left (x +2 y^{3}\right ) y^{\prime }&=y \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

5.132

20689

\begin{align*} y^{\prime }+p \left (x \right ) y&=q \left (x \right ) y^{n} \\ \end{align*}

[_Bernoulli]

4.927

20690

\begin{align*} y^{\prime }+x \sin \left (2 y\right )&=x^{3} \cos \left (y\right )^{2} \\ \end{align*}

[‘y=_G(x,y’)‘]

7.458

20691

\begin{align*} a^{2}-2 y x -y^{2}-\left (x +y\right )^{2} y^{\prime }&=0 \\ \end{align*}

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

2.671

20692

\begin{align*} x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.832

20693

\begin{align*} \left (x y \sin \left (y x \right )+\cos \left (y x \right )\right ) y+\left (x y \sin \left (y x \right )-\cos \left (y x \right )\right ) y^{\prime }&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

5.592

20694

\begin{align*} y+\frac {y^{3}}{3}+\frac {x^{2}}{2}+\frac {\left (x y^{2}+x \right ) y^{\prime }}{4}&=0 \\ \end{align*}

[_rational]

2.887

20695

\begin{align*} 3 x^{2} y^{4}+2 y x +\left (2 x^{3} y^{2}-x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

8.062

20696

\begin{align*} y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

31.671

20697

\begin{align*} 2 y^{\prime \prime }+9 y^{\prime }-18 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

5.706

20698

\begin{align*} y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-9 y^{\prime \prime }-11 y^{\prime }-4 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.076

20699

\begin{align*} y^{\prime \prime \prime }-8 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.050

20700

\begin{align*} y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime }&={\mathrm e}^{-x} \\ \end{align*}

[[_3rd_order, _missing_y]]

0.143