2.2.206 Problems 20501 to 20600

Table 2.425: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

20501

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

3.132

20502

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

5.193

20503

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.688

20504

\begin{align*} x^{2} y^{\prime \prime \prime }+3 y^{\prime \prime } x +2 y^{\prime }&=x \\ \end{align*}

[[_3rd_order, _missing_y]]

0.470

20505

\begin{align*} y+3 y^{\prime } x +9 x^{2} y^{\prime \prime }+6 x^{3} y^{\prime \prime \prime }+x^{4} y^{\prime \prime \prime \prime }&=4 x \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.945

20506

\begin{align*} x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+8 y^{\prime } x +2 y&=x^{2}+3 x -4 \\ \end{align*}

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

0.530

20507

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -20 y&=\left (x +1\right )^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.407

20508

\begin{align*} -8 y+7 y^{\prime } x -3 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime }&=x^{2}+\frac {1}{x^{2}} \\ \end{align*}

[[_3rd_order, _reducible, _mu_y2]]

0.413

20509

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+2 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-y^{\prime } x +y&=\ln \left (x \right )+x \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.523

20510

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +2 y&=x \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

49.981

20511

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +5 y&=x^{2} \sin \left (\ln \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

122.997

20512

\begin{align*} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y&=x \ln \left (x \right ) \\ \end{align*}

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

0.350

20513

\begin{align*} y+3 y^{\prime } x +9 x^{2} y^{\prime \prime }+6 x^{3} y^{\prime \prime \prime }+x^{4} y^{\prime \prime \prime \prime }&=\left (1+\ln \left (x \right )\right )^{2} \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.747

20514

\begin{align*} \left (5+2 x \right )^{2} y^{\prime \prime }-6 \left (5+2 x \right ) y^{\prime }+8 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

36.046

20515

\begin{align*} \left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }&=\left (2 x +3\right ) \left (2 x +4\right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

9.796

20516

\begin{align*} y^{\prime \prime } x +2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

22.006

20517

\begin{align*} y^{\prime \prime }+{\mathrm e}^{x} \left (y^{\prime }+y\right )&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.701

20518

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+3 y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

7.115

20519

\begin{align*} x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+8 y^{\prime } x +2 y&=x^{2}+3 x -4 \\ \end{align*}

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

0.383

20520

\begin{align*} x y^{\prime \prime \prime }+\left (x^{2}-3\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_3rd_order, _fully, _exact, _linear]]

0.367

20521

\begin{align*} y^{\prime \prime }+2 \,{\mathrm e}^{x} y^{\prime }+2 \,{\mathrm e}^{x} y&=x^{2} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.790

20522

\begin{align*} \left (x^{2}-x \right ) y^{\prime \prime }+2 \left (2 x +1\right ) y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

22.589

20523

\begin{align*} \left (x^{2}-x \right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }-4 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

22.697

20524

\begin{align*} y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=2 x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

132.480

20525

\begin{align*} \left (2 x^{2}+3 x \right ) y^{\prime \prime }+\left (3+6 x \right ) y^{\prime }+2 y&={\mathrm e}^{x} \left (x +1\right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

31.334

20526

\begin{align*} y y^{\prime }+x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.243

20527

\begin{align*} \left (-b \,x^{2}+a x \right ) y^{\prime \prime }+2 a y^{\prime }+2 b y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

59.500

20528

\begin{align*} \sin \left (x \right ) y^{\prime \prime }-\cos \left (x \right ) y^{\prime }+2 \sin \left (x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.904

20529

\begin{align*} 3 y x +\left (x^{2}+2\right ) y^{\prime }+4 y^{\prime \prime } x +x^{2} y^{\prime \prime \prime }&=2 \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.049

20530

\begin{align*} x^{5} y^{\left (6\right )}+x^{4} y^{\left (5\right )}+y^{\prime } x +y&=\ln \left (x \right ) \\ \end{align*}

[[_high_order, _exact, _linear, _nonhomogeneous]]

0.646

20531

\begin{align*} x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+x \left (x^{2}+2\right ) y^{\prime }+3 x^{2} y&=2 x \\ \end{align*}

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

0.440

20532

\begin{align*} x^{5} y^{\prime \prime }+3 x^{3} y^{\prime }+\left (3-6 x \right ) x^{2} y&=x^{4}+2 x -5 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

31.028

20533

\begin{align*} y^{\prime \prime \prime }&=f \left (x \right ) \\ \end{align*}

[[_3rd_order, _quadrature]]

0.197

20534

\begin{align*} y^{2}+\left (2 y x -1\right ) y^{\prime }+y^{\prime \prime } x +x^{2} y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

0.045

20535

\begin{align*} y^{\prime \prime }&=x +\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

2.321

20536

\begin{align*} y^{\prime \prime }&=x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _quadrature]]

1.621

20537

\begin{align*} \cos \left (x \right )^{2} y^{\prime \prime }&=1 \\ \end{align*}

[[_2nd_order, _quadrature]]

1.036

20538

\begin{align*} x^{3} y^{\prime \prime \prime }&=1 \\ \end{align*}

[[_3rd_order, _quadrature]]

0.279

20539

\begin{align*} y^{\prime \prime }&=\frac {a}{x} \\ \end{align*}

[[_2nd_order, _quadrature]]

1.809

20540

\begin{align*} y^{\prime \prime \prime } \csc \left (x \right )^{2}&=1 \\ \end{align*}

[[_3rd_order, _quadrature]]

0.315

20541

\begin{align*} y^{\prime \prime } \sqrt {a^{2}+x^{2}}&=x \\ \end{align*}

[[_2nd_order, _quadrature]]

1.902

20542

\begin{align*} x^{2} y^{\prime \prime }&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

1.611

20543

\begin{align*} y^{\prime \prime }&=y \\ \end{align*}

[[_2nd_order, _missing_x]]

2.463

20544

\begin{align*} y^{3} y^{\prime \prime }&=a \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3.770

20545

\begin{align*} y^{\prime \prime }-a^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.082

20546

\begin{align*} y^{\prime \prime }+\frac {a^{2}}{y}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.721

20547

\begin{align*} y^{\prime \prime }&=y^{3}-y \\ \end{align*}

[[_2nd_order, _missing_x], _Duffing, [_2nd_order, _reducible, _mu_x_y1]]

2.706

20548

\begin{align*} y^{\prime \prime }&={\mathrm e}^{2 y} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

6.241

20549

\begin{align*} y^{\prime \prime }&=y^{\prime } x \\ \end{align*}

[[_2nd_order, _missing_y]]

2.014

20550

\begin{align*} y^{\prime \prime }&=\sqrt {1+{y^{\prime }}^{2}} \\ \end{align*}

[[_2nd_order, _missing_x]]

63.775

20551

\begin{align*} y^{\prime \prime }+y^{\prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _missing_y]]

4.040

20552

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

11.139

20553

\begin{align*} x^{2} y^{\prime \prime \prime }-4 y^{\prime \prime } x +6 y^{\prime }&=4 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.258

20554

\begin{align*} y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x \left (a^{2}-x^{2}\right )}&=\frac {x^{2}}{a \left (a^{2}-x^{2}\right )} \\ \end{align*}

[[_2nd_order, _missing_y]]

9.686

20555

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +a x&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

5.336

20556

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x&=a x \\ \end{align*}

[[_2nd_order, _missing_y]]

5.919

20557

\begin{align*} y^{\prime \prime } x +x {y^{\prime }}^{2}-y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

2.220

20558

\begin{align*} x y^{\prime \prime \prime }-y^{\prime \prime } x -y^{\prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.308

20559

\begin{align*} y^{\prime }-y^{\prime \prime } x -\frac {a^{2} y^{\prime }}{x}+\frac {x^{2}}{a}&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

6.329

20560

\begin{align*} y^{\prime \prime } x +y^{\prime }&=x \\ \end{align*}

[[_2nd_order, _missing_y]]

2.444

20561

\begin{align*} \left (a^{2}-x^{2}\right ) y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2}}{a}&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

8.811

20562

\begin{align*} y y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.120

20563

\begin{align*} y y^{\prime \prime }+{y^{\prime }}^{2}&=1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3.178

20564

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}+y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.957

20565

\begin{align*} y^{\prime \prime }+2 y^{\prime }+4 {y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

4.051

20566

\begin{align*} y^{\prime \prime }&=a {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

1.980

20567

\begin{align*} 1+{y^{\prime }}^{2}+y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

2.300

20568

\begin{align*} y y^{\prime \prime }+\sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}}&={y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x]]

63.532

20569

\begin{align*} a y^{\prime \prime }&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_x]]

2.307

20570

\begin{align*} a^{2} y^{\prime \prime } y^{\prime }&=x \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

81.252

20571

\begin{align*} y^{\prime \prime } y^{\prime \prime \prime }&=2 \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

1.138

20572

\begin{align*} y^{\prime \prime }&=1+{y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

40.966

20573

\begin{align*} a y^{\prime \prime }&=\sqrt {1+{y^{\prime }}^{2}} \\ \end{align*}

[[_2nd_order, _missing_x]]

69.759

20574

\begin{align*} y^{\prime \prime }&=a^{2}+k^{2} {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

20.657

20575

\begin{align*} a^{2} {y^{\prime \prime }}^{2}&=1+{y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x]]

137.838

20576

\begin{align*} y^{\prime \prime }+{y^{\prime }}^{2}+1&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

41.868

20577

\begin{align*} a^{2} y^{\prime \prime \prime \prime }&=y^{\prime \prime } \\ \end{align*}

[[_high_order, _missing_x]]

0.072

20578

\begin{align*} a^{2} y^{\prime \prime }+y^{\prime \prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.069

20579

\begin{align*} y^{\left (5\right )}-n^{2} y^{\prime \prime \prime }&={\mathrm e}^{a x} \\ \end{align*}

[[_high_order, _missing_y]]

0.164

20580

\begin{align*} x^{2} y^{\prime \prime \prime \prime }+a^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_y]]

0.464

20581

\begin{align*} x^{2} y^{\prime \prime \prime \prime }&=\lambda y^{\prime \prime } \\ \end{align*}

[[_high_order, _missing_y]]

0.530

20582

\begin{align*} n \,x^{3} y^{\prime \prime \prime }&=-y^{\prime } x +y \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.178

20583

\begin{align*} x {y^{\prime }}^{2}+x y y^{\prime \prime }&=3 y y^{\prime } \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.579

20584

\begin{align*} 2 x^{2} y y^{\prime \prime }+y^{2}&=x^{2} {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.457

20585

\begin{align*} x^{2} y^{\prime \prime }&=\sqrt {m \,x^{2} {y^{\prime }}^{3}+n y^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.415

20586

\begin{align*} x^{4} y^{\prime \prime }&=\left (x^{3}+2 y x \right ) y^{\prime }-4 y^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.868

20587

\begin{align*} x^{4} y^{\prime \prime }-x^{3} y^{\prime }&=x^{2} {y^{\prime }}^{2}-4 y^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

1.098

20588

\begin{align*} x^{2} y^{\prime \prime }+4 y^{2}-6 y&=x^{4} {y^{\prime }}^{2} \\ \end{align*}

[NONE]

0.547

20589

\begin{align*} y^{\prime \prime }&={\mathrm e}^{y} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

7.734

20590

\begin{align*} y^{\prime \prime }+a^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

5.312

20591

\begin{align*} a y^{\prime \prime \prime }&=y^{\prime \prime } \\ \end{align*}

[[_3rd_order, _missing_x]]

0.063

20592

\begin{align*} x^{2} y^{\prime \prime \prime \prime }+1&=0 \\ \end{align*}

[[_high_order, _quadrature]]

0.293

20593

\begin{align*} y^{\prime \prime \prime }&=\sin \left (x \right )^{2} \\ \end{align*}

[[_3rd_order, _quadrature]]

0.188

20594

\begin{align*} y^{\prime \prime }&=\frac {1}{\sqrt {a y}} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

32.053

20595

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+3 y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

7.460

20596

\begin{align*} -a y^{\prime \prime }&=\left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\ \end{align*}

[[_2nd_order, _missing_x]]

108.526

20597

\begin{align*} \sin \left (y\right )^{3} y^{\prime \prime }&=\cos \left (y\right ) \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

137.031

20598

\begin{align*} {\mathrm e}^{x} \left (-y^{\prime }+y^{\prime \prime } x \right )&=x^{3} \\ \end{align*}

[[_2nd_order, _missing_y]]

4.767

20599

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x&=2 \\ \end{align*}

[[_2nd_order, _missing_y]]

4.306

20600

\begin{align*} 2 x y^{\prime \prime } y^{\prime \prime \prime }&=-a^{2}+{y^{\prime \prime }}^{2} \\ \end{align*}

[[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

2.654