2.3.16 first order ode quadrature

Table 2.427: first order ode quadrature

#

ODE

CAS classification

Solved?

1

\[ {}y^{\prime } = 2 x +1 \]
i.c.

[_quadrature]

2

\[ {}y^{\prime } = \left (x -2\right )^{2} \]
i.c.

[_quadrature]

3

\[ {}y^{\prime } = \sqrt {x} \]
i.c.

[_quadrature]

4

\[ {}y^{\prime } = \frac {1}{x^{2}} \]
i.c.

[_quadrature]

5

\[ {}y^{\prime } = \frac {1}{\sqrt {x +2}} \]
i.c.

[_quadrature]

6

\[ {}y^{\prime } = x \sqrt {x^{2}+9} \]
i.c.

[_quadrature]

7

\[ {}y^{\prime } = \frac {10}{x^{2}+1} \]
i.c.

[_quadrature]

8

\[ {}y^{\prime } = \cos \left (2 x \right ) \]
i.c.

[_quadrature]

9

\[ {}y^{\prime } = \frac {1}{\sqrt {-x^{2}+1}} \]
i.c.

[_quadrature]

10

\[ {}y^{\prime } = x \,{\mathrm e}^{-x} \]
i.c.

[_quadrature]

651

\[ {}y^{\prime } = 2 x +1 \]
i.c.

[_quadrature]

652

\[ {}y^{\prime } = \left (x -2\right )^{2} \]
i.c.

[_quadrature]

653

\[ {}y^{\prime } = \sqrt {x} \]
i.c.

[_quadrature]

654

\[ {}y^{\prime } = \frac {1}{x^{2}} \]
i.c.

[_quadrature]

655

\[ {}y^{\prime } = \frac {1}{\sqrt {x +2}} \]
i.c.

[_quadrature]

656

\[ {}y^{\prime } = x \sqrt {x^{2}+9} \]
i.c.

[_quadrature]

657

\[ {}y^{\prime } = \frac {10}{x^{2}+1} \]
i.c.

[_quadrature]

658

\[ {}y^{\prime } = \cos \left (2 x \right ) \]
i.c.

[_quadrature]

659

\[ {}y^{\prime } = \frac {1}{\sqrt {-x^{2}+1}} \]
i.c.

[_quadrature]

660

\[ {}y^{\prime } = x \,{\mathrm e}^{-x} \]
i.c.

[_quadrature]

746

\[ {}\left (x +y\right ) y^{\prime } = 0 \]

[_quadrature]

1524

\[ {}y^{\prime } = -x \]

[_quadrature]

1525

\[ {}y^{\prime } = -x \sin \left (x \right ) \]

[_quadrature]

1526

\[ {}y^{\prime } = x \ln \left (x \right ) \]

[_quadrature]

1527

\[ {}y^{\prime } = -x \,{\mathrm e}^{x} \]
i.c.

[_quadrature]

1528

\[ {}y^{\prime } = x \sin \left (x^{2}\right ) \]
i.c.

[_quadrature]

1529

\[ {}y^{\prime } = \tan \left (x \right ) \]
i.c.

[_quadrature]

1684

\[ {}\left (x +y\right )^{2}+\left (x +y\right )^{2} y^{\prime } = 0 \]

[_quadrature]

2852

\[ {}x^{\prime } = 1-\sin \left (2 t \right ) \]

[_quadrature]

3286

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

[_quadrature]

3293

\[ {}{y^{\prime }}^{3}+\left (x +y-2 x y\right ) {y^{\prime }}^{2}-2 x y \left (x +y\right ) y^{\prime } = 0 \]

[_quadrature]

3309

\[ {}x = {y^{\prime }}^{2}+y^{\prime } \]

[_quadrature]

3403

\[ {}y^{\prime } = 2 \]

[_quadrature]

3404

\[ {}y^{\prime } = 2 \,{\mathrm e}^{3 x} \]

[_quadrature]

3405

\[ {}y^{\prime } = \frac {2}{\sqrt {-x^{2}+1}} \]

[_quadrature]

3406

\[ {}y^{\prime } = {\mathrm e}^{x^{2}} \]

[_quadrature]

3407

\[ {}y^{\prime } = x \,{\mathrm e}^{x^{2}} \]

[_quadrature]

3408

\[ {}y^{\prime } = \arcsin \left (x \right ) \]

[_quadrature]

3415

\[ {}{y^{\prime }}^{2}-3 y^{\prime }+2 = 0 \]

[_quadrature]

3416

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1 \]

[_quadrature]

3417

\[ {}y^{\prime } \sin \left (x \right ) = 1 \]

[_quadrature]

3418

\[ {}y^{\prime } = t^{2}+3 \]

[_quadrature]

3419

\[ {}y^{\prime } = t \,{\mathrm e}^{2 t} \]

[_quadrature]

3420

\[ {}y^{\prime } = \sin \left (3 t \right ) \]

[_quadrature]

3421

\[ {}y^{\prime } = \sin \left (t \right )^{2} \]

[_quadrature]

3422

\[ {}y^{\prime } = \frac {t}{t^{2}+4} \]

[_quadrature]

3423

\[ {}y^{\prime } = \ln \left (t \right ) \]

[_quadrature]

3424

\[ {}y^{\prime } = \frac {t}{\sqrt {t}+1} \]

[_quadrature]

3428

\[ {}y^{\prime } = t \,{\mathrm e}^{2 t} \]
i.c.

[_quadrature]

3429

\[ {}y^{\prime } = \sin \left (t \right )^{2} \]
i.c.

[_quadrature]

3430

\[ {}y^{\prime } = 8 \,{\mathrm e}^{4 t}+t \]
i.c.

[_quadrature]

3543

\[ {}y^{\prime }+\frac {m}{x} = \ln \left (x \right ) \]

[_quadrature]

3582

\[ {}y^{\prime } = \sin \left (x \right ) \]

[_quadrature]

3583

\[ {}y^{\prime } = \frac {1}{x^{{2}/{3}}} \]

[_quadrature]

3586

\[ {}y^{\prime } = x^{2} \ln \left (x \right ) \]
i.c.

[_quadrature]

4091

\[ {}y^{\prime } = {\mathrm e}^{-x} \]

[_quadrature]

4092

\[ {}y^{\prime } = 1-x^{5}+\sqrt {x} \]

[_quadrature]

4106

\[ {}y^{\prime } = {\mathrm e}^{x} \sin \left (x \right ) \]
i.c.

[_quadrature]

4108

\[ {}y^{\prime } = x +\frac {1}{x} \]
i.c.

[_quadrature]

4115

\[ {}x +\left (2-x +2 y\right ) y^{\prime } = x y \left (y^{\prime }-1\right ) \]

[_quadrature]

4229

\[ {}\left (x^{3}+1\right ) y^{\prime } = 3 x^{2} \tan \left (x \right ) \]
i.c.

[_quadrature]

4360

\[ {}\left (\sin \left (y\right )^{2}+x \cot \left (y\right )\right ) y^{\prime } = 0 \]

[_quadrature]

4385

\[ {}x \left (-1+{y^{\prime }}^{2}\right ) = 2 y^{\prime } \]

[_quadrature]

4387

\[ {}x = y^{\prime } \sqrt {{y^{\prime }}^{2}+1} \]

[_quadrature]

4439

\[ {}y^{\prime } \left (x -\ln \left (y^{\prime }\right )\right ) = 1 \]

[_quadrature]

4608

\[ {}y^{\prime } = a f \left (x \right ) \]

[_quadrature]

4708

\[ {}y^{\prime } = \sqrt {X Y} \]

[_quadrature]

4742

\[ {}y^{\prime } x = \sqrt {a^{2}-x^{2}} \]

[_quadrature]

4828

\[ {}\left (x +a \right ) y^{\prime } = b x \]

[_quadrature]

4995

\[ {}y^{\prime } \sqrt {X}+\sqrt {Y} = 0 \]

[_quadrature]

4996

\[ {}y^{\prime } \sqrt {X} = \sqrt {Y} \]

[_quadrature]

5002

\[ {}y^{\prime } \sqrt {X} = 0 \]

[_quadrature]

5003

\[ {}y^{\prime } \sqrt {X}+\sqrt {Y} = 0 \]

[_quadrature]

5004

\[ {}y^{\prime } \sqrt {X} = \sqrt {Y} \]

[_quadrature]

5007

\[ {}X^{{2}/{3}} y^{\prime } = Y^{{2}/{3}} \]

[_quadrature]

5333

\[ {}{y^{\prime }}^{2} = a \,x^{n} \]

[_quadrature]

5356

\[ {}{y^{\prime }}^{2}+2 y^{\prime }+x = 0 \]

[_quadrature]

5359

\[ {}{y^{\prime }}^{2}-5 y^{\prime }+6 = 0 \]

[_quadrature]

5360

\[ {}{y^{\prime }}^{2}-7 y^{\prime }+12 = 0 \]

[_quadrature]

5361

\[ {}{y^{\prime }}^{2}+a y^{\prime }+b = 0 \]

[_quadrature]

5362

\[ {}{y^{\prime }}^{2}+a y^{\prime }+b x = 0 \]

[_quadrature]

5364

\[ {}{y^{\prime }}^{2}+y^{\prime } x +1 = 0 \]

[_quadrature]

5373

\[ {}{y^{\prime }}^{2}-2 y^{\prime } x +1 = 0 \]

[_quadrature]

5374

\[ {}{y^{\prime }}^{2}+2 y^{\prime } x -3 x^{2} = 0 \]

[_quadrature]

5378

\[ {}{y^{\prime }}^{2}-\left (2 x +1\right ) y^{\prime }-x \left (1-x \right ) = 0 \]

[_quadrature]

5382

\[ {}{y^{\prime }}^{2}+a x y^{\prime } = b c \,x^{2} \]

[_quadrature]

5386

\[ {}{y^{\prime }}^{2}-2 x^{2} y^{\prime }+2 y^{\prime } x = 0 \]

[_quadrature]

5390

\[ {}{y^{\prime }}^{2}-2 y^{\prime } \cosh \left (x \right )+1 = 0 \]

[_quadrature]

5391

\[ {}{y^{\prime }}^{2}+y y^{\prime } = \left (x +y\right ) x \]

[_quadrature]

5393

\[ {}{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+x y = 0 \]

[_quadrature]

5396

\[ {}{y^{\prime }}^{2}-2 \left (x -y\right ) y^{\prime }-4 x y = 0 \]

[_quadrature]

5402

\[ {}{y^{\prime }}^{2}+\left (a x +b y\right ) y^{\prime }+a b x y = 0 \]

[_quadrature]

5404

\[ {}{y^{\prime }}^{2}-\left (2 x y+1\right ) y^{\prime }+2 x y = 0 \]

[_quadrature]

5420

\[ {}4 {y^{\prime }}^{2} = 9 x \]

[_quadrature]

5426

\[ {}x {y^{\prime }}^{2} = a \]

[_quadrature]

5427

\[ {}x {y^{\prime }}^{2} = -x^{2}+a \]

[_quadrature]

5435

\[ {}x {y^{\prime }}^{2}-\left (x^{2}+1\right ) y^{\prime }+x = 0 \]

[_quadrature]

5451

\[ {}x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

[_quadrature]

5454

\[ {}x {y^{\prime }}^{2}-\left (1+x y\right ) y^{\prime }+y = 0 \]

[_quadrature]

5456

\[ {}x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-x y = 0 \]

[_quadrature]

5464

\[ {}4 x {y^{\prime }}^{2} = \left (a -3 x \right )^{2} \]

[_quadrature]

5469

\[ {}4 \left (2-x \right ) {y^{\prime }}^{2}+1 = 0 \]

[_quadrature]

5471

\[ {}x^{2} {y^{\prime }}^{2} = a^{2} \]

[_quadrature]

5493

\[ {}x^{2} {y^{\prime }}^{2}+\left (a +b \,x^{2} y^{3}\right ) y^{\prime }+a b y^{3} = 0 \]

[_quadrature]

5496

\[ {}\left (a^{2}+x^{2}\right ) {y^{\prime }}^{2} = b^{2} \]

[_quadrature]

5497

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}+b^{2} = 0 \]

[_quadrature]

5498

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2} = b^{2} \]

[_quadrature]

5499

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2} = x^{2} \]

[_quadrature]

5506

\[ {}x^{3} {y^{\prime }}^{2} = a \]

[_quadrature]

5510

\[ {}4 x \left (a -x \right ) \left (b -x \right ) {y^{\prime }}^{2} = \left (a b -2 x \left (a +b \right )+2 x^{2}\right )^{2} \]

[_quadrature]

5514

\[ {}x^{2} \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}+1 = 0 \]

[_quadrature]

5527

\[ {}{y^{\prime }}^{2} y+\left (x -y\right ) y^{\prime }-x = 0 \]

[_quadrature]

5529

\[ {}{y^{\prime }}^{2} y-\left (1+x y\right ) y^{\prime }+x = 0 \]

[_quadrature]

5537

\[ {}\left (x^{2}-a y\right ) {y^{\prime }}^{2}-2 x y y^{\prime } = 0 \]

[_quadrature]

5538

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

[_quadrature]

5584

\[ {}{y^{\prime }}^{3} = b x +a \]

[_quadrature]

5585

\[ {}{y^{\prime }}^{3} = a \,x^{n} \]

[_quadrature]

5591

\[ {}{y^{\prime }}^{3}+y^{\prime }+a -b x = 0 \]

[_quadrature]

5594

\[ {}{y^{\prime }}^{3}-7 y^{\prime }+6 = 0 \]

[_quadrature]

5598

\[ {}{y^{\prime }}^{3}-a x y^{\prime }+x^{3} = 0 \]

[_quadrature]

5611

\[ {}{y^{\prime }}^{3}+\left (1-3 x \right ) {y^{\prime }}^{2}-x \left (1-3 x \right ) y^{\prime }-1-x^{3} = 0 \]

[_quadrature]

5613

\[ {}{y^{\prime }}^{3}+\left (\cos \left (x \right ) \cot \left (x \right )-y\right ) {y^{\prime }}^{2}-\left (1+y \cos \left (x \right ) \cot \left (x \right )\right ) y^{\prime }+y = 0 \]

[_quadrature]

5614

\[ {}{y^{\prime }}^{3}+\left (2 x -y^{2}\right ) {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0 \]

[_quadrature]

5616

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y+y^{2}\right ) {y^{\prime }}^{2}+x y \left (x^{2}+x y+y^{2}\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

5617

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y^{2}+y^{4}\right ) {y^{\prime }}^{2}+x y^{2} \left (x^{2}+x y^{2}+y^{4}\right ) y^{\prime }-x^{3} y^{6} = 0 \]

[_quadrature]

5621

\[ {}4 {y^{\prime }}^{3}+4 y^{\prime } = x \]

[_quadrature]

5624

\[ {}x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+x y\right ) y^{\prime }-x y = 0 \]

[_quadrature]

5630

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{3}+b x \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}-y^{\prime }-b x = 0 \]

[_quadrature]

5637

\[ {}{y^{\prime }}^{3} \left (x +2 y\right )+3 {y^{\prime }}^{2} \left (x +y\right )+\left (y+2 x \right ) y^{\prime } = 0 \]

[_quadrature]

5663

\[ {}\sqrt {{y^{\prime }}^{2}+1}+a y^{\prime } = x \]

[_quadrature]

5665

\[ {}\sqrt {{y^{\prime }}^{2}+1} = y^{\prime } x \]

[_quadrature]

5672

\[ {}a \cos \left (y^{\prime }\right )+b y^{\prime }+x = 0 \]

[_quadrature]

5673

\[ {}\sin \left (y^{\prime }\right )+y^{\prime } = x \]

[_quadrature]

5679

\[ {}\ln \left (y^{\prime }\right )+y^{\prime } x +a = 0 \]

[_quadrature]

5750

\[ {}{y^{\prime }}^{2}-5 y^{\prime }+6 = 0 \]

[_quadrature]

5751

\[ {}{y^{\prime }}^{2}-\frac {a^{2}}{x^{2}} = 0 \]

[_quadrature]

5752

\[ {}{y^{\prime }}^{2} = \frac {1-x}{x} \]

[_quadrature]

5755

\[ {}x = a y^{\prime }+b {y^{\prime }}^{2} \]

[_quadrature]

5757

\[ {}x = \sqrt {{y^{\prime }}^{2}+1}+a y^{\prime } \]

[_quadrature]

5758

\[ {}y^{\prime }-\frac {\sqrt {{y^{\prime }}^{2}+1}}{x} = 0 \]

[_quadrature]

5759

\[ {}x^{2} \left ({y^{\prime }}^{2}+1\right )^{3}-a^{2} = 0 \]

[_quadrature]

5760

\[ {}{y^{\prime }}^{2}+1 = \frac {\left (x +a \right )^{2}}{2 a x +x^{2}} \]

[_quadrature]

5787

\[ {}x +y+1+\left (2 x +2 y+2\right ) y^{\prime } = 0 \]

[_quadrature]

6028

\[ {}{y^{\prime }}^{2} \left (-x^{2}+1\right )+1 = 0 \]

[_quadrature]

6097

\[ {}x y y^{\prime }-x y = y \]
i.c.

[_quadrature]

6282

\[ {}y^{\prime } = {\mathrm e}^{x^{2}} \]
i.c.

[_quadrature]

6418

\[ {}y^{\prime } x = x^{2}+2 x -3 \]

[_quadrature]

6422

\[ {}x^{2} y^{\prime } = x^{3} \sin \left (3 x \right )+4 \]

[_quadrature]

6618

\[ {}1-\sqrt {a^{2}-x^{2}}\, y^{\prime } = 0 \]

[_quadrature]

6667

\[ {}x {y^{\prime }}^{2}+\left (y-1-x^{2}\right ) y^{\prime }-x \left (-1+y\right ) = 0 \]

[_quadrature]

6890

\[ {}\left (y-x \right ) y^{\prime } = y-x \]

[_quadrature]

6926

\[ {}y^{\prime } = f \left (x \right ) \]

[_quadrature]

6928

\[ {}x {y^{\prime }}^{2}-4 y^{\prime }-12 x^{3} = 0 \]

[_quadrature]

6982

\[ {}y^{\prime } x = 2 x \]

[_quadrature]

6983

\[ {}y^{\prime } = 2 \]

[_quadrature]

6994

\[ {}{y^{\prime }}^{2} = 4 x^{2} \]

[_quadrature]

7030

\[ {}y^{\prime } = x \]
i.c.

[_quadrature]

7031

\[ {}y^{\prime } = x \]
i.c.

[_quadrature]

7063

\[ {}y^{\prime } = \sin \left (5 x \right ) \]

[_quadrature]

7064

\[ {}y^{\prime } = \left (x +1\right )^{2} \]

[_quadrature]

7065

\[ {}1+{\mathrm e}^{3 x} y^{\prime } = 0 \]

[_quadrature]

7121

\[ {}y^{\prime } = \frac {1}{1+\sin \left (x \right )} \]

[_quadrature]

7137

\[ {}1+{x^{\prime }}^{2} = \frac {a}{y} \]

[_quadrature]

7406

\[ {}x^{\prime }+t = 1 \]

[_quadrature]

7439

\[ {}y^{\prime } \left (y^{\prime }+y\right ) = \left (x +y\right ) x \]
i.c.

[_quadrature]

7516

\[ {}{y^{\prime }}^{2} = 4 x^{2} \]

[_quadrature]

7580

\[ {}y^{\prime } = {\mathrm e}^{3 x}+\sin \left (x \right ) \]

[_quadrature]

7773

\[ {}y^{\prime } = 2 x \]

[_quadrature]

7787

\[ {}y^{\prime } = {\mathrm e}^{3 x}-x \]

[_quadrature]

7788

\[ {}y^{\prime } = x \,{\mathrm e}^{x^{2}} \]

[_quadrature]

7789

\[ {}\left (x +1\right ) y^{\prime } = x \]

[_quadrature]

7790

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \]

[_quadrature]

7791

\[ {}\left (x^{2}+1\right ) y^{\prime } = \arctan \left (x \right ) \]

[_quadrature]

7792

\[ {}y^{\prime } x = 1 \]

[_quadrature]

7793

\[ {}y^{\prime } = \arcsin \left (x \right ) \]

[_quadrature]

7794

\[ {}y^{\prime } \sin \left (x \right ) = 1 \]

[_quadrature]

7795

\[ {}\left (x^{3}+1\right ) y^{\prime } = x \]

[_quadrature]

7796

\[ {}\left (x^{2}-3 x +2\right ) y^{\prime } = x \]

[_quadrature]

7797

\[ {}y^{\prime } = x \,{\mathrm e}^{x} \]
i.c.

[_quadrature]

7798

\[ {}y^{\prime } = 2 \sin \left (x \right ) \cos \left (x \right ) \]
i.c.

[_quadrature]

7799

\[ {}y^{\prime } = \ln \left (x \right ) \]
i.c.

[_quadrature]

7800

\[ {}\left (x^{2}-1\right ) y^{\prime } = 1 \]
i.c.

[_quadrature]

7801

\[ {}x \left (x^{2}-4\right ) y^{\prime } = 1 \]
i.c.

[_quadrature]

7802

\[ {}\left (x +1\right ) \left (x^{2}+1\right ) y^{\prime } = 2 x^{2}+x \]
i.c.

[_quadrature]

8436

\[ {}x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

[_quadrature]

8439

\[ {}x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-x y = 0 \]

[_quadrature]

8440

\[ {}{y^{\prime }}^{2}-\left (x^{2} y+3\right ) y^{\prime }+3 x^{2} y = 0 \]

[_quadrature]

8441

\[ {}x {y^{\prime }}^{2}-\left (1+x y\right ) y^{\prime }+y = 0 \]

[_quadrature]

8446

\[ {}\left (4 x -y\right ) {y^{\prime }}^{2}+6 \left (x -y\right ) y^{\prime }+2 x -5 y = 0 \]

[_quadrature]

8452

\[ {}x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+x y\right ) y^{\prime }-x y = 0 \]

[_quadrature]

8453

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

[_quadrature]

8534

\[ {}6 x {y^{\prime }}^{2}-\left (3 x +2 y\right ) y^{\prime }+y = 0 \]

[_quadrature]

8545

\[ {}x {y^{\prime }}^{2}-\left (x^{2}+1\right ) y^{\prime }+x = 0 \]

[_quadrature]

8718

\[ {}y^{\prime } = x +1 \]

[_quadrature]

8719

\[ {}y^{\prime } = x \]

[_quadrature]

8721

\[ {}y^{\prime } = 0 \]

[_quadrature]

8722

\[ {}y^{\prime } = 1+\frac {\sec \left (x \right )}{x} \]

[_quadrature]

8727

\[ {}y^{\prime } = \frac {1}{x} \]

[_quadrature]

8736

\[ {}\left (x +y\right ) y^{\prime } = 0 \]

[_quadrature]

8737

\[ {}y^{\prime } x = 0 \]

[_quadrature]

8738

\[ {}\frac {y^{\prime }}{x +y} = 0 \]

[_quadrature]

8739

\[ {}\frac {y^{\prime }}{x} = 0 \]

[_quadrature]

8740

\[ {}y^{\prime } = 0 \]

[_quadrature]

8985

\[ {}y^{\prime } = 0 \]

[_quadrature]

8986

\[ {}y^{\prime } = a \]

[_quadrature]

8987

\[ {}y^{\prime } = x \]

[_quadrature]

8988

\[ {}y^{\prime } = 1 \]

[_quadrature]

8989

\[ {}y^{\prime } = a x \]

[_quadrature]

8996

\[ {}c y^{\prime } = 0 \]

[_quadrature]

8997

\[ {}c y^{\prime } = a \]

[_quadrature]

8998

\[ {}c y^{\prime } = a x \]

[_quadrature]

9008

\[ {}a \sin \left (x \right ) y x y^{\prime } = 0 \]

[_quadrature]

9009

\[ {}f \left (x \right ) \sin \left (x \right ) y x y^{\prime } \pi = 0 \]

[_quadrature]

9015

\[ {}y^{\prime } x = 0 \]

[_quadrature]

9016

\[ {}5 y^{\prime } = 0 \]

[_quadrature]

9017

\[ {}{\mathrm e} y^{\prime } = 0 \]

[_quadrature]

9018

\[ {}\pi y^{\prime } = 0 \]

[_quadrature]

9019

\[ {}y^{\prime } \sin \left (x \right ) = 0 \]

[_quadrature]

9020

\[ {}f \left (x \right ) y^{\prime } = 0 \]

[_quadrature]

9021

\[ {}y^{\prime } x = 1 \]

[_quadrature]

9022

\[ {}y^{\prime } x = \sin \left (x \right ) \]

[_quadrature]

9023

\[ {}\left (x -1\right ) y^{\prime } = 0 \]

[_quadrature]

9024

\[ {}y y^{\prime } = 0 \]

[_quadrature]

9025

\[ {}x y y^{\prime } = 0 \]

[_quadrature]

9026

\[ {}x y \sin \left (x \right ) y^{\prime } = 0 \]

[_quadrature]

9027

\[ {}\pi y \sin \left (x \right ) y^{\prime } = 0 \]

[_quadrature]

9028

\[ {}x \sin \left (x \right ) y^{\prime } = 0 \]

[_quadrature]

9029

\[ {}x \sin \left (x \right ) {y^{\prime }}^{2} = 0 \]

[_quadrature]

9030

\[ {}{y^{\prime }}^{2} y = 0 \]

[_quadrature]

9031

\[ {}{y^{\prime }}^{n} = 0 \]

[_quadrature]

9032

\[ {}x {y^{\prime }}^{n} = 0 \]

[_quadrature]

9033

\[ {}{y^{\prime }}^{2} = x \]

[_quadrature]

10015

\[ {}y^{\prime }-\frac {1}{\sqrt {\operatorname {a4} \,x^{4}+\operatorname {a3} \,x^{3}+\operatorname {a2} \,x^{2}+\operatorname {a1} x +\operatorname {a0}}} = 0 \]

[_quadrature]

10103

\[ {}y^{\prime } x -\sqrt {a^{2}-x^{2}} = 0 \]

[_quadrature]

10388

\[ {}{y^{\prime }}^{2}+a y^{\prime }+b x = 0 \]

[_quadrature]

10395

\[ {}{y^{\prime }}^{2}+a x y^{\prime }-b \,x^{2}-c = 0 \]

[_quadrature]

10404

\[ {}{y^{\prime }}^{2}+\left (b x +a y\right ) y^{\prime }+a b x y = 0 \]

[_quadrature]

10446

\[ {}y^{\prime }-1 = 0 \]

[_quadrature]

10456

\[ {}x^{2} {y^{\prime }}^{2}+\left (a \,x^{2} y^{3}+b \right ) y^{\prime }+a b y^{3} = 0 \]

[_quadrature]

10458

\[ {}\left (x^{2}-1\right ) {y^{\prime }}^{2}-1 = 0 \]

[_quadrature]

10469

\[ {}x^{2} \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}-1 = 0 \]

[_quadrature]

10482

\[ {}{y^{\prime }}^{2} y-\left (y-x \right ) y^{\prime }-x = 0 \]

[_quadrature]

10534

\[ {}{y^{\prime }}^{3}-a x y^{\prime }+x^{3} = 0 \]

[_quadrature]

10537

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y+y^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

10547

\[ {}\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{3}+b x \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}+y^{\prime }+b x = 0 \]

[_quadrature]

10550

\[ {}{y^{\prime }}^{3} \sin \left (x \right )-\left (y \sin \left (x \right )-\cos \left (x \right )^{2}\right ) {y^{\prime }}^{2}-\left (y \cos \left (x \right )^{2}+\sin \left (x \right )\right ) y^{\prime }+y \sin \left (x \right ) = 0 \]

[_quadrature]

10551

\[ {}2 y {y^{\prime }}^{3}-{y^{\prime }}^{2} y+2 y^{\prime } x -x = 0 \]

[_quadrature]

10560

\[ {}x^{2} \left ({y^{\prime }}^{2}+1\right )^{3}-a^{2} = 0 \]

[_quadrature]

10577

\[ {}\sin \left (y^{\prime }\right )+y^{\prime }-x = 0 \]

[_quadrature]

10578

\[ {}a \cos \left (y^{\prime }\right )+b y^{\prime }+x = 0 \]

[_quadrature]

11845

\[ {}2 y^{\prime } y^{\prime \prime \prime }-3 {y^{\prime }}^{2} = 0 \]

[[_3rd_order, _missing_x]]

12001

\[ {}y^{\prime } = f \left (x \right ) \]

[_quadrature]

12876

\[ {}{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+x y = 0 \]

[_quadrature]

12880

\[ {}\left (x^{2}+1\right ) {y^{\prime }}^{2} = 1 \]

[_quadrature]

12915

\[ {}x^{2} {y^{\prime }}^{2}-\left (x -1\right )^{2} = 0 \]

[_quadrature]

12917

\[ {}4 {y^{\prime }}^{2} = 9 x \]

[_quadrature]

13036

\[ {}x^{\prime } = t \cos \left (t^{2}\right ) \]
i.c.

[_quadrature]

13037

\[ {}x^{\prime } = \frac {1+t}{\sqrt {t}} \]
i.c.

[_quadrature]

13039

\[ {}x^{\prime } = t \,{\mathrm e}^{-2 t} \]

[_quadrature]

13040

\[ {}x^{\prime } = \frac {1}{t \ln \left (t \right )} \]

[_quadrature]

13041

\[ {}\sqrt {t}\, x^{\prime } = \cos \left (\sqrt {t}\right ) \]

[_quadrature]

13042

\[ {}x^{\prime } = \frac {{\mathrm e}^{-t}}{\sqrt {t}} \]
i.c.

[_quadrature]

13704

\[ {}x^{\prime } = \sin \left (t \right )+\cos \left (t \right ) \]

[_quadrature]

13705

\[ {}y^{\prime } = \frac {1}{x^{2}-1} \]

[_quadrature]

13706

\[ {}u^{\prime } = 4 t \ln \left (t \right ) \]

[_quadrature]

13707

\[ {}z^{\prime } = x \,{\mathrm e}^{-2 x} \]

[_quadrature]

13708

\[ {}T^{\prime } = {\mathrm e}^{-t} \sin \left (2 t \right ) \]

[_quadrature]

13709

\[ {}x^{\prime } = \sec \left (t \right )^{2} \]
i.c.

[_quadrature]

13710

\[ {}y^{\prime } = x -\frac {1}{3} x^{3} \]
i.c.

[_quadrature]

13711

\[ {}x^{\prime } = 2 \sin \left (t \right )^{2} \]
i.c.

[_quadrature]

13712

\[ {}x V^{\prime } = x^{2}+1 \]
i.c.

[_quadrature]

13861

\[ {}x^{2}+{y^{\prime }}^{2} = 1 \]

[_quadrature]

13863

\[ {}x = {y^{\prime }}^{3}-y^{\prime }+2 \]

[_quadrature]

13873

\[ {}{y^{\prime }}^{3}-y^{\prime } {\mathrm e}^{2 x} = 0 \]

[_quadrature]

14219

\[ {}y = y y^{\prime }+y^{\prime }-{y^{\prime }}^{2} \]

[_quadrature]

14321

\[ {}y^{\prime } x -\sin \left (x \right ) = 0 \]

[_quadrature]

14332

\[ {}{y^{\prime }}^{2} = x^{6} \]

[_quadrature]

14351

\[ {}y^{\prime } = 1-x \]

[_quadrature]

14352

\[ {}y^{\prime } = x -1 \]

[_quadrature]

14388

\[ {}y^{\prime } = x^{2}+{\mathrm e}^{x}-\sin \left (x \right ) \]
i.c.

[_quadrature]

14397

\[ {}y^{\prime } = 1+3 x \]
i.c.

[_quadrature]

14398

\[ {}y^{\prime } = x +\frac {1}{x} \]
i.c.

[_quadrature]

14399

\[ {}y^{\prime } = 2 \sin \left (x \right ) \]
i.c.

[_quadrature]

14400

\[ {}y^{\prime } = x \sin \left (x \right ) \]
i.c.

[_quadrature]

14401

\[ {}y^{\prime } = \frac {1}{x -1} \]
i.c.

[_quadrature]

14402

\[ {}y^{\prime } = \frac {1}{x -1} \]
i.c.

[_quadrature]

14403

\[ {}y^{\prime } = \frac {1}{x^{2}-1} \]
i.c.

[_quadrature]

14404

\[ {}y^{\prime } = \frac {1}{x^{2}-1} \]
i.c.

[_quadrature]

14405

\[ {}y^{\prime } = \tan \left (x \right ) \]
i.c.

[_quadrature]

14406

\[ {}y^{\prime } = \tan \left (x \right ) \]
i.c.

[_quadrature]

14435

\[ {}y^{\prime } = \frac {1}{x -1} \]
i.c.

[_quadrature]

14636

\[ {}y^{\prime } = t^{2}+t \]

[_quadrature]

14637

\[ {}y^{\prime } = t^{2}+1 \]

[_quadrature]

14654

\[ {}y^{\prime } = -t^{2}+2 \]

[_quadrature]

14658

\[ {}y^{\prime } = t^{2}-2 \]

[_quadrature]

14660

\[ {}\theta ^{\prime } = 2 \]

[_quadrature]

14766

\[ {}y^{\prime } = t^{2} \left (t^{2}+1\right ) \]

[_quadrature]

14979

\[ {}y^{\prime } = 3-\sin \left (x \right ) \]

[_quadrature]

14982

\[ {}y^{\prime } x = \arcsin \left (x^{2}\right ) \]

[_quadrature]

14989

\[ {}y^{\prime } = 4 x^{3} \]

[_quadrature]

14990

\[ {}y^{\prime } = 20 \,{\mathrm e}^{-4 x} \]

[_quadrature]

14991

\[ {}y^{\prime } x +\sqrt {x} = 2 \]

[_quadrature]

14992

\[ {}\sqrt {x +4}\, y^{\prime } = 1 \]

[_quadrature]

14993

\[ {}y^{\prime } = x \cos \left (x^{2}\right ) \]

[_quadrature]

14994

\[ {}y^{\prime } = \cos \left (x \right ) x \]

[_quadrature]

14995

\[ {}x = \left (x^{2}-9\right ) y^{\prime } \]

[_quadrature]

14996

\[ {}1 = \left (x^{2}-9\right ) y^{\prime } \]

[_quadrature]

14997

\[ {}1 = x^{2}-9 y^{\prime } \]

[_quadrature]

15001

\[ {}y^{\prime } = 40 x \,{\mathrm e}^{2 x} \]
i.c.

[_quadrature]

15002

\[ {}\left (x +6\right )^{{1}/{3}} y^{\prime } = 1 \]
i.c.

[_quadrature]

15003

\[ {}y^{\prime } = \frac {x -1}{x +1} \]
i.c.

[_quadrature]

15004

\[ {}y^{\prime } x +2 = \sqrt {x} \]
i.c.

[_quadrature]

15005

\[ {}\cos \left (x \right ) y^{\prime }-\sin \left (x \right ) = 0 \]
i.c.

[_quadrature]

15006

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1 \]
i.c.

[_quadrature]

15008

\[ {}y^{\prime } = \sin \left (\frac {x}{2}\right ) \]

[_quadrature]

15009

\[ {}y^{\prime } = \sin \left (\frac {x}{2}\right ) \]
i.c.

[_quadrature]

15010

\[ {}y^{\prime } = \sin \left (\frac {x}{2}\right ) \]
i.c.

[_quadrature]

15011

\[ {}y^{\prime } = 3 \sqrt {x +3} \]

[_quadrature]

15012

\[ {}y^{\prime } = 3 \sqrt {x +3} \]
i.c.

[_quadrature]

15013

\[ {}y^{\prime } = 3 \sqrt {x +3} \]
i.c.

[_quadrature]

15014

\[ {}y^{\prime } = 3 \sqrt {x +3} \]
i.c.

[_quadrature]

15015

\[ {}y^{\prime } = x \,{\mathrm e}^{-x^{2}} \]
i.c.

[_quadrature]

15016

\[ {}y^{\prime } = \frac {x}{\sqrt {x^{2}+5}} \]
i.c.

[_quadrature]

15017

\[ {}y^{\prime } = \frac {1}{x^{2}+1} \]
i.c.

[_quadrature]

15018

\[ {}y^{\prime } = {\mathrm e}^{-9 x^{2}} \]
i.c.

[_quadrature]

15019

\[ {}y^{\prime } x = \sin \left (x \right ) \]
i.c.

[_quadrature]

15020

\[ {}y^{\prime } x = \sin \left (x^{2}\right ) \]
i.c.

[_quadrature]

15021

\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & x <0 \\ 1 & 0\le x \end {array}\right . \]
i.c.

[_quadrature]

15022

\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & x <1 \\ 1 & 1\le x \end {array}\right . \]
i.c.

[_quadrature]

15023

\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & x <1 \\ 1 & 1\le x <2 \\ 0 & 2\le x \end {array}\right . \]
i.c.

[_quadrature]

15038

\[ {}y^{\prime } = \sqrt {x^{2}+1} \]

[_quadrature]

15089

\[ {}y^{\prime }-{\mathrm e}^{2 x} = 0 \]

[_quadrature]

15163

\[ {}x^{2} y^{\prime }-\sqrt {x} = 3 \]

[_quadrature]

15174

\[ {}\left (x^{2}-4\right ) y^{\prime } = x \]

[_quadrature]

15179

\[ {}\sin \left (x \right )+2 \cos \left (x \right ) y^{\prime } = 0 \]

[_quadrature]

15190

\[ {}\left (x +2\right ) y^{\prime }-x^{3} = 0 \]

[_quadrature]

15200

\[ {}y^{\prime }+2 x = \sin \left (x \right ) \]

[_quadrature]

15788

\[ {}2 x -1-y^{\prime } = 0 \]

[_quadrature]

15807

\[ {}y^{\prime } = \left (x^{2}-1\right ) \left (x^{3}-3 x \right )^{3} \]

[_quadrature]

15808

\[ {}y^{\prime } = x \sin \left (x^{2}\right ) \]

[_quadrature]

15809

\[ {}y^{\prime } = \frac {x}{\sqrt {x^{2}-16}} \]

[_quadrature]

15810

\[ {}y^{\prime } = \frac {1}{x \ln \left (x \right )} \]

[_quadrature]

15811

\[ {}y^{\prime } = x \ln \left (x \right ) \]

[_quadrature]

15812

\[ {}y^{\prime } = x \,{\mathrm e}^{-x} \]

[_quadrature]

15813

\[ {}y^{\prime } = \frac {-2 x -10}{\left (x +2\right ) \left (x -4\right )} \]

[_quadrature]

15814

\[ {}y^{\prime } = \frac {-x^{2}+x}{\left (x +1\right ) \left (x^{2}+1\right )} \]

[_quadrature]

15815

\[ {}y^{\prime } = \frac {\sqrt {x^{2}-16}}{x} \]

[_quadrature]

15816

\[ {}y^{\prime } = \left (-x^{2}+4\right )^{{3}/{2}} \]

[_quadrature]

15817

\[ {}y^{\prime } = \frac {1}{x^{2}-16} \]

[_quadrature]

15818

\[ {}y^{\prime } = \cos \left (x \right ) \cot \left (x \right ) \]

[_quadrature]

15819

\[ {}y^{\prime } = \sin \left (x \right )^{3} \tan \left (x \right ) \]

[_quadrature]

15828

\[ {}y^{\prime } = 4 x^{3}-x +2 \]
i.c.

[_quadrature]

15829

\[ {}y^{\prime } = \sin \left (2 t \right )-\cos \left (2 t \right ) \]
i.c.

[_quadrature]

15830

\[ {}y^{\prime } = \frac {\cos \left (\frac {1}{x}\right )}{x^{2}} \]
i.c.

[_quadrature]

15831

\[ {}y^{\prime } = \frac {\ln \left (x \right )}{x} \]
i.c.

[_quadrature]

15838

\[ {}y^{\prime } = \sin \left (x \right )^{4} \]
i.c.

[_quadrature]

15852

\[ {}y^{\prime } = x \,{\mathrm e}^{-x^{2}} \]

[_quadrature]

15853

\[ {}y^{\prime } = \sin \left (x \right ) x^{2} \]

[_quadrature]

15854

\[ {}y^{\prime } = \frac {2 x^{2}-x +1}{\left (x -1\right ) \left (x^{2}+1\right )} \]

[_quadrature]

15855

\[ {}y^{\prime } = \frac {x^{2}}{\sqrt {x^{2}-1}} \]

[_quadrature]

15859

\[ {}y^{\prime } = \cos \left (x \right )^{2} \sin \left (x \right ) \]
i.c.

[_quadrature]

15860

\[ {}y^{\prime } = \frac {4 x -9}{3 \left (x -3\right )^{{2}/{3}}} \]
i.c.

[_quadrature]

15871

\[ {}y^{\prime } = \frac {1}{t^{2}+1} \]
i.c.

[_quadrature]

15934

\[ {}y^{\prime } = x^{3} \]
i.c.

[_quadrature]

15935

\[ {}y^{\prime } = \cos \left (t \right ) \]
i.c.

[_quadrature]

15937

\[ {}\sin \left (y \right )^{2} = x^{\prime } \]
i.c.

[_quadrature]

15943

\[ {}y^{\prime } = t \sin \left (t^{2}\right ) \]
i.c.

[_quadrature]

15944

\[ {}y^{\prime } = \frac {1}{x^{2}+1} \]
i.c.

[_quadrature]

16033

\[ {}3 t^{2}-y^{\prime } = 0 \]

[_quadrature]

16075

\[ {}2 t +2 y+\left (2 t +2 y\right ) y^{\prime } = 0 \]

[_quadrature]

16678

\[ {}y^{\prime } = x +1 \]

[_quadrature]

16690

\[ {}y^{\prime } = 1-x \]

[_quadrature]

16694

\[ {}y^{\prime } = 1 \]

[_quadrature]

16695

\[ {}y^{\prime } = \frac {1}{x} \]

[_quadrature]

16722

\[ {}\cos \left (y^{\prime }\right ) = 0 \]

[_quadrature]

16723

\[ {}{\mathrm e}^{y^{\prime }} = 1 \]

[_quadrature]

16724

\[ {}\sin \left (y^{\prime }\right ) = x \]

[_quadrature]

16725

\[ {}\ln \left (y^{\prime }\right ) = x \]

[_quadrature]

16726

\[ {}\tan \left (y^{\prime }\right ) = 0 \]

[_quadrature]

16727

\[ {}{\mathrm e}^{y^{\prime }} = x \]

[_quadrature]

16728

\[ {}\tan \left (y^{\prime }\right ) = x \]

[_quadrature]

16817

\[ {}4 {y^{\prime }}^{2}-9 x = 0 \]

[_quadrature]

16819

\[ {}{y^{\prime }}^{2}-2 y^{\prime } x -8 x^{2} = 0 \]

[_quadrature]

16821

\[ {}{y^{\prime }}^{2}-\left (y+2 x \right ) y^{\prime }+x^{2}+x y = 0 \]

[_quadrature]

16823

\[ {}{y^{\prime }}^{3} = {y^{\prime }}^{2} y-x^{2} y^{\prime }+x^{2} y \]

[_quadrature]

16829

\[ {}x = {y^{\prime }}^{2}-2 y^{\prime }+2 \]

[_quadrature]

16832

\[ {}x {y^{\prime }}^{2} = {\mathrm e}^{\frac {1}{y^{\prime }}} \]

[_quadrature]

16833

\[ {}x \left ({y^{\prime }}^{2}+1\right )^{{3}/{2}} = a \]

[_quadrature]

16835

\[ {}x = y^{\prime }+\sin \left (y^{\prime }\right ) \]

[_quadrature]

16876

\[ {}x^{2}+y^{\prime } x = 3 x +y^{\prime } \]

[_quadrature]

16910

\[ {}{y^{\prime }}^{4} = 1 \]

[_quadrature]

17415

\[ {}\frac {y^{\prime }}{\frac {x}{y}-\sin \left (y\right )} = 0 \]

[_quadrature]

17452

\[ {}y^{\prime } x = -\frac {1}{\ln \left (x \right )} \]

[_quadrature]

17891

\[ {}y^{\prime } = 2 \]

[_quadrature]

17892

\[ {}y^{\prime } = -x^{3} \]

[_quadrature]

17936

\[ {}{y^{\prime }}^{2} y+\left (x -y\right ) y^{\prime }-x = 0 \]

[_quadrature]

17938

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y+y^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

17940

\[ {}x {y^{\prime }}^{3} = 1+y^{\prime } \]

[_quadrature]

17941

\[ {}{y^{\prime }}^{3}-x^{3} \left (1-y^{\prime }\right ) = 0 \]

[_quadrature]

18056

\[ {}y^{\prime } = 2 x \]

[_quadrature]

18070

\[ {}y^{\prime } = {\mathrm e}^{3 x}-x \]

[_quadrature]

18071

\[ {}y^{\prime } x = 1 \]

[_quadrature]

18072

\[ {}y^{\prime } = x \,{\mathrm e}^{x^{2}} \]

[_quadrature]

18073

\[ {}y^{\prime } = \arcsin \left (x \right ) \]

[_quadrature]

18074

\[ {}\left (x +1\right ) y^{\prime } = x \]

[_quadrature]

18075

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \]

[_quadrature]

18076

\[ {}\left (x^{3}+1\right ) y^{\prime } = x \]

[_quadrature]

18077

\[ {}\left (x^{2}+1\right ) y^{\prime } = \arctan \left (x \right ) \]

[_quadrature]

18083

\[ {}y^{\prime } \sin \left (x \right ) = 1 \]

[_quadrature]

18088

\[ {}y^{\prime } = x \,{\mathrm e}^{x} \]
i.c.

[_quadrature]

18089

\[ {}y^{\prime } = 2 \sin \left (x \right ) \cos \left (x \right ) \]
i.c.

[_quadrature]

18090

\[ {}y^{\prime } = \ln \left (x \right ) \]
i.c.

[_quadrature]

18091

\[ {}\left (x^{2}-1\right ) y^{\prime } = 1 \]
i.c.

[_quadrature]

18092

\[ {}x \left (x^{2}-4\right ) y^{\prime } = 1 \]
i.c.

[_quadrature]

18093

\[ {}\left (x +1\right ) \left (x^{2}+1\right ) y^{\prime } = 2 x^{2}+x \]
i.c.

[_quadrature]

18095

\[ {}y^{\prime } x = 2 x^{2}+1 \]
i.c.

[_quadrature]

18098

\[ {}y^{\prime } = {\mathrm e}^{x} \cos \left (x \right ) \]
i.c.

[_quadrature]

18488

\[ {}x^{\prime } = 3 t^{2}+4 t \]
i.c.

[_quadrature]

18489

\[ {}x^{\prime } = b \,{\mathrm e}^{t} \]
i.c.

[_quadrature]

18490

\[ {}x^{\prime } = \frac {1}{t^{2}+1} \]
i.c.

[_quadrature]

18491

\[ {}x^{\prime } = \frac {1}{\sqrt {t^{2}+1}} \]
i.c.

[_quadrature]

18492

\[ {}x^{\prime } = \cos \left (t \right ) \]
i.c.

[_quadrature]

18493

\[ {}x^{\prime } = \frac {\cos \left (t \right )}{\sin \left (t \right )} \]
i.c.

[_quadrature]

18561

\[ {}y^{\prime } = {\mathrm e}^{z -y^{\prime }} \]

[_quadrature]

18563

\[ {}\left (x^{2}-1\right ) {y^{\prime }}^{2} = 1 \]

[_quadrature]

18566

\[ {}\sec \left (\theta \right )^{2} = \frac {m s^{\prime }}{k} \]

[_quadrature]

18573

\[ {}\sqrt {1+v^{\prime }} = \frac {{\mathrm e}^{u}}{2} \]

[_quadrature]

18801

\[ {}{y^{\prime }}^{3}+2 x {y^{\prime }}^{2}-y^{2} {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0 \]

[_quadrature]

18802

\[ {}{y^{\prime }}^{2}-a \,x^{3} = 0 \]

[_quadrature]

18803

\[ {}{y^{\prime }}^{3} \left (x +2 y\right )+3 {y^{\prime }}^{2} \left (x +y\right )+\left (y+2 x \right ) y^{\prime } = 0 \]

[_quadrature]

18804

\[ {}{y^{\prime }}^{3} = a \,x^{4} \]

[_quadrature]

18806

\[ {}{y^{\prime }}^{2}-7 y^{\prime }+12 = 0 \]

[_quadrature]

18812

\[ {}x \left ({y^{\prime }}^{2}+1\right ) = 1 \]

[_quadrature]

18813

\[ {}x^{2} = a^{2} \left ({y^{\prime }}^{2}+1\right ) \]

[_quadrature]

18827

\[ {}{y^{\prime }}^{2}-9 y^{\prime }+18 = 0 \]

[_quadrature]

18837

\[ {}\left ({y^{\prime }}^{2}-\frac {1}{a^{2}-x^{2}}\right ) \left (y^{\prime }-\sqrt {\frac {y}{x}}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

18838

\[ {}x +\frac {y^{\prime }}{\sqrt {{y^{\prime }}^{2}+1}} = a \]

[_quadrature]

18841

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y+y^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

18854

\[ {}x {y^{\prime }}^{2}-\left (x -a \right )^{2} = 0 \]

[_quadrature]

18862

\[ {}4 {y^{\prime }}^{2} = 9 x \]

[_quadrature]

18863

\[ {}4 x \left (x -1\right ) \left (x -2\right ) {y^{\prime }}^{2}-\left (3 x^{2}-6 x +2\right )^{2} = 0 \]

[_quadrature]

19211

\[ {}{y^{\prime }}^{2}-7 y^{\prime }+12 = 0 \]

[_quadrature]

19212

\[ {}{y^{\prime }}^{2}-5 y^{\prime }+6 = 0 \]

[_quadrature]

19213

\[ {}{y^{\prime }}^{2}-9 y^{\prime }+18 = 0 \]

[_quadrature]

19214

\[ {}{y^{\prime }}^{2}+2 y^{\prime } x -3 x^{2} = 0 \]

[_quadrature]

19216

\[ {}{y^{\prime }}^{2}-2 y^{\prime } \cosh \left (x \right )+1 = 0 \]

[_quadrature]

19217

\[ {}y^{\prime } \left (y^{\prime }-y\right ) = \left (x +y\right ) x \]

[_quadrature]

19218

\[ {}{y^{\prime }}^{2} y+\left (x -y\right ) y^{\prime }-x = 0 \]

[_quadrature]

19219

\[ {}x +{y^{\prime }}^{2} y = \left (1+x y\right ) y^{\prime } \]

[_quadrature]

19220

\[ {}x {y^{\prime }}^{2}+\left (y-x \right ) y^{\prime }-y = 0 \]

[_quadrature]

19221

\[ {}{y^{\prime }}^{3}-a \,x^{4} = 0 \]

[_quadrature]

19222

\[ {}{y^{\prime }}^{2}+y^{\prime } x +y y^{\prime }+x y = 0 \]

[_quadrature]

19223

\[ {}{y^{\prime }}^{3}-y^{\prime } \left (x^{2}+x y+y^{2}\right )+x y \left (x +y\right ) = 0 \]

[_quadrature]

19224

\[ {}\left (y^{\prime }+y+x \right ) \left (y^{\prime } x +x +y\right ) \left (y^{\prime }+2 x \right ) = 0 \]

[_quadrature]

19225

\[ {}x^{2} {y^{\prime }}^{3}+y \left (1+x^{2} y\right ) {y^{\prime }}^{2}+y^{2} y^{\prime } = 0 \]

[_quadrature]

19227

\[ {}{y^{\prime }}^{3}+2 x {y^{\prime }}^{2}-y^{2} {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0 \]

[_quadrature]

19243

\[ {}x \left ({y^{\prime }}^{2}+1\right ) = 1 \]

[_quadrature]

19244

\[ {}x^{2} = a^{2} \left ({y^{\prime }}^{2}+1\right ) \]

[_quadrature]

19256

\[ {}x +\frac {y^{\prime }}{\sqrt {{y^{\prime }}^{2}+1}} = a \]

[_quadrature]

19263

\[ {}2 {y^{\prime }}^{3}-\left (2 x +4 \sin \left (x \right )-\cos \left (x \right )\right ) {y^{\prime }}^{2}-\left (\cos \left (x \right ) x -4 x \sin \left (x \right )+\sin \left (2 x \right )\right ) y^{\prime }+x \sin \left (2 x \right ) = 0 \]

[_quadrature]

19268

\[ {}\left ({y^{\prime }}^{2}-\frac {1}{a^{2}-x^{2}}\right ) \left (y^{\prime }-\sqrt {\frac {y}{x}}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

19276

\[ {}{y^{\prime }}^{3}-\left (y+2 x -{\mathrm e}^{x -y}\right ) {y^{\prime }}^{2}+\left (2 x y-2 x \,{\mathrm e}^{x -y}-y \,{\mathrm e}^{x -y}\right ) y^{\prime }+2 x y \,{\mathrm e}^{x -y} = 0 \]

[_quadrature]

19286

\[ {}4 {y^{\prime }}^{2} = 9 x \]

[_quadrature]

19287

\[ {}4 x \left (x -1\right ) \left (x -2\right ) {y^{\prime }}^{2}-\left (3 x^{2}-6 x +2\right )^{2} = 0 \]

[_quadrature]

19288

\[ {}\left (8 {y^{\prime }}^{3}-27\right ) x = \frac {12 {y^{\prime }}^{2}}{x} \]

[_quadrature]

19292

\[ {}4 x {y^{\prime }}^{2} = \left (3 x -1\right )^{2} \]

[_quadrature]

19293

\[ {}x {y^{\prime }}^{2}-\left (x -a \right )^{2} = 0 \]

[_quadrature]

19544

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y+y^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

19546

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{3}+b x \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}-y^{\prime }-b x = 0 \]

[_quadrature]

19547

\[ {}{y^{\prime }}^{3} \left (x +2 y\right )+3 {y^{\prime }}^{2} \left (x +y\right )+\left (y+2 x \right ) y^{\prime } = 0 \]

[_quadrature]

19551

\[ {}x {y^{\prime }}^{3} = a +b y^{\prime } \]

[_quadrature]

19569

\[ {}4 x {y^{\prime }}^{2} = \left (3 x -a \right )^{2} \]

[_quadrature]

19570

\[ {}4 {y^{\prime }}^{2} x \left (x -a \right ) \left (x -b \right ) = \left (3 x^{2}-2 x \left (a +b \right )+a b \right )^{2} \]

[_quadrature]