2.3.18 first order ode lie symmetry

Table 2.431: first order ode lie symmetry

#

ODE

CAS classification

Solved?

20

\[ {}y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

22

\[ {}y^{\prime } = x -y \]

[[_linear, ‘class A‘]]

23

\[ {}y^{\prime } = -x +y+1 \]

[[_linear, ‘class A‘]]

24

\[ {}y^{\prime } = x -y+1 \]

[[_linear, ‘class A‘]]

25

\[ {}y^{\prime } = x^{2}-y \]

[[_linear, ‘class A‘]]

26

\[ {}y^{\prime } = x^{2}-y-2 \]

[[_linear, ‘class A‘]]

27

\[ {}y^{\prime } = 2 x^{2} y^{2} \]
i.c.

[_separable]

29

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

30

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

31

\[ {}y^{\prime } = \sqrt {x -y} \]
i.c.

[[_homogeneous, ‘class C‘], _dAlembert]

35

\[ {}y^{\prime } = \ln \left (1+y^{2}\right ) \]
i.c.

[_quadrature]

37

\[ {}y^{\prime } = x +y \]
i.c.

[[_linear, ‘class A‘]]

38

\[ {}y^{\prime } = y-x \]
i.c.

[[_linear, ‘class A‘]]

41

\[ {}y^{\prime }+2 x y = 0 \]

[_separable]

42

\[ {}y^{\prime }+2 x y^{2} = 0 \]

[_separable]

43

\[ {}y^{\prime } = y \sin \left (x \right ) \]

[_separable]

44

\[ {}\left (x +1\right ) y^{\prime } = 4 y \]

[_separable]

46

\[ {}y^{\prime } = 3 \sqrt {x y} \]

[[_homogeneous, ‘class G‘]]

47

\[ {}y^{\prime } = 64^{{1}/{3}} \left (x y\right )^{{1}/{3}} \]

[[_homogeneous, ‘class G‘]]

49

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 2 y \]

[_separable]

50

\[ {}\left (x +1\right )^{2} y^{\prime } = \left (1+y\right )^{2} \]

[_separable]

51

\[ {}y^{\prime } = x y^{3} \]

[_separable]

57

\[ {}y^{\prime } = 1+x +y+x y \]

[_separable]

58

\[ {}x^{2} y^{\prime } = 1-x^{2}+y^{2}-x^{2} y^{2} \]

[_separable]

59

\[ {}y^{\prime } = y \,{\mathrm e}^{x} \]
i.c.

[_separable]

60

\[ {}y^{\prime } = 3 x^{2} \left (1+y^{2}\right ) \]
i.c.

[_separable]

62

\[ {}y^{\prime } = 4 x^{3} y-y \]
i.c.

[_separable]

63

\[ {}1+y^{\prime } = 2 y \]
i.c.

[_quadrature]

64

\[ {}\tan \left (x \right ) y^{\prime } = y \]
i.c.

[_separable]

65

\[ {}-y+y^{\prime } x = 2 x^{2} y \]
i.c.

[_separable]

66

\[ {}y^{\prime } = 2 x y^{2}+3 x^{2} y^{2} \]
i.c.

[_separable]

67

\[ {}y^{\prime } = 6 \,{\mathrm e}^{2 x -y} \]
i.c.

[_separable]

69

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

72

\[ {}y^{\prime } = y \sqrt {y^{2}-1} \]
i.c.

[_quadrature]

73

\[ {}y^{\prime }+y = 2 \]
i.c.

[_quadrature]

74

\[ {}y^{\prime }-2 y = 3 \,{\mathrm e}^{2 x} \]
i.c.

[[_linear, ‘class A‘]]

75

\[ {}y^{\prime }+3 y = 2 x \,{\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

76

\[ {}y^{\prime }-2 x y = {\mathrm e}^{x^{2}} \]

[_linear]

77

\[ {}y^{\prime } x +2 y = 3 x \]
i.c.

[_linear]

78

\[ {}y^{\prime } x +5 y = 7 x^{2} \]
i.c.

[_linear]

79

\[ {}2 y^{\prime } x +y = 10 \sqrt {x} \]

[_linear]

80

\[ {}3 y^{\prime } x +y = 12 x \]

[_linear]

81

\[ {}-y+y^{\prime } x = x \]
i.c.

[_linear]

82

\[ {}2 y^{\prime } x -3 y = 9 x^{3} \]

[_linear]

84

\[ {}y^{\prime } x +3 y = 2 x^{5} \]
i.c.

[_linear]

85

\[ {}y^{\prime }+y = {\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

86

\[ {}y^{\prime } x -3 y = x^{3} \]
i.c.

[_linear]

87

\[ {}y^{\prime }+2 x y = x \]
i.c.

[_separable]

88

\[ {}y^{\prime } = \left (1-y\right ) \cos \left (x \right ) \]
i.c.

[_separable]

90

\[ {}y^{\prime } x = 2 y+x^{3} \cos \left (x \right ) \]

[_linear]

92

\[ {}y^{\prime } = 1+x +y+x y \]
i.c.

[_separable]

93

\[ {}y^{\prime } x = 3 y+x^{4} \cos \left (x \right ) \]
i.c.

[_linear]

94

\[ {}y^{\prime } = 2 x y+3 x^{2} {\mathrm e}^{x^{2}} \]
i.c.

[_linear]

95

\[ {}y^{\prime } x +\left (2 x -3\right ) y = 4 x^{4} \]

[_linear]

96

\[ {}\left (x^{2}+4\right ) y^{\prime }+3 x y = x \]
i.c.

[_separable]

98

\[ {}\frac {1-4 x y^{2}}{x^{\prime }} = y^{3} \]

[_linear]

99

\[ {}\frac {x+y \,{\mathrm e}^{y}}{x^{\prime }} = 1 \]

[[_linear, ‘class A‘]]

100

\[ {}\frac {1+2 x y}{x^{\prime }} = y^{2}+1 \]

[_linear]

103

\[ {}y^{\prime }+p \left (x \right ) y = 0 \]

[_separable]

105

\[ {}\left (x +y\right ) y^{\prime } = x -y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

106

\[ {}2 x y y^{\prime } = x^{2}+2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

107

\[ {}y^{\prime } x = y+2 \sqrt {x y} \]

[[_homogeneous, ‘class A‘], _dAlembert]

108

\[ {}\left (x -y\right ) y^{\prime } = x +y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

109

\[ {}x \left (x +y\right ) y^{\prime } = \left (x -y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

110

\[ {}\left (x +2 y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

111

\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

112

\[ {}x^{2} y^{\prime } = x y+x^{2} {\mathrm e}^{\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

113

\[ {}x^{2} y^{\prime } = x y+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

114

\[ {}x y y^{\prime } = x^{2}+3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

115

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

116

\[ {}x y y^{\prime } = y^{2}+x \sqrt {4 x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

117

\[ {}y^{\prime } x = y+\sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

118

\[ {}y y^{\prime }+x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

119

\[ {}x \left (x +y\right ) y^{\prime }+y \left (3 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

120

\[ {}y^{\prime } = \sqrt {x +y+1} \]

[[_homogeneous, ‘class C‘], _dAlembert]

121

\[ {}y^{\prime } = \left (4 x +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

122

\[ {}\left (x +y\right ) y^{\prime } = 1 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

123

\[ {}x^{2} y^{\prime }+2 x y = 5 y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

125

\[ {}y^{\prime } = y+y^{3} \]

[_quadrature]

126

\[ {}x^{2} y^{\prime }+2 x y = 5 y^{4} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

127

\[ {}y^{\prime } x +6 y = 3 x y^{{4}/{3}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

128

\[ {}2 y^{\prime } x +y^{3} {\mathrm e}^{-2 x} = 2 x y \]

[_Bernoulli]

130

\[ {}3 y^{2} y^{\prime }+y^{3} = {\mathrm e}^{-x} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

131

\[ {}3 x y^{2} y^{\prime } = 3 x^{4}+y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

134

\[ {}\left ({\mathrm e}^{y}+x \right ) y^{\prime } = x \,{\mathrm e}^{-y}-1 \]

[[_1st_order, _with_linear_symmetries]]

135

\[ {}2 x +3 y+\left (3 x +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

136

\[ {}4 x -y+\left (6 y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

137

\[ {}3 x^{2}+2 y^{2}+\left (4 x y+6 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

146

\[ {}\frac {2 x^{{5}/{2}}-3 y^{{5}/{3}}}{2 x^{{5}/{2}} y^{{2}/{3}}}+\frac {\left (3 y^{{5}/{3}}-2 x^{{5}/{2}}\right ) y^{\prime }}{3 x^{{3}/{2}} y^{{5}/{3}}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

159

\[ {}y^{\prime } = f \left (a x +b y+c \right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

162

\[ {}y^{\prime } x -4 x^{2} y+2 y \ln \left (y\right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

163

\[ {}y^{\prime } = \frac {x -y-1}{x +y+3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

164

\[ {}y^{\prime } = \frac {2 y-x +7}{4 x -3 y-18} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

165

\[ {}y^{\prime } = \sin \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

166

\[ {}y^{\prime } = -\frac {y \left (2 x^{3}-y^{3}\right )}{x \left (2 y^{3}-x^{3}\right )} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

168

\[ {}y^{\prime }+2 x y = 1+x^{2}+y^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

171

\[ {}x^{\prime } = x-x^{2} \]
i.c.

[_quadrature]

172

\[ {}x^{\prime } = 10 x-x^{2} \]
i.c.

[_quadrature]

173

\[ {}x^{\prime } = 1-x^{2} \]
i.c.

[_quadrature]

174

\[ {}x^{\prime } = 9-4 x^{2} \]
i.c.

[_quadrature]

175

\[ {}x^{\prime } = 3 x \left (5-x\right ) \]
i.c.

[_quadrature]

176

\[ {}x^{\prime } = 3 x \left (5-x\right ) \]
i.c.

[_quadrature]

177

\[ {}x^{\prime } = 4 x \left (7-x\right ) \]
i.c.

[_quadrature]

178

\[ {}x^{\prime } = 7 x \left (x-13\right ) \]
i.c.

[_quadrature]

179

\[ {}x^{3}+3 y-y^{\prime } x = 0 \]

[_linear]

180

\[ {}x y^{2}+3 y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

181

\[ {}x y+y^{2}-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

183

\[ {}3 y+x^{4} y^{\prime } = 2 x y \]

[_separable]

184

\[ {}2 x y^{2}+x^{2} y^{\prime } = y^{2} \]

[_separable]

185

\[ {}2 x^{2} y+x^{3} y^{\prime } = 1 \]

[_linear]

186

\[ {}x^{2} y^{\prime }+2 x y = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

187

\[ {}y^{\prime } x +2 y = 6 x^{2} \sqrt {y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

188

\[ {}y^{\prime } = 1+x^{2}+y^{2}+x^{2} y^{2} \]

[_separable]

189

\[ {}x^{2} y^{\prime } = x y+3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

190

\[ {}6 x y^{3}+2 y^{4}+\left (9 x^{2} y^{2}+8 x y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

191

\[ {}4 x y^{2}+y^{\prime } = 5 x^{4} y^{2} \]

[_separable]

192

\[ {}x^{3} y^{\prime } = x^{2} y-y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

193

\[ {}y^{\prime }+3 y = 3 x^{2} {\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

194

\[ {}y^{\prime } = x^{2}-2 x y+y^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

196

\[ {}2 x^{2} y-x^{3} y^{\prime } = y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

197

\[ {}3 y^{2} x^{5}+x^{3} y^{\prime } = 2 y^{2} \]

[_separable]

198

\[ {}y^{\prime } x +3 y = \frac {3}{x^{{3}/{2}}} \]

[_linear]

200

\[ {}y^{\prime } x = 6 y+12 x^{4} y^{{2}/{3}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

202

\[ {}9 x^{2} y^{2}+x^{{3}/{2}} y^{\prime } = y^{2} \]

[_separable]

203

\[ {}2 y+\left (x +1\right ) y^{\prime } = 3 x +3 \]

[_linear]

204

\[ {}9 \sqrt {x}\, y^{{4}/{3}}-12 x^{{1}/{5}} y^{{3}/{2}}+\left (8 x^{{3}/{2}} y^{{1}/{3}}-15 x^{{6}/{5}} \sqrt {y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

205

\[ {}3 y+x^{3} y^{4}+3 y^{\prime } x = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

207

\[ {}\left (2 x +1\right ) y^{\prime }+y = \left (2 x +1\right )^{{3}/{2}} \]

[_linear]

208

\[ {}y^{\prime } = \sqrt {x +y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

209

\[ {}y^{\prime } = 3 \left (y+7\right ) x^{2} \]

[_separable]

210

\[ {}y^{\prime } = x y^{3}-x y \]

[_separable]

211

\[ {}y^{\prime } = -\frac {3 x^{2}+2 y^{2}}{4 x y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

212

\[ {}y^{\prime } = \frac {x +3 y}{y-3 x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

213

\[ {}y^{\prime } = \frac {2 x y+2 x}{x^{2}+1} \]

[_separable]

231

\[ {}y^{\prime }+y^{2} = 0 \]

[_quadrature]

662

\[ {}y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

664

\[ {}y^{\prime } = x -y \]

[[_linear, ‘class A‘]]

665

\[ {}y^{\prime } = -x +y+1 \]

[[_linear, ‘class A‘]]

666

\[ {}y^{\prime } = x -y+1 \]

[[_linear, ‘class A‘]]

667

\[ {}y^{\prime } = x^{2}-y \]

[[_linear, ‘class A‘]]

668

\[ {}y^{\prime } = -2+x^{2}-y \]

[[_linear, ‘class A‘]]

669

\[ {}y^{\prime } = 2 x^{2} y^{2} \]
i.c.

[_separable]

671

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

672

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

675

\[ {}y^{\prime } = \ln \left (1+y^{2}\right ) \]
i.c.

[_quadrature]

677

\[ {}y^{\prime }+2 x y = 0 \]

[_separable]

678

\[ {}y^{\prime }+2 x y^{2} = 0 \]

[_separable]

679

\[ {}y^{\prime } = y \sin \left (x \right ) \]

[_separable]

680

\[ {}\left (x +1\right ) y^{\prime } = 4 y \]

[_separable]

682

\[ {}y^{\prime } = 3 \sqrt {x y} \]

[[_homogeneous, ‘class G‘]]

683

\[ {}y^{\prime } = 4 \left (x y\right )^{{1}/{3}} \]

[[_homogeneous, ‘class G‘]]

685

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 2 y \]

[_separable]

686

\[ {}\left (x^{2}+1\right ) y^{\prime } = \left (1+y\right )^{2} \]

[_separable]

687

\[ {}y^{\prime } = x y^{3} \]

[_separable]

692

\[ {}y^{\prime } = 1+x +y+x y \]

[_separable]

693

\[ {}x^{2} y^{\prime } = 1-x^{2}+y^{2}-x^{2} y^{2} \]

[_separable]

694

\[ {}y^{\prime } = y \,{\mathrm e}^{x} \]
i.c.

[_separable]

695

\[ {}y^{\prime } = 3 x^{2} \left (1+y^{2}\right ) \]
i.c.

[_separable]

697

\[ {}y^{\prime } = 4 x^{3} y-y \]
i.c.

[_separable]

698

\[ {}1+y^{\prime } = 2 y \]
i.c.

[_quadrature]

699

\[ {}\tan \left (x \right ) y^{\prime } = y \]
i.c.

[_separable]

700

\[ {}-y+y^{\prime } x = 2 x^{2} y \]
i.c.

[_separable]

701

\[ {}y^{\prime } = 2 x y^{2}+3 x^{2} y^{2} \]
i.c.

[_separable]

702

\[ {}y^{\prime } = 6 \,{\mathrm e}^{2 x -y} \]
i.c.

[_separable]

704

\[ {}y^{\prime }+y = 2 \]
i.c.

[_quadrature]

705

\[ {}y^{\prime }-2 y = 3 \,{\mathrm e}^{2 x} \]
i.c.

[[_linear, ‘class A‘]]

706

\[ {}y^{\prime }+3 y = 2 x \,{\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

707

\[ {}y^{\prime }-2 x y = {\mathrm e}^{x^{2}} \]

[_linear]

708

\[ {}y^{\prime } x +2 y = 3 x \]
i.c.

[_linear]

709

\[ {}2 y^{\prime } x +y = 10 \sqrt {x} \]
i.c.

[_linear]

710

\[ {}2 y^{\prime } x +y = 10 \sqrt {x} \]

[_linear]

711

\[ {}3 y^{\prime } x +y = 12 x \]

[_linear]

712

\[ {}-y+y^{\prime } x = x \]
i.c.

[_linear]

713

\[ {}2 y^{\prime } x -3 y = 9 x^{3} \]

[_linear]

715

\[ {}y^{\prime } x +3 y = 2 x^{5} \]
i.c.

[_linear]

716

\[ {}y^{\prime }+y = {\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

717

\[ {}y^{\prime } x -3 y = x^{3} \]
i.c.

[_linear]

718

\[ {}y^{\prime }+2 x y = x \]
i.c.

[_separable]

719

\[ {}y^{\prime } = \left (1-y\right ) \cos \left (x \right ) \]
i.c.

[_separable]

721

\[ {}y^{\prime } x = 2 y+x^{3} \cos \left (x \right ) \]

[_linear]

723

\[ {}y^{\prime } = 1+x +y+x y \]
i.c.

[_separable]

724

\[ {}y^{\prime } x = 3 y+x^{4} \cos \left (x \right ) \]
i.c.

[_linear]

725

\[ {}y^{\prime } = 2 x y+3 x^{2} {\mathrm e}^{x^{2}} \]
i.c.

[_linear]

726

\[ {}y^{\prime } x +\left (2 x -3\right ) y = 4 x^{4} \]

[_linear]

727

\[ {}\left (x^{2}+4\right ) y^{\prime }+3 x y = x \]
i.c.

[_separable]

729

\[ {}\left (x +y\right ) y^{\prime } = x -y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

730

\[ {}2 x y y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

731

\[ {}y^{\prime } x = y+2 \sqrt {x y} \]

[[_homogeneous, ‘class A‘], _dAlembert]

732

\[ {}\left (x -y\right ) y^{\prime } = x +y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

733

\[ {}x \left (x +y\right ) y^{\prime } = \left (x -y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

734

\[ {}\left (x +2 y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

735

\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

736

\[ {}x^{2} y^{\prime } = x y+x^{2} {\mathrm e}^{\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

737

\[ {}x^{2} y^{\prime } = x y+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

738

\[ {}x y y^{\prime } = x^{2}+3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

739

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

740

\[ {}x y y^{\prime } = y^{2}+x \sqrt {4 x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

741

\[ {}y^{\prime } x = y+\sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

742

\[ {}y y^{\prime }+x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

743

\[ {}x \left (x +y\right ) y^{\prime }+y \left (3 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

744

\[ {}y^{\prime } = \sqrt {x +y+1} \]

[[_homogeneous, ‘class C‘], _dAlembert]

745

\[ {}y^{\prime } = \left (4 x +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

747

\[ {}x^{2} y^{\prime }+2 x y = 5 y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

749

\[ {}y^{\prime } = y+y^{3} \]

[_quadrature]

750

\[ {}x^{2} y^{\prime }+2 x y = 5 y^{4} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

751

\[ {}y^{\prime } x +6 y = 3 x y^{{4}/{3}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

752

\[ {}2 y^{\prime } x +y^{3} {\mathrm e}^{-2 x} = 2 x y \]

[_Bernoulli]

754

\[ {}3 y^{2} y^{\prime }+y^{3} = {\mathrm e}^{-x} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

755

\[ {}3 x y^{2} y^{\prime } = 3 x^{4}+y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

758

\[ {}\left ({\mathrm e}^{y}+x \right ) y^{\prime } = x \,{\mathrm e}^{-y}-1 \]

[[_1st_order, _with_linear_symmetries]]

759

\[ {}2 x +3 y+\left (3 x +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

760

\[ {}4 x -y+\left (6 y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

761

\[ {}3 x^{2}+2 y^{2}+\left (4 x y+6 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

770

\[ {}\frac {2 x^{{5}/{2}}-3 y^{{5}/{3}}}{2 x^{{5}/{2}} y^{{2}/{3}}}+\frac {\left (3 y^{{5}/{3}}-2 x^{{5}/{2}}\right ) y^{\prime }}{3 x^{{3}/{2}} y^{{5}/{3}}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

771

\[ {}x^{3}+3 y-y^{\prime } x = 0 \]

[_linear]

772

\[ {}x y^{2}+3 y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

773

\[ {}x y+y^{2}-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

775

\[ {}3 y+x^{4} y^{\prime } = 2 x y \]

[_separable]

776

\[ {}2 x y^{2}+x^{2} y^{\prime } = y^{2} \]

[_separable]

777

\[ {}2 x^{2} y+x^{3} y^{\prime } = 1 \]

[_linear]

778

\[ {}x^{2} y^{\prime }+2 x y = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

779

\[ {}y^{\prime } x +2 y = 6 x^{2} \sqrt {y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

780

\[ {}y^{\prime } = 1+x^{2}+y^{2}+x^{2} y^{2} \]

[_separable]

781

\[ {}x^{2} y^{\prime } = x y+3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

782

\[ {}6 x y^{3}+2 y^{4}+\left (9 x^{2} y^{2}+8 x y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

784

\[ {}x^{3} y^{\prime } = x^{2} y-y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

785

\[ {}y^{\prime }+3 y = 3 x^{2} {\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

786

\[ {}y^{\prime } = x^{2}-2 x y+y^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

788

\[ {}2 x^{2} y-x^{3} y^{\prime } = y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

789

\[ {}3 y^{2} x^{5}+x^{3} y^{\prime } = 2 y^{2} \]

[_separable]

790

\[ {}y^{\prime } x +3 y = \frac {3}{x^{{3}/{2}}} \]

[_linear]

792

\[ {}y^{\prime } x = 6 y+12 x^{4} y^{{2}/{3}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

794

\[ {}9 x^{2} y^{2}+x^{{3}/{2}} y^{\prime } = y^{2} \]

[_separable]

795

\[ {}2 y+\left (x +1\right ) y^{\prime } = 3 x +3 \]

[_linear]

797

\[ {}3 y+x^{3} y^{4}+3 y^{\prime } x = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

799

\[ {}\left (2 x +1\right ) y^{\prime }+y = \left (2 x +1\right )^{{3}/{2}} \]

[_linear]

800

\[ {}y^{\prime } = 3 \left (y+7\right ) x^{2} \]

[_separable]

801

\[ {}y^{\prime } = 3 \left (y+7\right ) x^{2} \]

[_separable]

802

\[ {}y^{\prime } = x y^{3}-x y \]

[_separable]

803

\[ {}y^{\prime } = \frac {-3 x^{2}-2 y^{2}}{4 x y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

804

\[ {}y^{\prime } = \frac {x +3 y}{y-3 x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

805

\[ {}y^{\prime } = \frac {2 x y+2 x}{x^{2}+1} \]

[_separable]

1065

\[ {}y^{\prime } = 1+y^{2} \]
i.c.

[_quadrature]

1098

\[ {}3 y+y^{\prime } = {\mathrm e}^{-2 t}+t \]

[[_linear, ‘class A‘]]

1099

\[ {}-2 y+y^{\prime } = {\mathrm e}^{2 t} t^{2} \]

[[_linear, ‘class A‘]]

1100

\[ {}y^{\prime }+y = 1+t \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

1102

\[ {}-2 y+y^{\prime } = 3 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

1104

\[ {}2 t y+y^{\prime } = 2 t \,{\mathrm e}^{-t^{2}} \]

[_linear]

1105

\[ {}4 t y+\left (t^{2}+1\right ) y^{\prime } = \frac {1}{\left (t^{2}+1\right )^{2}} \]

[_linear]

1106

\[ {}y+2 y^{\prime } = 3 t \]

[[_linear, ‘class A‘]]

1107

\[ {}-y+t y^{\prime } = t^{2} {\mathrm e}^{-t} \]

[_linear]

1109

\[ {}y+2 y^{\prime } = 3 t^{2} \]

[[_linear, ‘class A‘]]

1111

\[ {}2 y+y^{\prime } = t \,{\mathrm e}^{-2 t} \]
i.c.

[[_linear, ‘class A‘]]

1112

\[ {}2 y+t y^{\prime } = t^{2}-t +1 \]
i.c.

[_linear]

1114

\[ {}-2 y+y^{\prime } = {\mathrm e}^{2 t} \]
i.c.

[[_linear, ‘class A‘]]

1119

\[ {}-y+2 y^{\prime } = {\mathrm e}^{\frac {t}{3}} \]
i.c.

[[_linear, ‘class A‘]]

1120

\[ {}-2 y+3 y^{\prime } = {\mathrm e}^{-\frac {\pi t}{2}} \]
i.c.

[[_linear, ‘class A‘]]

1121

\[ {}\left (1+t \right ) y+t y^{\prime } = 2 t \,{\mathrm e}^{-t} \]
i.c.

[_linear]

1125

\[ {}\frac {2 y}{3}+y^{\prime } = 1-\frac {t}{2} \]

[[_linear, ‘class A‘]]

1128

\[ {}-\frac {3 y}{2}+y^{\prime } = 2 \,{\mathrm e}^{t}+3 t \]

[[_linear, ‘class A‘]]

1129

\[ {}y^{\prime } = \frac {x^{2}}{y} \]

[_separable]

1131

\[ {}\sin \left (x \right ) y^{2}+y^{\prime } = 0 \]

[_separable]

1134

\[ {}y^{\prime } x = \sqrt {1-y^{2}} \]

[_separable]

1137

\[ {}y^{\prime } = \left (1-2 x \right ) y^{2} \]
i.c.

[_separable]

1138

\[ {}y^{\prime } = \frac {1-2 x}{y} \]
i.c.

[_separable]

1140

\[ {}r^{\prime } = \frac {r^{2}}{x} \]
i.c.

[_separable]

1142

\[ {}y^{\prime } = \frac {x y^{2}}{\sqrt {x^{2}+1}} \]
i.c.

[_separable]

1143

\[ {}y^{\prime } = \frac {2 x}{1+2 y} \]
i.c.

[_separable]

1151

\[ {}y^{\prime } = 2 y^{2}+x y^{2} \]
i.c.

[_separable]

1154

\[ {}y^{\prime } = 2 \left (x +1\right ) \left (1+y^{2}\right ) \]
i.c.

[_separable]

1155

\[ {}y^{\prime } = \frac {t \left (4-y\right ) y}{3} \]

[_separable]

1156

\[ {}y^{\prime } = \frac {t y \left (4-y\right )}{1+t} \]

[_separable]

1157

\[ {}y^{\prime } = \frac {b +a y}{d +c y} \]

[_quadrature]

1158

\[ {}y^{\prime } = \frac {x^{2}+x y+y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1159

\[ {}y^{\prime } = \frac {x^{2}+3 y^{2}}{2 x y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1160

\[ {}y^{\prime } = \frac {4 y-3 x}{2 x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1161

\[ {}y^{\prime } = -\frac {4 x +3 y}{y+2 x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1162

\[ {}y^{\prime } = \frac {x +3 y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1163

\[ {}x^{2}+3 x y+y^{2}-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1164

\[ {}y^{\prime } = \frac {x^{2}-3 y^{2}}{2 x y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1165

\[ {}y^{\prime } = \frac {3 y^{2}-x^{2}}{2 x y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1167

\[ {}y+\left (t -4\right ) t y^{\prime } = 0 \]
i.c.

[_separable]

1169

\[ {}2 t y+\left (-t^{2}+4\right ) y^{\prime } = 3 t^{2} \]
i.c.

[_linear]

1170

\[ {}2 t y+\left (-t^{2}+4\right ) y^{\prime } = 3 t^{2} \]
i.c.

[_linear]

1174

\[ {}y^{\prime } = -\frac {4 t}{y} \]

[_separable]

1175

\[ {}y^{\prime } = 2 t y^{2} \]

[_separable]

1176

\[ {}y^{3}+y^{\prime } = 0 \]

[_quadrature]

1178

\[ {}y^{\prime } = t \left (3-y\right ) y \]

[_separable]

1179

\[ {}y^{\prime } = y \left (3-t y\right ) \]

[_Bernoulli]

1180

\[ {}y^{\prime } = -y \left (3-t y\right ) \]

[_Bernoulli]

1182

\[ {}y^{\prime } = a y+b y^{2} \]

[_quadrature]

1183

\[ {}y^{\prime } = y \left (-2+y\right ) \left (-1+y\right ) \]

[_quadrature]

1184

\[ {}y^{\prime } = -1+{\mathrm e}^{y} \]

[_quadrature]

1185

\[ {}y^{\prime } = -1+{\mathrm e}^{-y} \]

[_quadrature]

1186

\[ {}y^{\prime } = -\frac {2 \arctan \left (y\right )}{1+y^{2}} \]

[_quadrature]

1187

\[ {}y^{\prime } = -k \left (-1+y\right )^{2} \]

[_quadrature]

1188

\[ {}y^{\prime } = y^{2} \left (y^{2}-1\right ) \]

[_quadrature]

1189

\[ {}y^{\prime } = y \left (1-y^{2}\right ) \]

[_quadrature]

1190

\[ {}y^{\prime } = -b \sqrt {y}+a y \]

[_quadrature]

1191

\[ {}y^{\prime } = y^{2} \left (4-y^{2}\right ) \]

[_quadrature]

1192

\[ {}y^{\prime } = \left (1-y\right )^{2} y^{2} \]

[_quadrature]

1193

\[ {}3+2 x +\left (-2+2 y\right ) y^{\prime } = 0 \]

[_separable]

1194

\[ {}2 x +4 y+\left (2 x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1196

\[ {}2 y+2 x y^{2}+\left (2 x +2 x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

1197

\[ {}y^{\prime } = \frac {-a x -b y}{b x +c y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1198

\[ {}y^{\prime } = \frac {-a x +b y}{b x -c y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1204

\[ {}\frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

1205

\[ {}2 x -y+\left (-x +2 y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1211

\[ {}y^{\prime } = -1+{\mathrm e}^{2 x}+y \]

[[_linear, ‘class A‘]]

1213

\[ {}y+\left (-{\mathrm e}^{-2 y}+2 x y\right ) y^{\prime } = 0 \]

[[_1st_order, _with_exponential_symmetries]]

1217

\[ {}3 x y+y^{2}+\left (x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1218

\[ {}y^{\prime } = \frac {x^{3}-2 y}{x} \]

[_linear]

1221

\[ {}y^{\prime } = 3-6 x +y-2 x y \]

[_separable]

1230

\[ {}y^{\prime } = 1+2 x +y^{2}+2 x y^{2} \]

[_separable]

1231

\[ {}x +y+\left (x +2 y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1232

\[ {}\left (1+{\mathrm e}^{x}\right ) y^{\prime } = y-y \,{\mathrm e}^{x} \]

[_separable]

1234

\[ {}y^{\prime } = {\mathrm e}^{2 x}+3 y \]

[[_linear, ‘class A‘]]

1237

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

1243

\[ {}y^{\prime } x = {\mathrm e}^{\frac {y}{x}} x +y \]

[[_homogeneous, ‘class A‘], _dAlembert]

1245

\[ {}3 t +2 y = -t y^{\prime } \]

[_linear]

1246

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1247

\[ {}2 x y+3 y^{2}-\left (x^{2}+2 x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1248

\[ {}y^{\prime } = \frac {-3 x^{2} y-y^{2}}{2 x^{3}+3 x y} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1519

\[ {}y^{\prime } = 2 y \]

[_quadrature]

1520

\[ {}y^{\prime } x +y = x^{2} \]

[_linear]

1521

\[ {}y^{\prime }+2 x y = x \]

[_separable]

1522

\[ {}2 y^{\prime }+x \left (y^{2}-1\right ) = 0 \]

[_separable]

1523

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

[_separable]

1531

\[ {}y^{\prime } = \frac {x^{2}-2 x^{2} y+2}{x^{3}} \]
i.c.

[_linear]

1532

\[ {}y^{\prime } = x \left (1+y^{2}\right ) \]
i.c.

[_separable]

1533

\[ {}y^{\prime } = -\frac {y \left (1+y\right )}{x} \]
i.c.

[_separable]

1534

\[ {}y^{\prime } = a y^{\frac {a -1}{a}} \]

[_quadrature]

1536

\[ {}y^{\prime } = -\frac {x}{2}-1+\frac {\sqrt {x^{2}+4 x +4 y}}{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

1537

\[ {}y^{\prime }+a y = 0 \]

[_quadrature]

1538

\[ {}y^{\prime }+3 x^{2} y = 0 \]

[_separable]

1539

\[ {}y^{\prime } x +y \ln \left (x \right ) = 0 \]

[_separable]

1540

\[ {}y^{\prime } x +3 y = 0 \]

[_separable]

1541

\[ {}x^{2} y^{\prime }+y = 0 \]

[_separable]

1542

\[ {}y^{\prime }+\frac {\left (x +1\right ) y}{x} = 0 \]
i.c.

[_separable]

1543

\[ {}y^{\prime } x +\left (1+\frac {1}{\ln \left (x \right )}\right ) y = 0 \]
i.c.

[_separable]

1544

\[ {}y^{\prime } x +\left (1+x \cot \left (x \right )\right ) y = 0 \]
i.c.

[_separable]

1545

\[ {}y^{\prime }-\frac {2 x y}{x^{2}+1} = 0 \]
i.c.

[_separable]

1546

\[ {}y^{\prime }+\frac {k y}{x} = 0 \]
i.c.

[_separable]

1547

\[ {}y^{\prime }+\tan \left (k x \right ) y = 0 \]
i.c.

[_separable]

1548

\[ {}y^{\prime }+3 y = 1 \]

[_quadrature]

1550

\[ {}y^{\prime }+2 x y = x \,{\mathrm e}^{-x^{2}} \]

[_linear]

1552

\[ {}y^{\prime }+\frac {y}{x} = \frac {7}{x^{2}}+3 \]

[_linear]

1554

\[ {}y^{\prime } x +\left (2 x^{2}+1\right ) y = x^{3} {\mathrm e}^{-x^{2}} \]

[_linear]

1555

\[ {}y^{\prime } x +2 y = \frac {2}{x^{2}}+1 \]

[_linear]

1558

\[ {}\left (x -2\right ) \left (x -1\right ) y^{\prime }-\left (4 x -3\right ) y = \left (x -2\right )^{3} \]

[_linear]

1561

\[ {}y^{\prime }+7 y = {\mathrm e}^{3 x} \]
i.c.

[[_linear, ‘class A‘]]

1562

\[ {}\left (x^{2}+1\right ) y^{\prime }+4 x y = \frac {2}{x^{2}+1} \]
i.c.

[_linear]

1565

\[ {}y^{\prime }+\frac {y}{x} = \frac {2}{x^{2}}+1 \]
i.c.

[_linear]

1567

\[ {}y^{\prime } x +2 y = 8 x^{2} \]
i.c.

[_linear]

1568

\[ {}y^{\prime } x -2 y = -x^{2} \]
i.c.

[_linear]

1569

\[ {}y^{\prime }+2 x y = x \]
i.c.

[_separable]

1572

\[ {}\left (x^{2}-1\right ) y^{\prime }-2 x y = x \left (x^{2}-1\right ) \]
i.c.

[_linear]

1573

\[ {}y^{\prime } x -2 y = -1 \]
i.c.

[_separable]

1574

\[ {}\sec \left (y\right )^{2} y^{\prime }-3 \tan \left (y\right ) = -1 \]

[_quadrature]

1576

\[ {}\frac {x y^{\prime }}{y}+2 \ln \left (y\right ) = 4 x^{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1577

\[ {}\frac {y^{\prime }}{\left (1+y\right )^{2}}-\frac {1}{x \left (1+y\right )} = -\frac {3}{x^{2}} \]

[[_homogeneous, ‘class C‘], _rational, _Riccati]

1580

\[ {}y^{\prime } x +y^{2}+y = 0 \]

[_separable]

1582

\[ {}x^{2} y y^{\prime } = \left (y^{2}-1\right )^{{3}/{2}} \]

[_separable]

1583

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

[_separable]

1584

\[ {}\left (x^{2}+1\right ) y^{\prime }+x y = 0 \]

[_separable]

1585

\[ {}y^{\prime } = \left (x -1\right ) \left (-1+y\right ) \left (y-2\right ) \]

[_separable]

1586

\[ {}\left (-1+y\right )^{2} y^{\prime } = 2 x +3 \]

[_separable]

1588

\[ {}y^{\prime }+x \left (y^{2}+y\right ) = 0 \]
i.c.

[_separable]

1590

\[ {}y^{\prime }+\frac {\left (1+y\right ) \left (-1+y\right ) \left (y-2\right )}{x +1} = 0 \]
i.c.

[_separable]

1591

\[ {}y^{\prime }+2 x \left (1+y\right ) = 0 \]
i.c.

[_separable]

1592

\[ {}y^{\prime } = 2 x y \left (1+y^{2}\right ) \]
i.c.

[_separable]

1593

\[ {}y^{\prime } \left (x^{2}+2\right ) = 4 x \left (y^{2}+2 y+1\right ) \]

[_separable]

1594

\[ {}y^{\prime } = -2 x \left (y^{3}-3 y+2\right ) \]
i.c.

[_separable]

1595

\[ {}y^{\prime } = \frac {2 x}{1+2 y} \]
i.c.

[_separable]

1596

\[ {}y^{\prime } = 2 y-y^{2} \]
i.c.

[_quadrature]

1597

\[ {}x +y y^{\prime } = 0 \]
i.c.

[_separable]

1598

\[ {}y^{\prime }+x^{2} \left (1+y\right ) \left (y-2\right )^{2} = 0 \]

[_separable]

1599

\[ {}\left (x +1\right ) \left (x -2\right ) y^{\prime }+y = 0 \]
i.c.

[_separable]

1600

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

1601

\[ {}y^{\prime } \sqrt {-x^{2}+1}+\sqrt {1-y^{2}} = 0 \]

[_separable]

1603

\[ {}y^{\prime } = a y-b y^{2} \]
i.c.

[_quadrature]

1605

\[ {}y^{\prime } x -2 y = \frac {x^{6}}{y+x^{2}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1613

\[ {}y^{\prime } = 2 x y \]

[_separable]

1615

\[ {}y^{\prime } = \frac {2 x +3 y}{x -4 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1619

\[ {}y^{\prime } = \sqrt {x +y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

1620

\[ {}y^{\prime } = \frac {\tan \left (y\right )}{x -1} \]

[_separable]

1621

\[ {}y^{\prime } = y^{{2}/{5}} \]
i.c.

[_quadrature]

1624

\[ {}y^{\prime } = 3 x \left (-1+y\right )^{{1}/{3}} \]
i.c.

[_separable]

1625

\[ {}y^{\prime }-y = x y^{2} \]

[_Bernoulli]

1626

\[ {}y^{\prime } = \frac {y+x \,{\mathrm e}^{-\frac {y}{x}}}{x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

1628

\[ {}x^{2} y^{\prime } = y^{2}+x y-x^{2} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1638

\[ {}y^{\prime }-2 y = 2 \sqrt {y} \]
i.c.

[_quadrature]

1642

\[ {}y^{\prime } = \frac {x +y}{x} \]

[_linear]

1643

\[ {}y^{\prime } = \frac {y^{2}+2 x y}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1644

\[ {}x y^{3} y^{\prime } = y^{4}+x^{4} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1645

\[ {}y^{\prime } = \frac {y}{x}+\sec \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

1646

\[ {}x^{2} y^{\prime } = x^{2}+x y+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1647

\[ {}x y y^{\prime } = x^{2}+2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1648

\[ {}y^{\prime } = \frac {2 y^{2}+x^{2} {\mathrm e}^{-\frac {y^{2}}{x^{2}}}}{2 x y} \]

[[_homogeneous, ‘class A‘]]

1649

\[ {}y^{\prime } = \frac {x y+y^{2}}{x^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1650

\[ {}y^{\prime } = \frac {x^{3}+y^{3}}{x y^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1651

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1652

\[ {}y^{\prime } = \frac {y^{2}-3 x y-5 x^{2}}{x^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1653

\[ {}x^{2} y^{\prime } = 2 x^{2}+y^{2}+4 x y \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1654

\[ {}x y y^{\prime } = 3 x^{2}+4 y^{2} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1655

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1657

\[ {}y^{\prime } = \frac {y^{3}+2 x y^{2}+x^{2} y+x^{3}}{x \left (x +y\right )^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1658

\[ {}y^{\prime } = \frac {x +2 y}{y+2 x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1659

\[ {}y^{\prime } = \frac {y}{y-2 x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1660

\[ {}y^{\prime } = \frac {x y^{2}+2 y^{3}}{x^{3}+x^{2} y+x y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1661

\[ {}y^{\prime } = \frac {x^{3}+x^{2} y+3 y^{3}}{x^{3}+3 x y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1662

\[ {}x^{2} y^{\prime } = y^{2}+x y-4 x^{2} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1663

\[ {}x y y^{\prime } = x^{2}-x y+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1664

\[ {}y^{\prime } = \frac {2 y^{2}-x y+2 x^{2}}{x y+2 x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1665

\[ {}y^{\prime } = \frac {x^{2}+x y+y^{2}}{x y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1666

\[ {}y^{\prime } = \frac {-6 x +y-3}{2 x -y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1667

\[ {}y^{\prime } = \frac {2 x +y+1}{x +2 y-4} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1668

\[ {}y^{\prime } = \frac {-x +3 y-14}{x +y-2} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1669

\[ {}3 x y^{2} y^{\prime } = y^{3}+x \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1670

\[ {}x y y^{\prime } = 3 x^{6}+6 y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1671

\[ {}x^{3} y^{\prime } = 2 y^{2}+2 x^{2} y-2 x^{4} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

1672

\[ {}y^{\prime } = y^{2} {\mathrm e}^{-x}+4 y+2 \,{\mathrm e}^{x} \]

[[_1st_order, _with_linear_symmetries], _Riccati]

1675

\[ {}2 x \left (y+2 \sqrt {x}\right ) y^{\prime } = \left (y+\sqrt {x}\right )^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1677

\[ {}y^{\prime }+\frac {2 y}{x} = \frac {3 x^{2} y^{2}+6 x y+2}{x^{2} \left (2 x y+3\right )} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1678

\[ {}y^{\prime }+\frac {3 y}{x} = \frac {3 x^{4} y^{2}+10 x^{2} y+6}{x^{3} \left (2 x^{2} y+5\right )} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1679

\[ {}y^{\prime } = 1+x -\left (2 x +1\right ) y+x y^{2} \]

[_Riccati]

1680

\[ {}6 x^{2} y^{2}+4 x^{3} y y^{\prime } = 0 \]

[_separable]

1682

\[ {}14 y^{3} x^{2}+21 x^{2} y^{2} y^{\prime } = 0 \]

[_quadrature]

1685

\[ {}4 x +7 y+\left (3 x +4 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1687

\[ {}2 x +y+\left (2 y+2 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1692

\[ {}\frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

1695

\[ {}{\mathrm e}^{x y} \left (x^{4} y+4 x^{3}\right )+3 y+\left (x^{5} {\mathrm e}^{x y}+3 x \right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1701

\[ {}\left (2 x -1\right ) \left (-1+y\right )+\left (x +2\right ) \left (x -3\right ) y^{\prime } = 0 \]
i.c.

[_separable]

1702

\[ {}7 x +4 y+\left (4 x +3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1707

\[ {}x^{2}+y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

1710

\[ {}y^{\prime }+2 x y = -\frac {{\mathrm e}^{-x^{2}} \left (3 x +2 y \,{\mathrm e}^{x^{2}}\right )}{2 x +3 y \,{\mathrm e}^{x^{2}}} \]
i.c.

[[_Abel, ‘2nd type‘, ‘class B‘]]

1711

\[ {}y+\left (2 x +\frac {1}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1712

\[ {}-y^{2}+x^{2} y^{\prime } = 0 \]

[_separable]

1713

\[ {}y-y^{\prime } x = 0 \]

[_separable]

1714

\[ {}3 x^{2} y+2 x^{3} y^{\prime } = 0 \]

[_separable]

1715

\[ {}2 y^{3}+3 y^{2} y^{\prime } = 0 \]

[_quadrature]

1718

\[ {}27 x y^{2}+8 y^{3}+\left (18 x^{2} y+12 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1722

\[ {}x^{2} y+4 x y+2 y+\left (x^{2}+x \right ) y^{\prime } = 0 \]

[_separable]

1723

\[ {}-y+\left (x^{4}-x \right ) y^{\prime } = 0 \]

[_separable]

1726

\[ {}y \sin \left (y\right )+x \left (\sin \left (y\right )-y \cos \left (y\right )\right ) y^{\prime } = 0 \]

[_separable]

1729

\[ {}2 y+3 \left (x^{2}+y^{3} x^{2}\right ) y^{\prime } = 0 \]

[_separable]

1731

\[ {}x^{4} y^{4}+x^{5} y^{3} y^{\prime } = 0 \]

[_separable]

1733

\[ {}x^{4} y^{3}+y+\left (y^{2} x^{5}-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1735

\[ {}12 x y+6 y^{3}+\left (9 x^{2}+10 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1736

\[ {}3 x^{2} y^{2}+2 y+2 y^{\prime } x = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1792

\[ {}y^{\prime }+y^{2}+k^{2} = 0 \]

[_quadrature]

1793

\[ {}y^{\prime }+y^{2}-3 y+2 = 0 \]

[_quadrature]

1794

\[ {}y^{\prime }+y^{2}+5 y-6 = 0 \]

[_quadrature]

1795

\[ {}y^{\prime }+y^{2}+8 y+7 = 0 \]

[_quadrature]

1796

\[ {}y^{\prime }+y^{2}+14 y+50 = 0 \]

[_quadrature]

1797

\[ {}6 y^{\prime }+6 y^{2}-y-1 = 0 \]

[_quadrature]

1798

\[ {}36 y^{\prime }+36 y^{2}-12 y+1 = 0 \]

[_quadrature]

1800

\[ {}y^{\prime }+y^{2}+4 x y+4 x^{2}+2 = 0 \]

[[_homogeneous, ‘class C‘], _Riccati]

1801

\[ {}\left (2 x +1\right ) \left (y^{\prime }+y^{2}\right )-2 y-2 x -3 = 0 \]

[_rational, _Riccati]

1802

\[ {}\left (3 x -1\right ) \left (y^{\prime }+y^{2}\right )-\left (3 x +2\right ) y-6 x +8 = 0 \]

[_rational, _Riccati]

1804

\[ {}x^{2} \left (y^{\prime }+y^{2}\right )-7 x y+7 = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

2299

\[ {}\cos \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

2300

\[ {}\sqrt {t}\, \sin \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

2304

\[ {}t^{2} y+y^{\prime } = t^{2} \]

[_separable]

2306

\[ {}\sqrt {t^{2}+1}\, y+y^{\prime } = 0 \]
i.c.

[_separable]

2307

\[ {}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0 \]

[_separable]

2308

\[ {}-2 t y+y^{\prime } = t \]
i.c.

[_separable]

2313

\[ {}4 t y+\left (t^{2}+1\right ) y^{\prime } = t \]
i.c.

[_separable]

2318

\[ {}\left (t^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

2319

\[ {}y^{\prime } = \left (1+t \right ) \left (y+1\right ) \]

[_separable]

2320

\[ {}y^{\prime } = 1-t +y^{2}-t y^{2} \]

[_separable]

2321

\[ {}y^{\prime } = {\mathrm e}^{3+t +y} \]

[_separable]

2325

\[ {}\sqrt {t^{2}+1}\, y^{\prime } = \frac {t y^{3}}{\sqrt {t^{2}+1}} \]
i.c.

[_separable]

2328

\[ {}y^{\prime } = k \left (a -y\right ) \left (b -y\right ) \]
i.c.

[_quadrature]

2330

\[ {}t y^{\prime } = y+\sqrt {t^{2}+y^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2331

\[ {}2 t y y^{\prime } = 3 y^{2}-t^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2332

\[ {}\left (t -\sqrt {t y}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2333

\[ {}y^{\prime } = \frac {y+t}{t -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2334

\[ {}{\mathrm e}^{\frac {t}{y}} \left (y-t \right ) y^{\prime }+y \left (1+{\mathrm e}^{\frac {t}{y}}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2335

\[ {}y^{\prime } = \frac {t +y+1}{t -y+3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2336

\[ {}1+t -2 y+\left (4 t -3 y-6\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2337

\[ {}t +2 y+3+\left (2 t +4 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2341

\[ {}\frac {y^{2}}{2}-2 \,{\mathrm e}^{t} y+\left (-{\mathrm e}^{t}+y\right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class A‘]]

2342

\[ {}2 t y^{3}+3 t^{2} y^{2} y^{\prime } = 0 \]
i.c.

[_separable]

2346

\[ {}3 t y+y^{2}+\left (t y+t^{2}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2355

\[ {}y^{\prime } = {\mathrm e}^{\left (y-t \right )^{2}} \]
i.c.

[[_homogeneous, ‘class C‘], _dAlembert]

2472

\[ {}\cos \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

2473

\[ {}\sqrt {t}\, \sin \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

2477

\[ {}t^{2} y+y^{\prime } = t^{2} \]

[_separable]

2479

\[ {}\sqrt {t^{2}+1}\, y+y^{\prime } = 0 \]
i.c.

[_separable]

2480

\[ {}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0 \]
i.c.

[_separable]

2482

\[ {}-2 t y+y^{\prime } = t \]
i.c.

[_separable]

2489

\[ {}\left (t^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

2490

\[ {}y^{\prime } = \left (1+t \right ) \left (y+1\right ) \]

[_separable]

2491

\[ {}y^{\prime } = 1-t +y^{2}-t y^{2} \]

[_separable]

2492

\[ {}y^{\prime } = {\mathrm e}^{3+t +y} \]

[_separable]

2499

\[ {}y^{\prime } = k \left (a -y\right ) \left (b -y\right ) \]
i.c.

[_quadrature]

2501

\[ {}y^{\prime } = \frac {2 y}{t}+\frac {y^{2}}{t^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2502

\[ {}t y^{\prime } = y+\sqrt {t^{2}+y^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2503

\[ {}2 t y y^{\prime } = 3 y^{2}-t^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2504

\[ {}\left (t -\sqrt {t y}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2505

\[ {}y^{\prime } = \frac {y+t}{t -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2506

\[ {}{\mathrm e}^{\frac {t}{y}} \left (y-t \right ) y^{\prime }+y \left (1+{\mathrm e}^{\frac {t}{y}}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2507

\[ {}y^{\prime } = \frac {t +y+1}{t -y+3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2508

\[ {}1+t -2 y+\left (4 t -3 y-6\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2509

\[ {}t +2 y+3+\left (2 t +4 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2513

\[ {}\frac {y^{2}}{2}-2 \,{\mathrm e}^{t} y+\left (-{\mathrm e}^{t}+y\right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class A‘]]

2514

\[ {}2 t y^{3}+3 t^{2} y^{2} y^{\prime } = 0 \]
i.c.

[_separable]

2518

\[ {}3 t y+y^{2}+\left (t y+t^{2}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2519

\[ {}y^{\prime } = 2 t \left (y+1\right ) \]
i.c.

[_separable]

2530

\[ {}y^{\prime } = {\mathrm e}^{\left (y-t \right )^{2}} \]
i.c.

[[_homogeneous, ‘class C‘], _dAlembert]

2542

\[ {}y^{\prime } = t y^{3}-y \]
i.c.

[_Bernoulli]

2809

\[ {}x^{\prime } = x \left (-x+1\right ) \]

[_quadrature]

2810

\[ {}x^{\prime } = -x \left (-x+1\right ) \]

[_quadrature]

2811

\[ {}x^{\prime } = x^{2} \]

[_quadrature]

2841

\[ {}\left (x^{2}+1\right ) y^{\prime }+x y = 0 \]

[_separable]

2842

\[ {}x y^{2}+x +\left (y-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

2843

\[ {}1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

2844

\[ {}y^{\prime } x +y = 0 \]

[_separable]

2845

\[ {}y^{\prime } = 2 x y \]

[_separable]

2848

\[ {}\left (x +1\right ) y^{\prime }-1+y = 0 \]

[_separable]

2849

\[ {}\tan \left (x \right ) y^{\prime }-y = 1 \]

[_separable]

2850

\[ {}y+3+\cot \left (x \right ) y^{\prime } = 0 \]

[_separable]

2851

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

2853

\[ {}y^{\prime } x +y = y^{2} \]

[_separable]

2857

\[ {}x y+\sqrt {x^{2}+1}\, y^{\prime } = 0 \]

[_separable]

2858

\[ {}y = x y+x^{2} y^{\prime } \]

[_separable]

2860

\[ {}y^{2}+y y^{\prime }+x^{2} y y^{\prime }-1 = 0 \]

[_separable]

2861

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

2862

\[ {}y^{\prime } x +2 y = 0 \]
i.c.

[_separable]

2864

\[ {}x^{2} y^{\prime }+y^{2} = 0 \]
i.c.

[_separable]

2865

\[ {}y^{\prime } = {\mathrm e}^{y} \]
i.c.

[_quadrature]

2866

\[ {}{\mathrm e}^{y} \left (y^{\prime }+1\right ) = 1 \]
i.c.

[_quadrature]

2867

\[ {}1+y^{2} = \frac {y^{\prime }}{x^{3} \left (x -1\right )} \]
i.c.

[_separable]

2869

\[ {}\left (x^{2}+x +1\right ) y^{\prime } = y^{2}+2 y+5 \]
i.c.

[_separable]

2870

\[ {}\left (x^{2}-2 x -8\right ) y^{\prime } = y^{2}+y-2 \]
i.c.

[_separable]

2871

\[ {}x +y = y^{\prime } x \]

[_linear]

2872

\[ {}\left (x +y\right ) y^{\prime }+x = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2873

\[ {}-y+y^{\prime } x = \sqrt {x y} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2874

\[ {}y^{\prime } = \frac {2 x -y}{x +4 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2875

\[ {}-y+y^{\prime } x = \sqrt {x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2876

\[ {}x +y y^{\prime } = 2 y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2877

\[ {}y^{\prime } x -y+\sqrt {y^{2}-x^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2878

\[ {}x^{2}+y^{2} = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2879

\[ {}\left (x y-x^{2}\right ) y^{\prime }-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2880

\[ {}y^{\prime } x +y = 2 \sqrt {x y} \]

[[_homogeneous, ‘class A‘], _dAlembert]

2881

\[ {}x +y+\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2882

\[ {}y \left (x^{2}-x y+y^{2}\right )+x y^{\prime } \left (x^{2}+x y+y^{2}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2883

\[ {}y^{\prime } x -y-x \sin \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2884

\[ {}y^{\prime } = \frac {y}{x}+\cosh \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

2885

\[ {}x^{2}+y^{2} = 2 x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2886

\[ {}\left (\frac {x}{y}+\frac {y}{x}\right ) y^{\prime }+1 = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2887

\[ {}x \,{\mathrm e}^{\frac {y}{x}}+y = y^{\prime } x \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

2888

\[ {}y^{\prime } = \frac {x +y}{x -y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2889

\[ {}y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right ) \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

2890

\[ {}\left (3 x y-2 x^{2}\right ) y^{\prime } = 2 y^{2}-x y \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2892

\[ {}y^{2} \left (y y^{\prime }-x \right )+x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2893

\[ {}y^{\prime } = \frac {y}{x}+\tanh \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

2894

\[ {}x +y-\left (x -y+2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2895

\[ {}x +\left (x -2 y+2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

2896

\[ {}2 x -y+1+\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2897

\[ {}x -y+2+\left (x +y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2898

\[ {}x -y+\left (-x +y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2899

\[ {}y^{\prime } = \frac {x +y-1}{x -y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2900

\[ {}x +y+\left (2 x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2901

\[ {}x -y+1+\left (x -y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2902

\[ {}x +2 y+\left (3 x +6 y+3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2903

\[ {}x +2 y+2 = \left (2 x +y-1\right ) y^{\prime } \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2904

\[ {}3 x -y+1+\left (x -3 y-5\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2905

\[ {}6 x -3 y+6+\left (2 x -y+5\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2907

\[ {}x +y+4 = \left (2 x +2 y-1\right ) y^{\prime } \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2908

\[ {}2 x +3 y-1+\left (2 x +3 y+2\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2909

\[ {}3 x -y+2+\left (x +2 y+1\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2910

\[ {}3 x +2 y+3-\left (x +2 y-1\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2911

\[ {}x -2 y+3+\left (1-x +2 y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2913

\[ {}2 x +y+\left (4 x -2 y+1\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2914

\[ {}x +y+\left (x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2915

\[ {}3 x +y+\left (x +3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2916

\[ {}a_{1} x +b_{1} y+c_{1} +\left (b_{1} x +b_{2} y+c_{2} \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2919

\[ {}2 x y-\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2922

\[ {}y \,{\mathrm e}^{x}-2 x +{\mathrm e}^{x} y^{\prime } = 0 \]

[[_linear, ‘class A‘]]

2925

\[ {}\frac {2}{y}-\frac {y}{x^{2}}+\left (\frac {1}{x}-\frac {2 x}{y^{2}}\right ) y^{\prime } = 0 \]

[_separable]

2927

\[ {}\frac {y \left (2+x^{3} y\right )}{x^{3}} = \frac {\left (1-2 x^{3} y\right ) y^{\prime }}{x^{2}} \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2929

\[ {}\frac {2 y}{x^{3}}+\frac {2 x}{y^{2}} = \left (\frac {1}{x^{2}}+\frac {2 x^{2}}{y^{3}}\right ) y^{\prime } \]

[[_homogeneous, ‘class G‘], _exact, _rational]

2934

\[ {}\frac {x^{2}+3 y^{2}}{x \left (3 x^{2}+4 y^{2}\right )}+\frac {\left (2 x^{2}+y^{2}\right ) y^{\prime }}{y \left (3 x^{2}+4 y^{2}\right )} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

2935

\[ {}\frac {x^{2}-y^{2}}{x \left (2 x^{2}+y^{2}\right )}+\frac {\left (x^{2}+2 y^{2}\right ) y^{\prime }}{y \left (2 x^{2}+y^{2}\right )} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

2937

\[ {}y^{\prime } x +\ln \left (x \right )-y = 0 \]

[_linear]

2938

\[ {}x y+\left (y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2939

\[ {}\left (x -2 x y\right ) y^{\prime }+2 y = 0 \]

[_separable]

2940

\[ {}x^{2} y+y^{2}+x^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2941

\[ {}x y^{3}-1+x^{2} y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2942

\[ {}\left (x^{3} y^{3}-1\right ) y^{\prime }+x^{2} y^{4} = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2943

\[ {}y \left (y-x^{2}\right )+x^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2944

\[ {}y+x y^{2}+\left (x -x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2946

\[ {}2 x y+\left (y-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2947

\[ {}y = x \left (x^{2} y-1\right ) y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2948

\[ {}{\mathrm e}^{x} y^{\prime } = 2 x y^{2}+y \,{\mathrm e}^{x} \]

[_Bernoulli]

2950

\[ {}\left (2 x +3 x^{2} y\right ) y^{\prime }+y+2 x y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2952

\[ {}y \left (1-x^{4} y^{2}\right )+y^{\prime } x = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2953

\[ {}y \left (x^{2}-1\right )+x \left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

2954

\[ {}x^{2} y^{2}-y+\left (2 x^{3} y+x \right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2957

\[ {}y \left (x +y^{2}\right )+x \left (x -y^{2}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational]

2958

\[ {}y^{\prime } x +2 y = x^{2} \]

[_linear]

2960

\[ {}y^{\prime }+2 x y = 2 x \,{\mathrm e}^{-x^{2}} \]

[_linear]

2961

\[ {}y^{\prime } = y+3 x^{2} {\mathrm e}^{x} \]

[[_linear, ‘class A‘]]

2962

\[ {}x^{\prime }+x = {\mathrm e}^{-y} \]

[[_linear, ‘class A‘]]

2964

\[ {}y+\left (2 x -3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2965

\[ {}y^{\prime } x -2 x^{4}-2 y = 0 \]

[_linear]

2966

\[ {}1 = \left ({\mathrm e}^{y}+x \right ) y^{\prime } \]

[[_1st_order, _with_exponential_symmetries]]

2967

\[ {}y^{2} x^{\prime }+\left (y^{2}+2 y \right ) x = 1 \]

[_linear]

2968

\[ {}y^{\prime } x = 5 y+x +1 \]

[_linear]

2969

\[ {}x^{2} y^{\prime }+y-2 x y-2 x^{2} = 0 \]

[_linear]

2972

\[ {}2 y = \left (y^{4}+x \right ) y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational]

2975

\[ {}y x^{\prime } = 2 y \,{\mathrm e}^{3 y}+x \left (3 y +2\right ) \]

[_linear]

2980

\[ {}y+2 \left (x -2 y^{2}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational]

2986

\[ {}x y y^{\prime } = x^{2}-y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2988

\[ {}t x^{\prime }+x \left (1-x^{2} t^{4}\right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2989

\[ {}x^{2} y^{\prime }+y^{2} = x y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2992

\[ {}y^{\prime } x +y = y^{2} x^{2} \cos \left (x \right ) \]

[_Bernoulli]

2994

\[ {}y^{\prime } x +2 y = 3 x^{3} y^{{4}/{3}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3000

\[ {}y^{\prime } = x \left (1-{\mathrm e}^{2 y-x^{2}}\right ) \]
i.c.

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

3001

\[ {}2 y = \left (x^{2} y^{4}+x \right ) y^{\prime } \]
i.c.

[[_homogeneous, ‘class G‘], _rational]

3004

\[ {}\left (1-x \right ) y^{\prime }-1-y = 0 \]

[_separable]

3005

\[ {}y^{2}+\left (x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3006

\[ {}2 x +y-\left (x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3008

\[ {}x -2 y+1+\left (y-2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3010

\[ {}2 \,{\mathrm e}^{x}-t^{2}+t \,{\mathrm e}^{x} x^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries]]

3011

\[ {}6+2 y = x y y^{\prime } \]

[_separable]

3012

\[ {}x -3 y = \left (3 y-x +2\right ) y^{\prime } \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3014

\[ {}x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3015

\[ {}y-y^{\prime } x = 2 y^{\prime }+2 y^{2} \]

[_separable]

3016

\[ {}\tan \left (y\right ) = \left (3 x +4\right ) y^{\prime } \]

[_separable]

3018

\[ {}2 x y+y^{4}+\left (x y^{3}-2 x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

3019

\[ {}y+\left (3 x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3020

\[ {}r^{\prime } = r \cot \left (\theta \right ) \]

[_separable]

3021

\[ {}\left (3 x +4 y\right ) y^{\prime }+y+2 x = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3023

\[ {}y^{\prime } x -y-\sqrt {x^{2}+y^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3025

\[ {}x +y+\left (2 x +3 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3026

\[ {}1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

3030

\[ {}2 y^{\prime } x -y+\frac {x^{2}}{y^{2}} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3031

\[ {}y^{\prime } x +y \left (1+y^{2}\right ) = 0 \]

[_separable]

3032

\[ {}y \sqrt {x^{2}+y^{2}}+x y = x^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _dAlembert]

3036

\[ {}y \cos \left (\frac {x}{y}\right )-\left (y+x \cos \left (\frac {x}{y}\right )\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

3037

\[ {}y \left (3 x^{2}+y\right )-x \left (x^{2}-y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3038

\[ {}x +\left (2 x +3 y+2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

3039

\[ {}y^{\prime } x -5 y-x \sqrt {y} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3041

\[ {}x y-y^{2}-x^{2} y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3044

\[ {}y^{\prime } x -2 y-2 x^{4} y^{3} = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3045

\[ {}\left (-2 x^{2}-3 x y\right ) y^{\prime }+y^{2} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3046

\[ {}y^{\prime } x = x^{4}+4 y \]
i.c.

[_linear]

3047

\[ {}y^{\prime } x +y = x^{3} y^{6} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3048

\[ {}x^{\prime } = x+x^{2} {\mathrm e}^{\theta } \]
i.c.

[[_1st_order, _with_linear_symmetries], _Bernoulli]

3049

\[ {}x^{2}+y^{2} = 2 x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3050

\[ {}3 x y+\left (3 x^{2}+y^{2}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3051

\[ {}y^{\prime }+2 y = 3 \,{\mathrm e}^{2 x} \]
i.c.

[[_linear, ‘class A‘]]

3052

\[ {}4 x y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

3053

\[ {}x -2 y+3 = \left (x -2 y+1\right ) y^{\prime } \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3054

\[ {}y^{2}+\left (x^{3}-2 x y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3056

\[ {}y^{3}+2 x^{2} y+\left (-3 x^{3}-2 x y^{2}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3057

\[ {}2 \left (x^{2}+1\right ) y^{\prime } = \left (2 y^{2}-1\right ) x y \]
i.c.

[_separable]

3058

\[ {}y^{\prime }-y = 0 \]

[_quadrature]

3285

\[ {}4 y^{2} = {y^{\prime }}^{2} x^{2} \]

[_separable]

3286

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

[_quadrature]

3291

\[ {}y^{2} {y^{\prime }}^{2}+x y y^{\prime }-2 x^{2} = 0 \]

[_separable]

3293

\[ {}{y^{\prime }}^{3}+\left (x +y-2 x y\right ) {y^{\prime }}^{2}-2 y^{\prime } x y \left (x +y\right ) = 0 \]

[_quadrature]

3294

\[ {}{y^{\prime }}^{2} y+\left (y^{2}-x^{3}-x y^{2}\right ) y^{\prime }-x y \left (x^{2}+y^{2}\right ) = 0 \]

[_quadrature]

3296

\[ {}y = x +3 \ln \left (y^{\prime }\right ) \]

[_separable]

3310

\[ {}x = y-{y^{\prime }}^{3} \]

[[_homogeneous, ‘class C‘], _dAlembert]

3320

\[ {}{y^{\prime }}^{3}+x y y^{\prime } = 2 y^{2} \]

[[_1st_order, _with_linear_symmetries]]

3328

\[ {}y = y^{\prime } x +\ln \left (y^{\prime }\right ) \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

3331

\[ {}y = y^{\prime } x +{\mathrm e}^{y^{\prime }} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

3334

\[ {}y^{2}-2 x y y^{\prime }+{y^{\prime }}^{2} \left (x^{2}-1\right ) = 0 \]

[_separable]

3409

\[ {}y^{\prime } = x y \]

[_separable]

3410

\[ {}y^{\prime } = x^{2} y^{2} \]

[_separable]

3411

\[ {}y^{\prime } = -x \,{\mathrm e}^{y} \]

[_separable]

3413

\[ {}y^{\prime } x = \sqrt {1-y^{2}} \]

[_separable]

3414

\[ {}{y^{\prime }}^{2}-y^{2} = 0 \]

[_quadrature]

3425

\[ {}y^{\prime } = 2 y-4 \]
i.c.

[_quadrature]

3426

\[ {}y^{\prime } = -y^{3} \]
i.c.

[_quadrature]

3427

\[ {}y^{\prime } = \frac {{\mathrm e}^{t}}{y} \]
i.c.

[_separable]

3431

\[ {}y^{\prime } = \frac {y}{t} \]

[_separable]

3432

\[ {}y^{\prime } = -\frac {t}{y} \]

[_separable]

3433

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

3434

\[ {}y^{\prime } = -1+y \]

[_quadrature]

3435

\[ {}y^{\prime } = 1-y \]

[_quadrature]

3436

\[ {}y^{\prime } = y^{3}-y^{2} \]

[_quadrature]

3437

\[ {}y^{\prime } = 1-y^{2} \]

[_quadrature]

3438

\[ {}y^{\prime } = \left (t^{2}+1\right ) y \]

[_separable]

3439

\[ {}y^{\prime } = -y \]

[_quadrature]

3440

\[ {}y^{\prime } = 2 y+{\mathrm e}^{-3 t} \]

[[_linear, ‘class A‘]]

3441

\[ {}y^{\prime } = 2 y+{\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

3442

\[ {}y^{\prime } = t -y \]

[[_linear, ‘class A‘]]

3445

\[ {}y^{\prime } = \frac {2 t y}{t^{2}+1}+t +1 \]

[_linear]

3447

\[ {}y^{\prime } = y \]
i.c.

[_quadrature]

3448

\[ {}y^{\prime } = 2 y \]
i.c.

[_quadrature]

3449

\[ {}t y^{\prime } = y+t^{3} \]
i.c.

[_linear]

3451

\[ {}y^{\prime } = \frac {2 y}{1+t} \]
i.c.

[_separable]

3452

\[ {}t y^{\prime } = -y+t^{3} \]
i.c.

[_linear]

3453

\[ {}y^{\prime }+4 \tan \left (2 t \right ) y = \tan \left (2 t \right ) \]
i.c.

[_separable]

3457

\[ {}y^{\prime }-x y^{3} = 0 \]

[_separable]

3458

\[ {}\frac {y^{\prime }}{\tan \left (x \right )}-\frac {y}{x^{2}+1} = 0 \]

[_separable]

3459

\[ {}x^{2} y^{\prime }+x y^{2} = 4 y^{2} \]

[_separable]

3461

\[ {}2 y^{\prime } x +3 x +y = 0 \]

[_linear]

3463

\[ {}\left (-x^{2}+1\right ) y^{\prime }+4 x y = \left (-x^{2}+1\right )^{{3}/{2}} \]

[_linear]

3465

\[ {}\left (y^{3}+x \right ) y^{\prime } = y \]

[[_homogeneous, ‘class G‘], _rational]

3467

\[ {}\left (y-x \right ) y^{\prime }+2 x +3 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3468

\[ {}y^{\prime } = \frac {1}{x +2 y+1} \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

3469

\[ {}y^{\prime } = -\frac {x +y}{3 x +3 y-4} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3471

\[ {}x \left (1-2 x^{2} y\right ) y^{\prime }+y = 3 x^{2} y^{2} \]
i.c.

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3472

\[ {}y^{\prime }+\frac {x y}{a^{2}+x^{2}} = x \]

[_linear]

3473

\[ {}y^{\prime } = \frac {4 y^{2}}{x^{2}}-y^{2} \]

[_separable]

3474

\[ {}y^{\prime }-\frac {y}{x} = 1 \]
i.c.

[_linear]

3476

\[ {}y^{\prime }-\frac {y^{2}}{x^{2}} = {\frac {1}{4}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3477

\[ {}y^{\prime }-\frac {y^{2}}{x^{2}} = {\frac {1}{4}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3479

\[ {}\left (5 x +y-7\right ) y^{\prime } = 3 x +3 y+3 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3480

\[ {}y^{\prime } x +y-\frac {y^{2}}{x^{{3}/{2}}} = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3515

\[ {}y^{\prime } = 2 x y \]

[_separable]

3516

\[ {}y^{\prime } = \frac {y^{2}}{x^{2}+1} \]

[_separable]

3517

\[ {}{\mathrm e}^{x +y} y^{\prime }-1 = 0 \]

[_separable]

3518

\[ {}y^{\prime } = \frac {y}{x \ln \left (x \right )} \]

[_separable]

3519

\[ {}y-\left (x -2\right ) y^{\prime } = 0 \]

[_separable]

3520

\[ {}y^{\prime } = \frac {2 x \left (-1+y\right )}{x^{2}+3} \]

[_separable]

3521

\[ {}y-y^{\prime } x = 3-2 x^{2} y^{\prime } \]

[_separable]

3523

\[ {}y^{\prime } = \frac {x \left (y^{2}-1\right )}{2 \left (x -2\right ) \left (x -1\right )} \]

[_separable]

3525

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }-y+c = 0 \]

[_separable]

3526

\[ {}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1 \]
i.c.

[_separable]

3527

\[ {}\left (-x^{2}+1\right ) y^{\prime }+x y = a x \]
i.c.

[_separable]

3529

\[ {}y^{\prime } = y^{3} \sin \left (x \right ) \]

[_separable]

3530

\[ {}y^{\prime }-y = {\mathrm e}^{2 x} \]

[[_linear, ‘class A‘]]

3532

\[ {}y^{\prime }+2 x y = 2 x^{3} \]

[_linear]

3533

\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = 4 x \]

[_linear]

3534

\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = \frac {4}{\left (x^{2}+1\right )^{2}} \]

[_linear]

3541

\[ {}y^{\prime }-\frac {y}{x} = 2 x^{2} \ln \left (x \right ) \]

[_linear]

3542

\[ {}y^{\prime }+\alpha y = {\mathrm e}^{\beta x} \]

[[_linear, ‘class A‘]]

3544

\[ {}\left (3 x -y\right ) y^{\prime } = 3 y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3545

\[ {}y^{\prime } = \frac {\left (x +y\right )^{2}}{2 x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3546

\[ {}\sin \left (\frac {y}{x}\right ) \left (-y+y^{\prime } x \right ) = x \cos \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3547

\[ {}y^{\prime } x = \sqrt {16 x^{2}-y^{2}}+y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3548

\[ {}-y+y^{\prime } x = \sqrt {9 x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3549

\[ {}x \left (x^{2}-y^{2}\right )-x \left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3550

\[ {}y^{\prime } x +y \ln \left (x \right ) = y \ln \left (y\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3551

\[ {}y^{\prime } = \frac {y^{2}+2 x y-2 x^{2}}{x^{2}-x y+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3552

\[ {}2 x y y^{\prime }-2 y^{2}-x^{2} {\mathrm e}^{-\frac {y^{2}}{x^{2}}} = 0 \]

[[_homogeneous, ‘class A‘]]

3553

\[ {}x^{2} y^{\prime } = y^{2}+3 x y+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3554

\[ {}y y^{\prime } = \sqrt {x^{2}+y^{2}}-x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3555

\[ {}2 x \left (y+2 x \right ) y^{\prime } = y \left (4 x -y\right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3556

\[ {}y^{\prime } x = x \tan \left (\frac {y}{x}\right )+y \]

[[_homogeneous, ‘class A‘], _dAlembert]

3557

\[ {}y^{\prime } = \frac {x \sqrt {x^{2}+y^{2}}+y^{2}}{x y} \]

[[_homogeneous, ‘class A‘], _dAlembert]

3561

\[ {}y^{\prime } = -y^{2} \]

[_quadrature]

3562

\[ {}y^{\prime } = \frac {y}{2 x} \]

[_separable]

3593

\[ {}y^{\prime } = 2 x y \]

[_separable]

3594

\[ {}y^{\prime } = \frac {y^{2}}{x^{2}+1} \]

[_separable]

3595

\[ {}{\mathrm e}^{x +y} y^{\prime }-1 = 0 \]

[_separable]

3596

\[ {}y^{\prime } = \frac {y}{x \ln \left (x \right )} \]

[_separable]

3597

\[ {}y-\left (x -1\right ) y^{\prime } = 0 \]

[_separable]

3598

\[ {}y^{\prime } = \frac {2 x \left (-1+y\right )}{x^{2}+3} \]

[_separable]

3599

\[ {}y-y^{\prime } x = 3-2 x^{2} y^{\prime } \]

[_separable]

3601

\[ {}y^{\prime } = \frac {x \left (y^{2}-1\right )}{2 \left (x -2\right ) \left (x -1\right )} \]

[_separable]

3602

\[ {}y^{\prime } = \frac {x^{2} y-32}{-x^{2}+16}+2 \]

[_separable]

3603

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }-y+c = 0 \]

[_separable]

3604

\[ {}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1 \]
i.c.

[_separable]

3605

\[ {}\left (-x^{2}+1\right ) y^{\prime }+x y = a x \]
i.c.

[_separable]

3607

\[ {}y^{\prime } = y^{3} \sin \left (x \right ) \]
i.c.

[_separable]

3608

\[ {}y^{\prime } = \frac {2 \sqrt {-1+y}}{3} \]
i.c.

[_quadrature]

3609

\[ {}m v^{\prime } = m g -k v^{2} \]
i.c.

[_quadrature]

3627

\[ {}x^{\prime }+\frac {2 x}{4-t} = 5 \]
i.c.

[_linear]

3628

\[ {}y-{\mathrm e}^{x}+y^{\prime } = 0 \]
i.c.

[[_linear, ‘class A‘]]

3633

\[ {}y^{\prime }+y = {\mathrm e}^{-2 x} \]

[[_linear, ‘class A‘]]

3635

\[ {}-y+y^{\prime } x = x^{2} \ln \left (x \right ) \]

[_linear]

3636

\[ {}y^{\prime } = \frac {x^{2}+x y+y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3637

\[ {}\left (3 x -y\right ) y^{\prime } = 3 y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3638

\[ {}y^{\prime } = \frac {\left (x +y\right )^{2}}{2 x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3639

\[ {}\sin \left (\frac {y}{x}\right ) \left (-y+y^{\prime } x \right ) = x \cos \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3640

\[ {}y^{\prime } x = \sqrt {16 x^{2}-y^{2}}+y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3641

\[ {}-y+y^{\prime } x = \sqrt {9 x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3642

\[ {}y \left (x^{2}-y^{2}\right )-x \left (x^{2}-y^{2}\right ) y^{\prime } = 0 \]

[_separable]

3643

\[ {}y^{\prime } x +y \ln \left (x \right ) = y \ln \left (y\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3644

\[ {}y^{\prime } = \frac {y^{2}+2 x y-2 x^{2}}{x^{2}-x y+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3645

\[ {}2 x y y^{\prime }-2 y^{2}-x^{2} {\mathrm e}^{-\frac {y^{2}}{x^{2}}} = 0 \]

[[_homogeneous, ‘class A‘]]

3646

\[ {}x^{2} y^{\prime } = y^{2}+3 x y+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3647

\[ {}y y^{\prime } = \sqrt {x^{2}+y^{2}}-x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3648

\[ {}2 x \left (y+2 x \right ) y^{\prime } = y \left (4 x -y\right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3649

\[ {}y^{\prime } x = x \tan \left (\frac {y}{x}\right )+y \]

[[_homogeneous, ‘class A‘], _dAlembert]

3650

\[ {}y^{\prime } = \frac {x \sqrt {x^{2}+y^{2}}+y^{2}}{x y} \]

[[_homogeneous, ‘class A‘], _dAlembert]

3651

\[ {}y^{\prime } = \frac {4 y-2 x}{x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3652

\[ {}y^{\prime } = \frac {2 x -y}{x +4 y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3653

\[ {}y^{\prime } = \frac {y-\sqrt {x^{2}+y^{2}}}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

3654

\[ {}-y+y^{\prime } x = \sqrt {4 x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3655

\[ {}y^{\prime } = \frac {x +a y}{a x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3656

\[ {}y^{\prime } = \frac {x +\frac {y}{2}}{\frac {x}{2}-y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3661

\[ {}y^{\prime }+\frac {2 y}{x} = 6 x^{4} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3662

\[ {}2 x \left (y^{\prime }+y^{3} x^{2}\right )+y = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3667

\[ {}y^{\prime }-\frac {y}{\left (\pi -1\right ) x} = \frac {3 x y^{\pi }}{1-\pi } \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3672

\[ {}y^{\prime } = \left (9 x -y\right )^{2} \]
i.c.

[[_homogeneous, ‘class C‘], _Riccati]

3673

\[ {}y^{\prime } = \left (4 x +y+2\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

3674

\[ {}y^{\prime } = \sin \left (3 x -3 y+1\right )^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

3675

\[ {}y^{\prime } = \frac {y \left (\ln \left (x y\right )-1\right )}{x} \]

[[_homogeneous, ‘class G‘]]

3676

\[ {}y^{\prime } = 2 x \left (x +y\right )^{2}-1 \]
i.c.

[[_1st_order, _with_linear_symmetries], _Riccati]

3677

\[ {}y^{\prime } = \frac {x +2 y-1}{2 x -y+3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3679

\[ {}y^{\prime }+\frac {2 y}{x}-y^{2} = -\frac {2}{x^{2}} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

3680

\[ {}y^{\prime }+\frac {7 y}{x}-3 y^{2} = \frac {3}{x^{2}} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

3682

\[ {}\frac {y^{\prime }}{y}-\frac {2 \ln \left (y\right )}{x} = \frac {1-2 \ln \left (x \right )}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

4080

\[ {}4 x y^{2}+6 y+\left (5 x^{2} y+8 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4081

\[ {}5 x +2 y+1+\left (2 x +y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4082

\[ {}3 x -y+1-\left (6 x -2 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4083

\[ {}x -2 y-3+\left (2 x +y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4084

\[ {}6 x +4 y+1+\left (4 x +2 y+2\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4085

\[ {}3 x -y-6+\left (x +y+2\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4086

\[ {}2 x +3 y+1+\left (4 x +6 y+1\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4090

\[ {}x^{2} y^{\prime } = x \left (-1+y\right )+\left (-1+y\right )^{2} \]

[[_homogeneous, ‘class C‘], _rational, _Riccati]

4093

\[ {}3 y-2 x +\left (3 x -2\right ) y^{\prime } = 0 \]

[_linear]

4095

\[ {}{\mathrm e}^{2 y}+\left (x +1\right ) y^{\prime } = 0 \]

[_separable]

4096

\[ {}\left (x +1\right ) y^{\prime }-x^{2} y^{2} = 0 \]

[_separable]

4097

\[ {}y^{\prime } = \frac {y-2 x}{x} \]

[_linear]

4098

\[ {}x^{3}+y^{3}-x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4099

\[ {}y^{\prime }+y = 0 \]

[_quadrature]

4100

\[ {}y^{\prime }+y = x^{2}+2 \]

[[_linear, ‘class A‘]]

4102

\[ {}y^{\prime } = {\mathrm e}^{x -2 y} \]
i.c.

[_separable]

4103

\[ {}y^{\prime } = \frac {x^{2}+y^{2}}{2 x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

4104

\[ {}y^{\prime } x = x +y \]
i.c.

[_linear]

4105

\[ {}{\mathrm e}^{-y}+\left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

4112

\[ {}y^{\prime } = \frac {2 x -y}{y+2 x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4113

\[ {}y^{\prime } = \frac {3 x -y+1}{3 y-x +5} \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4114

\[ {}3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4190

\[ {}y y^{\prime } = x \]

[_separable]

4191

\[ {}y^{\prime }-y = x^{3} \]

[[_linear, ‘class A‘]]

4196

\[ {}y^{\prime } x +y = x \]

[_linear]

4197

\[ {}-y+y^{\prime } x = x^{3} \]

[_linear]

4198

\[ {}y^{\prime } x +n y = x^{n} \]

[_linear]

4199

\[ {}y^{\prime } x -n y = x^{n} \]

[_linear]

4200

\[ {}\left (x^{3}+x \right ) y^{\prime }+y = x \]

[_linear]

4213

\[ {}3 y^{2} y^{\prime } = 2 x -1 \]

[_separable]

4214

\[ {}y^{\prime } = 6 x y^{2} \]

[_separable]

4216

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

4218

\[ {}y^{\prime } = 3 \cos \left (y\right )^{2} \]

[_quadrature]

4219

\[ {}y^{\prime } x = y \]

[_separable]

4220

\[ {}\left (1-x \right ) y^{\prime } = y \]

[_separable]

4221

\[ {}y^{\prime } = \frac {4 x y}{x^{2}+1} \]

[_separable]

4222

\[ {}y^{\prime } = \frac {2 y}{x^{2}-1} \]

[_separable]

4223

\[ {}x^{2} y^{\prime }-y^{2} = 0 \]
i.c.

[_separable]

4224

\[ {}y^{\prime }+2 x y = 0 \]
i.c.

[_separable]

4225

\[ {}\cot \left (x \right ) y^{\prime } = y \]
i.c.

[_separable]

4226

\[ {}y^{\prime } = x \,{\mathrm e}^{-2 y} \]
i.c.

[_separable]

4227

\[ {}y^{\prime }-2 x y = 2 x \]
i.c.

[_separable]

4228

\[ {}y^{\prime } x = x y+y \]
i.c.

[_separable]

4230

\[ {}x \cos \left (y\right ) y^{\prime } = 1+\sin \left (y\right ) \]
i.c.

[_separable]

4231

\[ {}y^{\prime } x = 2 y \left (-1+y\right ) \]
i.c.

[_separable]

4232

\[ {}2 y^{\prime } x = 1-y^{2} \]
i.c.

[_separable]

4233

\[ {}\left (1-x \right ) y^{\prime } = x y \]

[_separable]

4234

\[ {}\left (x^{2}-1\right ) y^{\prime } = \left (x^{2}+1\right ) y \]

[_separable]

4235

\[ {}y^{\prime } = {\mathrm e}^{x} \left (1+y^{2}\right ) \]

[_separable]

4238

\[ {}x y y^{\prime } = \sqrt {y^{2}-9} \]
i.c.

[_separable]

4239

\[ {}\left (x +y-1\right ) y^{\prime } = x -y+1 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4240

\[ {}x y y^{\prime } = 2 x^{2}-y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4241

\[ {}x^{2}-y^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4242

\[ {}x^{2} y^{\prime }-2 x y-2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4244

\[ {}x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )+x \]

[[_homogeneous, ‘class A‘], _dAlembert]

4245

\[ {}y^{\prime } x = y+2 \,{\mathrm e}^{-\frac {y}{x}} \]

[[_homogeneous, ‘class D‘]]

4246

\[ {}y^{\prime } = \left (x +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

4247

\[ {}y^{\prime } = \sin \left (x -y+1\right )^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

4248

\[ {}y^{\prime } = \frac {x +y+4}{x -y-6} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4249

\[ {}y^{\prime } = \frac {x +y+4}{x +y-6} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4250

\[ {}\left (x +\frac {2}{y}\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4254

\[ {}y+y \cos \left (x y\right )+\left (x +x \cos \left (x y\right )\right ) y^{\prime } = 0 \]

[_separable]

4257

\[ {}-\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0 \]

[_separable]

4258

\[ {}1+y+\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

4261

\[ {}\left (3 x^{2}-y^{2}\right ) y^{\prime }-2 x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4263

\[ {}\left (x +3 x^{3} y^{4}\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4264

\[ {}\left (x -1-y^{2}\right ) y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

4265

\[ {}y-\left (x +x y^{3}\right ) y^{\prime } = 0 \]

[_separable]

4267

\[ {}\left (x +y\right ) y^{\prime } = y-x \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4269

\[ {}y^{\prime } x -3 y = x^{4} \]

[_linear]

4272

\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x}+x^{2} \]

[[_linear, ‘class A‘]]

4274

\[ {}2 y-x^{3} = y^{\prime } x \]

[_linear]

4275

\[ {}\left (1-x y\right ) y^{\prime } = y^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4276

\[ {}2 x +3 y+1+\left (2 y-3 x +5\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4277

\[ {}y^{\prime } x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4278

\[ {}y^{2} = \left (x^{3}-x y\right ) y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4279

\[ {}y^{3} x^{2}+y = \left (x^{3} y^{2}-x \right ) y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational]

4281

\[ {}\left (x y-x^{2}\right ) y^{\prime } = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4283

\[ {}y+x^{2} = y^{\prime } x \]

[_linear]

4285

\[ {}6 x +4 y+3+\left (3 x +2 y+2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4286

\[ {}\cos \left (x +y\right )-x \sin \left (x +y\right ) = x \sin \left (x +y\right ) y^{\prime } \]

[[_1st_order, _with_linear_symmetries], _exact]

4288

\[ {}y^{\prime } \ln \left (x -y\right ) = 1+\ln \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

4289

\[ {}y^{\prime }+2 x y = {\mathrm e}^{-x^{2}} \]

[_linear]

4290

\[ {}y^{2}-3 x y-2 x^{2} = \left (x^{2}-x y\right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4291

\[ {}\left (x^{2}+1\right ) y^{\prime }+2 x y = 4 x^{3} \]

[_linear]

4295

\[ {}x^{2} y^{\prime }+2 x y = 0 \]

[_separable]

4300

\[ {}\frac {x}{x^{2}+y^{2}}+\frac {y}{x^{2}}+\left (\frac {y}{x^{2}+y^{2}}-\frac {1}{x}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4302

\[ {}x \left (x -1\right ) y^{\prime } = \cot \left (y\right ) \]

[_separable]

4304

\[ {}\sqrt {x^{2}+1}\, y^{\prime }+\sqrt {1+y^{2}} = 0 \]

[_separable]

4305

\[ {}y^{\prime } = \frac {x \left (1+y^{2}\right )}{y \left (x^{2}+1\right )} \]
i.c.

[_separable]

4306

\[ {}y^{2} y^{\prime } = 2+3 y^{6} \]
i.c.

[_quadrature]

4311

\[ {}x y^{3}+{\mathrm e}^{x^{2}} y^{\prime } = 0 \]

[_separable]

4314

\[ {}y^{\prime }+\frac {x}{y}+2 = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4315

\[ {}-y+y^{\prime } x = x \cot \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4316

\[ {}x \cos \left (\frac {y}{x}\right )^{2}-y+y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4317

\[ {}y^{\prime } x = y \left (1+\ln \left (y\right )-\ln \left (x \right )\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4318

\[ {}x y+\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4319

\[ {}\left (1-{\mathrm e}^{-\frac {y}{x}}\right ) y^{\prime }+1-\frac {y}{x} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4320

\[ {}x^{2}-x y+y^{2}-x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4321

\[ {}\left (3+2 x +4 y\right ) y^{\prime } = x +2 y+1 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4322

\[ {}y^{\prime } = \frac {2 x +y-1}{x -y-2} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4323

\[ {}y+2 = \left (2 x +y-4\right ) y^{\prime } \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4324

\[ {}y^{\prime } = \sin \left (x -y\right )^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

4325

\[ {}y^{\prime } = \left (x +1\right )^{2}+\left (1+4 y\right )^{2}+8 x y+1 \]

[[_homogeneous, ‘class C‘], _Riccati]

4330

\[ {}x^{2}+\ln \left (y\right )+\frac {x y^{\prime }}{y} = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4333

\[ {}2 x y+\left (x^{2}+2 x y+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4337

\[ {}y+x \left (y^{2}+\ln \left (x \right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

4339

\[ {}y^{2}+\left (x y+y^{2}-1\right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

4341

\[ {}2 y \left (x +y+2\right )+\left (y^{2}-x^{2}-4 x -1\right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

4347

\[ {}x -\sqrt {x^{2}+y^{2}}+\left (y-\sqrt {x^{2}+y^{2}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _dAlembert]

4349

\[ {}y^{2}-\left (x y+x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4351

\[ {}2 x^{2} y^{2}+y+\left (x^{3} y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4352

\[ {}y^{2}+\left (x y+\tan \left (x y\right )\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘]]

4353

\[ {}2 x^{2} y^{4}-y+\left (4 x^{3} y^{3}-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4355

\[ {}y \left (1+y^{2}\right )+x \left (y^{2}-x +1\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

4356

\[ {}y^{2}+\left ({\mathrm e}^{x}-y\right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class A‘]]

4357

\[ {}x^{2} y^{2}-2 y+\left (x^{3} y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4358

\[ {}2 x^{3} y+y^{3}-\left (x^{4}+2 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4361

\[ {}1-\left (y-2 x y\right ) y^{\prime } = 0 \]

[_separable]

4363

\[ {}\left (y^{3}+\frac {x}{y}\right ) y^{\prime } = 1 \]

[[_homogeneous, ‘class G‘], _rational]

4364

\[ {}1+\left (x -y^{2}\right ) y^{\prime } = 0 \]

[[_1st_order, _with_exponential_symmetries]]

4365

\[ {}y^{2}+\left (x y+y^{2}-1\right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

4368

\[ {}y+\left (y^{2} {\mathrm e}^{y}-x \right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries]]

4373

\[ {}1+y+\left (x -y \left (1+y\right )^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

4376

\[ {}y^{\prime } = \frac {4 x^{3} y^{2}}{x^{4} y+2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4382

\[ {}6 y^{2}-x \left (2 x^{3}+y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4389

\[ {}y = 2 y^{\prime } x +y^{2} {y^{\prime }}^{3} \]

[[_1st_order, _with_linear_symmetries]]

4390

\[ {}{y^{\prime }}^{3}+y^{2} = x y y^{\prime } \]

[[_1st_order, _with_linear_symmetries]]

4392

\[ {}y = y^{\prime } x -x^{2} {y^{\prime }}^{3} \]

[[_1st_order, _with_linear_symmetries]]

4393

\[ {}y \left (y-2 y^{\prime } x \right )^{3} = {y^{\prime }}^{2} \]

[[_homogeneous, ‘class G‘]]

4395

\[ {}2 y^{\prime } x -y = \ln \left (y^{\prime }\right ) \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

4396

\[ {}x y^{2} \left (y^{\prime } x +y\right ) = 1 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4398

\[ {}y^{\prime } = \frac {y+2}{x +1} \]

[_separable]

4399

\[ {}y^{\prime } x = y-x \,{\mathrm e}^{\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

4401

\[ {}2 \sqrt {x y}-y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4402

\[ {}y^{\prime } = {\mathrm e}^{\frac {x y^{\prime }}{y}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

4405

\[ {}-y+y^{\prime } x = x \tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4408

\[ {}2 y-x \left (\ln \left (x^{2} y\right )-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘]]

4410

\[ {}y^{\prime } = \frac {2 \left (y+2\right )^{2}}{\left (x +y-1\right )^{2}} \]

[[_homogeneous, ‘class C‘], _rational]

4412

\[ {}x y+2 x^{3} y+x^{2} y^{\prime } = 0 \]

[_separable]

4416

\[ {}y^{\prime } x = y+\sqrt {x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4419

\[ {}y^{3}+\left (3 x^{2}-2 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4420

\[ {}\left (y^{\prime }+1\right ) \ln \left (\frac {x +y}{x +3}\right ) = \frac {x +y}{x +3} \]

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

4421

\[ {}2 x^{3} y y^{\prime }+3 x^{2} y^{2}+7 = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

4422

\[ {}x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4423

\[ {}x^{2} \left (-y+y^{\prime } x \right ) = \left (x +y\right ) y \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4424

\[ {}y^{4}+x y+\left (x y^{3}-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4425

\[ {}x^{2}+3 \ln \left (y\right )-\frac {x y^{\prime }}{y} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4427

\[ {}y+\left (x y-x -y^{3}\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

4428

\[ {}y+2 y^{3} y^{\prime } = \left (x +4 y \ln \left (y\right )\right ) y^{\prime } \]

[[_1st_order, _with_linear_symmetries]]

4433

\[ {}2 y^{\prime }+x = 4 \sqrt {y} \]

[[_1st_order, _with_linear_symmetries], _Chini]

4435

\[ {}y^{\prime }-6 x \,{\mathrm e}^{x -y}-1 = 0 \]

[[_1st_order, _with_linear_symmetries]]

4441

\[ {}x +\sin \left (\frac {y}{x}\right )^{2} \left (y-y^{\prime } x \right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4443

\[ {}x y^{3}-1+x^{2} y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4611

\[ {}y^{\prime } = a +b x +c y \]

[[_linear, ‘class A‘]]

4614

\[ {}y^{\prime } = a +b \,{\mathrm e}^{k x}+c y \]

[[_linear, ‘class A‘]]

4615

\[ {}y^{\prime } = x \left (x^{2}-y\right ) \]

[_linear]

4617

\[ {}y^{\prime } = x^{2} \left (a \,x^{3}+b y\right ) \]

[_linear]

4618

\[ {}y^{\prime } = a \,x^{n} y \]

[_separable]

4621

\[ {}y^{\prime } = y \cot \left (x \right ) \]

[_separable]

4624

\[ {}y^{\prime } = \left (2 \csc \left (2 x \right )+\cot \left (x \right )\right ) y \]

[_separable]

4632

\[ {}y^{\prime } = y \sec \left (x \right ) \]

[_separable]

4634

\[ {}y^{\prime } = y \tan \left (x \right ) \]

[_separable]

4643

\[ {}y^{\prime } = \left (a +\cos \left (\ln \left (x \right )\right )+\sin \left (\ln \left (x \right )\right )\right ) y \]

[_separable]

4650

\[ {}y^{\prime } = \left (x +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

4651

\[ {}y^{\prime } = \left (x -y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

4652

\[ {}y^{\prime } = 3-3 x +3 y+\left (x -y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

4654

\[ {}y^{\prime } = x \left (x^{3}+2\right )-\left (2 x^{2}-y\right ) y \]

[[_1st_order, _with_linear_symmetries], _Riccati]

4655

\[ {}y^{\prime } = 1+x \left (-x^{3}+2\right )+\left (2 x^{2}-y\right ) y \]

[[_1st_order, _with_linear_symmetries], _Riccati]

4659

\[ {}y^{\prime } = \left (3+x -4 y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

4660

\[ {}y^{\prime } = \left (1+4 x +9 y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

4662

\[ {}y^{\prime } = a +b y^{2} \]

[_quadrature]

4667

\[ {}y^{\prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2} \]

[_quadrature]

4671

\[ {}y^{\prime } = x y \left (3+y\right ) \]

[_separable]

4672

\[ {}y^{\prime } = 1-x -x^{3}+\left (2 x^{2}+1\right ) y-x y^{2} \]

[_Riccati]

4674

\[ {}y^{\prime } = x +\left (1-2 x \right ) y-\left (1-x \right ) y^{2} \]

[_Riccati]

4675

\[ {}y^{\prime } = a x y^{2} \]

[_separable]

4676

\[ {}y^{\prime } = x^{n} \left (a +b y^{2}\right ) \]

[_separable]

4682

\[ {}y^{\prime }+\tan \left (x \right ) \left (1-y^{2}\right ) = 0 \]

[_separable]

4684

\[ {}y^{\prime } = \left (a +b y+c y^{2}\right ) f \left (x \right ) \]

[_separable]

4688

\[ {}y^{\prime } = y \left (a +b y^{2}\right ) \]

[_quadrature]

4689

\[ {}y^{\prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2}+\operatorname {a3} y^{3} \]

[_quadrature]

4690

\[ {}y^{\prime } = x y^{3} \]

[_separable]

4691

\[ {}y^{\prime }+y \left (1-x y^{2}\right ) = 0 \]

[_Bernoulli]

4692

\[ {}y^{\prime } = \left (a +b x y\right ) y^{2} \]

[[_homogeneous, ‘class G‘], _Abel]

4695

\[ {}y^{\prime }+y^{3} \sec \left (x \right ) \tan \left (x \right ) = 0 \]

[_separable]

4697

\[ {}y^{\prime } = a \,x^{\frac {n}{-n +1}}+b y^{n} \]

[[_homogeneous, ‘class G‘], _Chini]

4701

\[ {}y^{\prime } = a +b y+\sqrt {\operatorname {A0} +\operatorname {B0} y} \]

[_quadrature]

4702

\[ {}y^{\prime } = a x +b \sqrt {y} \]

[[_homogeneous, ‘class G‘], _Chini]

4703

\[ {}y^{\prime }+x^{3} = x \sqrt {x^{4}+4 y} \]

[[_1st_order, _with_linear_symmetries]]

4705

\[ {}y^{\prime } = \sqrt {a +b y^{2}} \]

[_quadrature]

4713

\[ {}y^{\prime } = a +b \cos \left (y\right ) \]

[_quadrature]

4725

\[ {}y^{\prime } = a +b \sin \left (y\right ) \]

[_quadrature]

4729

\[ {}y^{\prime } = \sqrt {a +b \cos \left (y\right )} \]

[_quadrature]

4731

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

4735

\[ {}y^{\prime } = a f \left (y\right ) \]

[_quadrature]

4736

\[ {}y^{\prime } = f \left (a +b x +c y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

4740

\[ {}2 y^{\prime }+a x = \sqrt {a^{2} x^{2}-4 b \,x^{2}-4 c y} \]

[[_homogeneous, ‘class G‘]]

4741

\[ {}3 y^{\prime } = x +\sqrt {x^{2}-3 y} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

4743

\[ {}y^{\prime } x +x +y = 0 \]

[_linear]

4744

\[ {}y^{\prime } x +x^{2}-y = 0 \]

[_linear]

4745

\[ {}y^{\prime } x = x^{3}-y \]

[_linear]

4746

\[ {}y^{\prime } x = 1+x^{3}+y \]

[_linear]

4747

\[ {}y^{\prime } x = x^{m}+y \]

[_linear]

4749

\[ {}y^{\prime } x = x^{2} \sin \left (x \right )+y \]

[_linear]

4752

\[ {}y^{\prime } x = a y \]

[_separable]

4753

\[ {}y^{\prime } x = 1+x +a y \]

[_linear]

4754

\[ {}y^{\prime } x = a x +b y \]

[_linear]

4755

\[ {}y^{\prime } x = a \,x^{2}+b y \]

[_linear]

4756

\[ {}y^{\prime } x = a +b \,x^{n}+c y \]

[_linear]

4759

\[ {}y^{\prime } x +\left (b x +a \right ) y = 0 \]

[_separable]

4760

\[ {}y^{\prime } x = x^{3}+\left (-2 x^{2}+1\right ) y \]

[_linear]

4766

\[ {}y^{\prime } x = a +b y^{2} \]

[_separable]

4772

\[ {}y^{\prime } x +\left (1-x y\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4773

\[ {}y^{\prime } x = \left (1-x y\right ) y \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4774

\[ {}y^{\prime } x = \left (1+x y\right ) y \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4776

\[ {}y^{\prime } x = x^{3}+\left (2 x^{2}+1\right ) y+x y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

4777

\[ {}y^{\prime } x = y \left (1+2 x y\right ) \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4782

\[ {}y^{\prime } x +\left (a +b \,x^{n} y\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4784

\[ {}y^{\prime } x = 2 x -y+a \,x^{n} \left (x -y\right )^{2} \]

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

4785

\[ {}y^{\prime } x +\left (1-a y \ln \left (x \right )\right ) y = 0 \]

[_Bernoulli]

4787

\[ {}y^{\prime } x = y \left (1+y^{2}\right ) \]

[_separable]

4788

\[ {}y^{\prime } x +y \left (1-x y^{2}\right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4789

\[ {}y^{\prime } x +y = a \left (x^{2}+1\right ) y^{3} \]

[_rational, _Bernoulli]

4790

\[ {}y^{\prime } x = a y+b \left (x^{2}+1\right ) y^{3} \]

[_rational, _Bernoulli]

4792

\[ {}y^{\prime } x = 4 y-4 \sqrt {y} \]

[_separable]

4793

\[ {}y^{\prime } x +2 y = \sqrt {1+y^{2}} \]

[_separable]

4794

\[ {}y^{\prime } x = y+\sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4795

\[ {}y^{\prime } x = y+\sqrt {x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4798

\[ {}y^{\prime } x = y+a \sqrt {y^{2}+b^{2} x^{2}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

4800

\[ {}y^{\prime } x +x -y+x \cos \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4801

\[ {}y^{\prime } x = y-x \cos \left (\frac {y}{x}\right )^{2} \]

[[_homogeneous, ‘class A‘], _dAlembert]

4803

\[ {}y^{\prime } x = y-\cot \left (y\right )^{2} \]

[_separable]

4805

\[ {}y^{\prime } x -y+x \sec \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4806

\[ {}y^{\prime } x = y+x \sec \left (\frac {y}{x}\right )^{2} \]

[[_homogeneous, ‘class A‘], _dAlembert]

4808

\[ {}y^{\prime } x = y+x \sin \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4809

\[ {}y^{\prime } x +\tan \left (y\right ) = 0 \]

[_separable]

4810

\[ {}y^{\prime } x +x +\tan \left (x +y\right ) = 0 \]

[[_1st_order, _with_linear_symmetries]]

4811

\[ {}y^{\prime } x = y-x \tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4812

\[ {}y^{\prime } x = \left (1+y^{2}\right ) \left (x^{2}+\arctan \left (y\right )\right ) \]

[‘y=_G(x,y’)‘]

4813

\[ {}y^{\prime } x = x \,{\mathrm e}^{\frac {y}{x}}+y \]

[[_homogeneous, ‘class A‘], _dAlembert]

4814

\[ {}y^{\prime } x = x +y+x \,{\mathrm e}^{\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

4815

\[ {}y^{\prime } x = y \ln \left (y\right ) \]

[_separable]

4816

\[ {}y^{\prime } x = \left (1+\ln \left (x \right )-\ln \left (y\right )\right ) y \]

[[_homogeneous, ‘class A‘], _dAlembert]

4817

\[ {}y^{\prime } x +\left (1-\ln \left (x \right )-\ln \left (y\right )\right ) y = 0 \]

[[_homogeneous, ‘class G‘]]

4818

\[ {}y^{\prime } x = y-2 x \tanh \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4820

\[ {}y^{\prime } x = y f \left (x^{m} y^{n}\right ) \]

[[_homogeneous, ‘class G‘]]

4821

\[ {}\left (x +1\right ) y^{\prime } = x^{3} \left (3 x +4\right )+y \]

[_linear]

4822

\[ {}\left (x +1\right ) y^{\prime } = \left (x +1\right )^{4}+2 y \]

[_linear]

4824

\[ {}\left (x +1\right ) y^{\prime } = a y+b x y^{2} \]

[_rational, _Bernoulli]

4825

\[ {}\left (x +1\right ) y^{\prime }+y+\left (x +1\right )^{4} y^{3} = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

4827

\[ {}\left (x +1\right ) y^{\prime } = 1+y+\left (x +1\right ) \sqrt {1+y} \]

[[_1st_order, _with_linear_symmetries]]

4829

\[ {}\left (x +a \right ) y^{\prime } = b x +y \]

[_linear]

4830

\[ {}\left (x +a \right ) y^{\prime }+b \,x^{2}+y = 0 \]

[_linear]

4831

\[ {}\left (x +a \right ) y^{\prime } = 2 \left (x +a \right )^{5}+3 y \]

[_linear]

4832

\[ {}\left (x +a \right ) y^{\prime } = b +c y \]

[_separable]

4833

\[ {}\left (x +a \right ) y^{\prime } = b x +c y \]

[_linear]

4834

\[ {}\left (x +a \right ) y^{\prime } = y \left (1-a y\right ) \]

[_separable]

4835

\[ {}\left (a -x \right ) y^{\prime } = y+\left (c x +b \right ) y^{3} \]

[_rational, _Bernoulli]

4836

\[ {}2 y^{\prime } x = 2 x^{3}-y \]

[_linear]

4838

\[ {}2 y^{\prime } x = y \left (1+y^{2}\right ) \]

[_separable]

4839

\[ {}2 y^{\prime } x +y \left (1+y^{2}\right ) = 0 \]

[_separable]

4841

\[ {}2 y^{\prime } x +4 y+a +\sqrt {a^{2}-4 b -4 c y} = 0 \]

[_separable]

4842

\[ {}\left (1-2 x \right ) y^{\prime } = 16+32 x -6 y \]

[_linear]

4843

\[ {}\left (2 x +1\right ) y^{\prime } = 4 \,{\mathrm e}^{-y}-2 \]

[_separable]

4845

\[ {}2 \left (x +1\right ) y^{\prime }+2 y+\left (x +1\right )^{4} y^{3} = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

4847

\[ {}3 y^{\prime } x = \left (2+x y^{3}\right ) y \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4849

\[ {}x^{2} y^{\prime } = a -y \]

[_separable]

4850

\[ {}x^{2} y^{\prime } = a +b x +c \,x^{2}+x y \]

[_linear]

4851

\[ {}x^{2} y^{\prime } = a +b x +c \,x^{2}-x y \]

[_linear]

4852

\[ {}x^{2} y^{\prime }+\left (1-2 x \right ) y = x^{2} \]

[_linear]

4853

\[ {}x^{2} y^{\prime } = a +b x y \]

[_linear]

4854

\[ {}x^{2} y^{\prime } = \left (b x +a \right ) y \]

[_separable]

4857

\[ {}x^{2} y^{\prime }+x^{2}+x y+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

4858

\[ {}x^{2} y^{\prime } = \left (1+2 x -y\right )^{2} \]

[[_homogeneous, ‘class C‘], _rational, _Riccati]

4859

\[ {}x^{2} y^{\prime } = a +b y^{2} \]

[_separable]

4860

\[ {}x^{2} y^{\prime } = \left (x +a y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4861

\[ {}x^{2} y^{\prime } = \left (a x +b y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4862

\[ {}x^{2} y^{\prime }+a \,x^{2}+b x y+c y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

4864

\[ {}x^{2} y^{\prime }+2+x y \left (4+x y\right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

4866

\[ {}x^{2} y^{\prime } = a +b \,x^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

4868

\[ {}x^{2} y^{\prime } = a +b x y+c \,x^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

4871

\[ {}x^{2} y^{\prime } = 2 y \left (x -y^{2}\right ) \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4874

\[ {}x^{2} y^{\prime } = \left (a x +b y^{3}\right ) y \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4875

\[ {}x^{2} y^{\prime }+x y+\sqrt {y} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4879

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 5-x y \]

[_linear]

4881

\[ {}\left (x^{2}+1\right ) y^{\prime }+a -x y = 0 \]

[_linear]

4883

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x +x y = 0 \]

[_separable]

4886

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \left (x^{2}+1\right )-x y \]

[_linear]

4887

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \left (3 x^{2}-y\right ) \]

[_linear]

4888

\[ {}\left (-x^{2}+1\right ) y^{\prime }+2 x y = 0 \]

[_separable]

4890

\[ {}\left (x^{2}+1\right ) y^{\prime } = 2 x \left (x^{2}+1\right )^{2}+2 x y \]

[_linear]

4894

\[ {}\left (x^{2}+1\right ) y^{\prime } = \left (2 b x +a \right ) y \]

[_separable]

4895

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

4896

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 1-y^{2} \]

[_separable]

4897

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 1-\left (2 x -y\right ) y \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

4899

\[ {}\left (x^{2}+1\right ) y^{\prime }+x y \left (1-y\right ) = 0 \]

[_separable]

4900

\[ {}\left (-x^{2}+1\right ) y^{\prime } = x y \left (1+a y\right ) \]

[_separable]

4905

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime } = b +x y \]

[_linear]

4906

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime } = \left (b +y\right ) \left (x +\sqrt {a^{2}+x^{2}}\right ) \]

[_separable]

4907

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime }+\left (x -y\right ) y = 0 \]

[_rational, _Bernoulli]

4908

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime } = a^{2}+3 x y-2 y^{2} \]

[_rational, _Riccati]

4909

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime }+x y+b x y^{2} = 0 \]

[_separable]

4913

\[ {}x \left (x +1\right ) y^{\prime } = \left (1-2 x \right ) y \]

[_separable]

4914

\[ {}x \left (1-x \right ) y^{\prime }+\left (2 x +1\right ) y = a \]

[_linear]

4915

\[ {}x \left (1-x \right ) y^{\prime } = a +2 \left (2-x \right ) y \]

[_linear]

4917

\[ {}x \left (x +1\right ) y^{\prime } = \left (x +1\right ) \left (x^{2}-1\right )+\left (x^{2}+x -1\right ) y \]

[_linear]

4919

\[ {}x \left (x +a \right ) y^{\prime } = \left (b +c y\right ) y \]

[_separable]

4920

\[ {}\left (x +a \right )^{2} y^{\prime } = 2 \left (x +a \right ) \left (b +y\right ) \]

[_separable]

4921

\[ {}\left (x -a \right )^{2} y^{\prime }+k \left (x +y-a \right )^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class C‘], _rational, _Riccati]

4922

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }+k y = 0 \]

[_separable]

4923

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime } = \left (x -a \right ) \left (x -b \right )+\left (2 x -a -b \right ) y \]

[_linear]

4924

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime } = c y^{2} \]

[_separable]

4925

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }+k \left (y-a \right ) \left (y-b \right ) = 0 \]

[_separable]

4926

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }+k \left (x +y-a \right ) \left (x +y-b \right )+y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

4927

\[ {}2 x^{2} y^{\prime } = y \]

[_separable]

4929

\[ {}2 x^{2} y^{\prime }+1+2 x y-x^{2} y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

4933

\[ {}x \left (1-2 x \right ) y^{\prime } = 4 x -\left (1+4 x \right ) y+y^{2} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

4936

\[ {}2 \left (x^{2}+x +1\right ) y^{\prime } = 1+8 x^{2}-\left (2 x +1\right ) y \]

[_linear]

4938

\[ {}a \,x^{2} y^{\prime } = x^{2}+y a x +b^{2} y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

4939

\[ {}\left (b \,x^{2}+a \right ) y^{\prime } = A +B y^{2} \]

[_separable]

4941

\[ {}x \left (a x +1\right ) y^{\prime }+a -y = 0 \]

[_separable]

4943

\[ {}x^{3} y^{\prime } = a +b \,x^{2} y \]

[_linear]

4944

\[ {}x^{3} y^{\prime } = 3-x^{2}+x^{2} y \]

[_linear]

4945

\[ {}x^{3} y^{\prime } = x^{4}+y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

4946

\[ {}x^{3} y^{\prime } = y \left (y+x^{2}\right ) \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4947

\[ {}x^{3} y^{\prime } = x^{2} \left (-1+y\right )+y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

4948

\[ {}x^{3} y^{\prime } = \left (x +1\right ) y^{2} \]

[_separable]

4949

\[ {}x^{3} y^{\prime }+20+x^{2} y \left (1-x^{2} y\right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

4951

\[ {}x^{3} y^{\prime } = \left (2 x^{2}+y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4955

\[ {}x \left (x^{2}+1\right ) y^{\prime } = a \,x^{3}+y \]

[_linear]

4957

\[ {}x \left (x^{2}+1\right ) y^{\prime } = \left (-x^{2}+1\right ) y \]

[_separable]

4958

\[ {}x \left (-x^{2}+1\right ) y^{\prime } = \left (x^{2}-x +1\right ) y \]

[_separable]

4959

\[ {}x \left (-x^{2}+1\right ) y^{\prime } = a \,x^{3}+\left (-2 x^{2}+1\right ) y \]

[_linear]

4960

\[ {}x \left (-x^{2}+1\right ) y^{\prime } = x^{3} \left (-x^{2}+1\right )+\left (-2 x^{2}+1\right ) y \]

[_linear]

4964

\[ {}x^{2} \left (1-x \right ) y^{\prime } = \left (2-x \right ) x y-y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4965

\[ {}2 x^{3} y^{\prime } = y \left (x^{2}-y^{2}\right ) \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4966

\[ {}2 x^{3} y^{\prime } = \left (3 x^{2}+a y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4969

\[ {}x^{4} y^{\prime } = \left (x^{3}+y\right ) y \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4970

\[ {}x^{4} y^{\prime }+a^{2}+x^{4} y^{2} = 0 \]

[_rational, [_Riccati, _special]]

4971

\[ {}x^{4} y^{\prime }+x^{3} y+\csc \left (x y\right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4972

\[ {}\left (-x^{4}+1\right ) y^{\prime } = 2 x \left (1-y^{2}\right ) \]

[_separable]

4976

\[ {}x \left (-2 x^{3}+1\right ) y^{\prime } = 2 \left (-x^{3}+1\right ) y \]

[_separable]

4977

\[ {}\left (c \,x^{2}+b x +a \right )^{2} \left (y^{\prime }+y^{2}\right )+A = 0 \]

[_rational, _Riccati]

4978

\[ {}x^{5} y^{\prime } = 1-3 x^{4} y \]

[_linear]

4981

\[ {}x^{n} y^{\prime } = a +b \,x^{n -1} y \]

[_linear]

4984

\[ {}x^{n} y^{\prime } = a^{2} x^{2 n -2}+b^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _Riccati]

4988

\[ {}y^{\prime } \sqrt {-x^{2}+1} = 1+y^{2} \]

[_separable]

4991

\[ {}y^{\prime } \sqrt {b^{2}+x^{2}} = \sqrt {y^{2}+a^{2}} \]

[_separable]

5009

\[ {}\left (1-4 \cos \left (x \right )^{2}\right ) y^{\prime } = \tan \left (x \right ) \left (1+4 \cos \left (x \right )^{2}\right ) y \]

[_separable]

5010

\[ {}\left (1-\sin \left (x \right )\right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

[_separable]

5011

\[ {}\left (\cos \left (x \right )-\sin \left (x \right )\right ) y^{\prime }+y \left (\cos \left (x \right )+\sin \left (x \right )\right ) = 0 \]

[_separable]

5014

\[ {}y^{\prime } x \ln \left (x \right ) = a x \left (1+\ln \left (x \right )\right )-y \]

[_linear]

5015

\[ {}x +y y^{\prime } = 0 \]

[_separable]

5018

\[ {}y y^{\prime }+a x +b y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5024

\[ {}y y^{\prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2} \]

[_quadrature]

5027

\[ {}y y^{\prime } = \sqrt {y^{2}+a^{2}} \]

[_quadrature]

5028

\[ {}y y^{\prime } = \sqrt {y^{2}-a^{2}} \]

[_quadrature]

5030

\[ {}\left (1+y\right ) y^{\prime } = x +y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5032

\[ {}\left (x +y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5033

\[ {}\left (x -y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5034

\[ {}\left (x +y\right ) y^{\prime }+x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5035

\[ {}\left (x +y\right ) y^{\prime } = x -y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5036

\[ {}1-y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

5039

\[ {}\left (x -y\right ) y^{\prime } = \left ({\mathrm e}^{-\frac {x}{y}}+1\right ) y \]

[[_homogeneous, ‘class A‘], _dAlembert]

5040

\[ {}\left (x +y+1\right ) y^{\prime }+1+4 x +3 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5041

\[ {}\left (x +y+2\right ) y^{\prime } = 1-x -y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5042

\[ {}\left (3-x -y\right ) y^{\prime } = 1+x -3 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5043

\[ {}\left (3-x +y\right ) y^{\prime } = 11-4 x +3 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5044

\[ {}\left (y+2 x \right ) y^{\prime }+x -2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5045

\[ {}\left (2+2 x -y\right ) y^{\prime }+3+6 x -3 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5046

\[ {}\left (2 x -y+3\right ) y^{\prime }+2 = 0 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

5047

\[ {}\left (4+2 x -y\right ) y^{\prime }+5+x -2 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5048

\[ {}\left (5-2 x -y\right ) y^{\prime }+4-x -2 y = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5049

\[ {}\left (1-3 x +y\right ) y^{\prime } = 2 x -2 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5050

\[ {}\left (2-3 x +y\right ) y^{\prime }+5-2 x -3 y = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5051

\[ {}\left (4 x -y\right ) y^{\prime }+2 x -5 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5052

\[ {}\left (6-4 x -y\right ) y^{\prime } = 2 x -y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5053

\[ {}\left (1+5 x -y\right ) y^{\prime }+5+x -5 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5054

\[ {}\left (a +b x +y\right ) y^{\prime }+a -b x -y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5056

\[ {}\left (x^{2}-y\right ) y^{\prime } = 4 x y \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5060

\[ {}\left (x -2 y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5061

\[ {}\left (x +2 y\right ) y^{\prime }+2 x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5062

\[ {}\left (x -2 y\right ) y^{\prime }+2 x +y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5063

\[ {}\left (x -2 y+1\right ) y^{\prime } = 1+2 x -y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5064

\[ {}\left (1+x +2 y\right ) y^{\prime }+1-x -2 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5065

\[ {}\left (1+x +2 y\right ) y^{\prime }+7+x -4 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5067

\[ {}\left (3+2 x -2 y\right ) y^{\prime } = 1+6 x -2 y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5068

\[ {}\left (1-4 x -2 y\right ) y^{\prime }+2 x +y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5069

\[ {}\left (6 x -2 y\right ) y^{\prime } = 2+3 x -y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5070

\[ {}\left (19+9 x +2 y\right ) y^{\prime }+18-2 x -6 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5073

\[ {}\left (x \,{\mathrm e}^{-x}-2 y\right ) y^{\prime } = 2 x \,{\mathrm e}^{-2 x}-\left ({\mathrm e}^{-x}+x \,{\mathrm e}^{-x}-2 y\right ) y \]

[[_Abel, ‘2nd type‘, ‘class B‘]]

5076

\[ {}\left (x -3 y\right ) y^{\prime }+4+3 x -y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5077

\[ {}\left (4-x -3 y\right ) y^{\prime }+3-x -3 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5078

\[ {}\left (2 x +3 y+2\right ) y^{\prime } = 1-2 x -3 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5079

\[ {}\left (5-2 x -3 y\right ) y^{\prime }+1-2 x -3 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5080

\[ {}\left (1+9 x -3 y\right ) y^{\prime }+2+3 x -y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5081

\[ {}\left (x +4 y\right ) y^{\prime }+4 x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5082

\[ {}\left (3+2 x +4 y\right ) y^{\prime } = 1+x +2 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5083

\[ {}\left (5+2 x -4 y\right ) y^{\prime } = x -2 y+3 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5084

\[ {}\left (5+3 x -4 y\right ) y^{\prime } = 2+7 x -3 y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5085

\[ {}4 \left (1-x -y\right ) y^{\prime }+2-x = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

5086

\[ {}\left (11-11 x -4 y\right ) y^{\prime } = 62-8 x -25 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5087

\[ {}\left (6+3 x +5 y\right ) y^{\prime } = 2+x +7 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5088

\[ {}\left (7 x +5 y\right ) y^{\prime }+10 x +8 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5090

\[ {}\left (5-x +6 y\right ) y^{\prime } = 3-x +4 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5091

\[ {}3 \left (x +2 y\right ) y^{\prime } = 1-x -2 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5092

\[ {}\left (7 y-3 x +3\right ) y^{\prime }+7-7 x +3 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5093

\[ {}\left (1+x +9 y\right ) y^{\prime }+1+x +5 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5094

\[ {}\left (8+5 x -12 y\right ) y^{\prime } = 3+2 x -5 y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5095

\[ {}\left (140+7 x -16 y\right ) y^{\prime }+25+8 x +y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5096

\[ {}\left (3+9 x +21 y\right ) y^{\prime } = 45+7 x -5 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5097

\[ {}\left (a x +b y\right ) y^{\prime }+x = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

5098

\[ {}\left (a x +b y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5099

\[ {}\left (a x +b y\right ) y^{\prime }+b x +a y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5100

\[ {}\left (a x +b y\right ) y^{\prime } = b x +a y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5101

\[ {}x y y^{\prime }+1+y^{2} = 0 \]

[_separable]

5102

\[ {}x y y^{\prime } = x +y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5103

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5104

\[ {}x y y^{\prime }+x^{4}-y^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5106

\[ {}x y y^{\prime } = x^{2}-x y+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5107

\[ {}x y y^{\prime }+2 x^{2}-2 x y-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5108

\[ {}x y y^{\prime } = a +b y^{2} \]

[_separable]

5109

\[ {}x y y^{\prime } = a \,x^{n}+b y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

5111

\[ {}x y y^{\prime }+x^{2} \operatorname {arccot}\left (\frac {y}{x}\right )-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5112

\[ {}x y y^{\prime }+x^{2} {\mathrm e}^{-\frac {2 y}{x}}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5113

\[ {}\left (1+x y\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5117

\[ {}x \left (y+2\right ) y^{\prime }+a x = 0 \]

[_quadrature]

5119

\[ {}x \left (4+y\right ) y^{\prime } = 2 x +2 y+y^{2} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5122

\[ {}x \left (x +y\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5123

\[ {}x \left (x -y\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5124

\[ {}x \left (x +y\right ) y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5125

\[ {}x \left (x -y\right ) y^{\prime }+2 x^{2}+3 x y-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5126

\[ {}x \left (x +y\right ) y^{\prime }-\left (x +y\right ) y+x \sqrt {x^{2}-y^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5128

\[ {}x \left (y+2 x \right ) y^{\prime } = x^{2}+x y-y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5129

\[ {}x \left (4 x -y\right ) y^{\prime }+4 x^{2}-6 x y-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5130

\[ {}x \left (x^{3}+y\right ) y^{\prime } = \left (x^{3}-y\right ) y \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5131

\[ {}x \left (2 x^{3}+y\right ) y^{\prime } = \left (2 x^{3}-y\right ) y \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5132

\[ {}x \left (2 x^{3}+y\right ) y^{\prime } = 6 y^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5134

\[ {}\left (x +a \right ) \left (x +b \right ) y^{\prime } = x y \]

[_separable]

5136

\[ {}2 x y y^{\prime }+a +y^{2} = 0 \]

[_separable]

5137

\[ {}2 x y y^{\prime } = a x +y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

5138

\[ {}2 x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

5139

\[ {}2 x y y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5140

\[ {}2 x y y^{\prime } = 4 x^{2} \left (2 x +1\right )+y^{2} \]

[_rational, _Bernoulli]

5143

\[ {}x \left (x -2 y\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5144

\[ {}x \left (x +2 y\right ) y^{\prime }+\left (2 x -y\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5145

\[ {}x \left (x -2 y\right ) y^{\prime }+\left (2 x -y\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5148

\[ {}2 x \left (2 x^{2}+y\right ) y^{\prime }+\left (12 x^{2}+y\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5150

\[ {}x \left (2 x +3 y\right ) y^{\prime } = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5151

\[ {}x \left (2 x +3 y\right ) y^{\prime }+3 \left (x +y\right )^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5154

\[ {}a x y y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5155

\[ {}a x y y^{\prime }+x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5156

\[ {}x \left (a +b y\right ) y^{\prime } = c y \]

[_separable]

5157

\[ {}x \left (x -a y\right ) y^{\prime } = y \left (y-a x \right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5158

\[ {}x \left (x^{n}+a y\right ) y^{\prime }+\left (b +c y\right ) y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

5161

\[ {}x \left (1-x y\right ) y^{\prime }+\left (1+x y\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5163

\[ {}x \left (2-x y\right ) y^{\prime }+2 y-x y^{2} \left (1+x y\right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

5164

\[ {}x \left (3-x y\right ) y^{\prime } = y \left (x y-1\right ) \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5167

\[ {}\left (x^{2}+1\right ) y y^{\prime }+x \left (1-y^{2}\right ) = 0 \]

[_separable]

5170

\[ {}x \left (1-2 x y\right ) y^{\prime }+y \left (1+2 x y\right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5171

\[ {}x \left (1+2 x y\right ) y^{\prime }+\left (2+3 x y\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5172

\[ {}x \left (1+2 x y\right ) y^{\prime }+\left (1+2 x y-x^{2} y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

5173

\[ {}x^{2} \left (x -2 y\right ) y^{\prime } = 2 x^{3}-4 x y^{2}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

5174

\[ {}2 \left (x +1\right ) x y y^{\prime } = 1+y^{2} \]

[_separable]

5175

\[ {}3 x^{2} y y^{\prime }+1+2 x y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

5176

\[ {}x^{2} \left (4 x -3 y\right ) y^{\prime } = \left (6 x^{2}-3 x y+2 y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

5177

\[ {}\left (1-x^{3} y\right ) y^{\prime } = x^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5178

\[ {}2 x^{3} y y^{\prime }+a +3 x^{2} y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

5180

\[ {}x \left (3+2 x^{2} y\right ) y^{\prime }+\left (4+3 x^{2} y\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5181

\[ {}8 x^{3} y y^{\prime }+3 x^{4}-6 x^{2} y^{2}-y^{4} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5182

\[ {}x y \left (b \,x^{2}+a \right ) y^{\prime } = A +B y^{2} \]

[_separable]

5183

\[ {}3 x^{4} y y^{\prime } = 1-2 x^{3} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

5192

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime }+x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5193

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime } = x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5194

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5195

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime }+x \left (x +2 y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5196

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (y+2 x \right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5197

\[ {}\left (1-x^{2}+y^{2}\right ) y^{\prime } = 1+x^{2}-y^{2} \]

[[_1st_order, _with_linear_symmetries], _rational]

5201

\[ {}\left (3 x^{2}-y^{2}\right ) y^{\prime } = 2 x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5202

\[ {}\left (x^{4}+y^{2}\right ) y^{\prime } = 4 x^{3} y \]

[[_homogeneous, ‘class G‘], _rational]

5207

\[ {}\left (1+y+x y+y^{2}\right ) y^{\prime }+1+y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

5208

\[ {}\left (x +y\right )^{2} y^{\prime } = a^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

5209

\[ {}\left (x -y\right )^{2} y^{\prime } = a^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

5210

\[ {}\left (x^{2}+2 x y-y^{2}\right ) y^{\prime }+x^{2}-2 x y+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5211

\[ {}\left (x +y\right )^{2} y^{\prime } = x^{2}-2 x y+5 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5212

\[ {}\left (a +b +x +y\right )^{2} y^{\prime } = 2 \left (a +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _rational]

5213

\[ {}\left (2 x^{2}+4 x y-y^{2}\right ) y^{\prime } = x^{2}-4 x y-2 y^{2} \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5214

\[ {}\left (3 x +y\right )^{2} y^{\prime } = 4 \left (3 x +2 y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5215

\[ {}\left (1-3 x -y\right )^{2} y^{\prime } = \left (1-2 y\right ) \left (3-6 x -4 y\right ) \]

[[_homogeneous, ‘class C‘], _rational]

5219

\[ {}\left (2 x^{2}+3 y^{2}\right ) y^{\prime }+x \left (3 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5221

\[ {}\left (3 x^{2}+2 x y+4 y^{2}\right ) y^{\prime }+2 x^{2}+6 x y+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5222

\[ {}\left (1-3 x +2 y\right )^{2} y^{\prime } = \left (4+2 x -3 y\right )^{2} \]

[[_homogeneous, ‘class C‘], _rational]

5225

\[ {}\left (x^{2}+a y^{2}\right ) y^{\prime } = x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5226

\[ {}\left (x^{2}+x y+a y^{2}\right ) y^{\prime } = a \,x^{2}+x y+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5227

\[ {}\left (a \,x^{2}+2 x y-a y^{2}\right ) y^{\prime }+x^{2}-2 y a x -y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5228

\[ {}\left (a \,x^{2}+2 b x y+c y^{2}\right ) y^{\prime }+k \,x^{2}+2 y a x +b y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5230

\[ {}x \left (3 x -y^{2}\right ) y^{\prime }+\left (5 x -2 y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5232

\[ {}x \left (1-x^{2}+y^{2}\right ) y^{\prime }+\left (1+x^{2}-y^{2}\right ) y = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5233

\[ {}x \left (a -x^{2}-y^{2}\right ) y^{\prime }+\left (a +x^{2}+y^{2}\right ) y = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5234

\[ {}x \left (2 x^{2}+y^{2}\right ) y^{\prime } = \left (2 x^{2}+3 y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5235

\[ {}\left (x \left (a -x^{2}-y^{2}\right )+y\right ) y^{\prime }+x -\left (a -x^{2}-y^{2}\right ) y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

5236

\[ {}x \left (a +y\right )^{2} y^{\prime } = b y^{2} \]

[_separable]

5237

\[ {}x \left (x^{2}-x y+y^{2}\right ) y^{\prime }+\left (x^{2}+x y+y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5238

\[ {}x \left (x^{2}-x y-y^{2}\right ) y^{\prime } = \left (x^{2}+x y-y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5239

\[ {}x \left (x^{2}+y a x +y^{2}\right ) y^{\prime } = \left (x^{2}+b x y+y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5240

\[ {}x \left (x^{2}-2 y^{2}\right ) y^{\prime } = \left (2 x^{2}-y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5241

\[ {}x \left (x^{2}+2 y^{2}\right ) y^{\prime } = \left (2 x^{2}+3 y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5242

\[ {}2 x \left (5 x^{2}+y^{2}\right ) y^{\prime } = x^{2} y-y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5243

\[ {}x \left (x^{2}+y a x +2 y^{2}\right ) y^{\prime } = \left (a x +2 y\right ) y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5244

\[ {}3 x y^{2} y^{\prime } = 2 x -y^{3} \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

5246

\[ {}x \left (x -3 y^{2}\right ) y^{\prime }+\left (2 x -y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

5249

\[ {}6 x y^{2} y^{\prime }+x +2 y^{3} = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

5250

\[ {}x \left (x +6 y^{2}\right ) y^{\prime }+x y-3 y^{3} = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5251

\[ {}x \left (x^{2}-6 y^{2}\right ) y^{\prime } = 4 \left (x^{2}+3 y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5252

\[ {}x \left (3 x -7 y^{2}\right ) y^{\prime }+\left (5 x -3 y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5254

\[ {}\left (1-x^{2} y^{2}\right ) y^{\prime } = x y^{3} \]

[[_homogeneous, ‘class G‘], _rational]

5255

\[ {}\left (1-x^{2} y^{2}\right ) y^{\prime } = \left (1+x y\right ) y^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5256

\[ {}x \left (1+x y^{2}\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5257

\[ {}x \left (1+x y^{2}\right ) y^{\prime } = \left (2-3 x y^{2}\right ) y \]

[[_homogeneous, ‘class G‘], _rational]

5263

\[ {}x^{3} \left (1+y^{2}\right ) y^{\prime }+3 x^{2} y = 0 \]

[_separable]

5264

\[ {}x \left (1-x y\right )^{2} y^{\prime }+\left (1+x^{2} y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5265

\[ {}\left (1-x^{4} y^{2}\right ) y^{\prime } = x^{3} y^{3} \]

[[_homogeneous, ‘class G‘], _rational]

5267

\[ {}\left (x^{3}-y^{3}\right ) y^{\prime }+x^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5268

\[ {}\left (x^{3}+y^{3}\right ) y^{\prime }+x^{2} \left (a x +3 y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5272

\[ {}\left (3 x^{2}+y^{2}\right ) y y^{\prime }+x \left (x^{2}+3 y^{2}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5274

\[ {}2 y^{3} y^{\prime } = x^{3}-x y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5276

\[ {}\left (3 x^{2}+2 y^{2}\right ) y y^{\prime }+x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5277

\[ {}\left (5 x^{2}+2 y^{2}\right ) y y^{\prime }+x \left (x^{2}+5 y^{2}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5279

\[ {}\left (3 x^{3}+6 x^{2} y-3 x y^{2}+20 y^{3}\right ) y^{\prime }+4 x^{3}+9 x^{2} y+6 x y^{2}-y^{3} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5280

\[ {}\left (x^{3}+a y^{3}\right ) y^{\prime } = x^{2} y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5282

\[ {}x \left (x -y^{3}\right ) y^{\prime } = \left (3 x +y^{3}\right ) y \]

[[_homogeneous, ‘class G‘], _rational]

5283

\[ {}x \left (2 x^{3}+y^{3}\right ) y^{\prime } = \left (2 x^{3}-x^{2} y+y^{3}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5284

\[ {}x \left (2 x^{3}-y^{3}\right ) y^{\prime } = \left (x^{3}-2 y^{3}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5285

\[ {}x \left (x^{3}+3 x^{2} y+y^{3}\right ) y^{\prime } = \left (3 x^{2}+y^{2}\right ) y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5286

\[ {}x \left (x^{3}-2 y^{3}\right ) y^{\prime } = \left (2 x^{3}-y^{3}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5287

\[ {}x \left (x^{4}-2 y^{3}\right ) y^{\prime }+\left (2 x^{4}+y^{3}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5291

\[ {}x \left (2-x y^{2}-2 x y^{3}\right ) y^{\prime }+1+2 y = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5295

\[ {}x \left (1-x y\right ) \left (1-x^{2} y^{2}\right ) y^{\prime }+\left (1+x y\right ) \left (1+x^{2} y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5296

\[ {}\left (x^{2}-y^{4}\right ) y^{\prime } = x y \]

[[_homogeneous, ‘class G‘], _rational]

5297

\[ {}\left (x^{3}-y^{4}\right ) y^{\prime } = 3 x^{2} y \]

[[_homogeneous, ‘class G‘], _rational]

5298

\[ {}\left (a^{2} x^{2}+\left (x^{2}+y^{2}\right )^{2}\right ) y^{\prime } = a^{2} x y \]

[_rational]

5299

\[ {}2 \left (x -y^{4}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class G‘], _rational]

5301

\[ {}\left (a \,x^{3}+\left (a x +b y\right )^{3}\right ) y y^{\prime }+x \left (\left (a x +b y\right )^{3}+b y^{3}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5303

\[ {}2 x \left (x^{3}+y^{4}\right ) y^{\prime } = \left (x^{3}+2 y^{4}\right ) y \]

[[_homogeneous, ‘class G‘], _rational]

5304

\[ {}x \left (1-x^{2} y^{4}\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5305

\[ {}\left (x^{2}-y^{5}\right ) y^{\prime } = 2 x y \]

[[_homogeneous, ‘class G‘], _rational]

5306

\[ {}x \left (x^{3}+y^{5}\right ) y^{\prime } = \left (x^{3}-y^{5}\right ) y \]

[[_homogeneous, ‘class G‘], _rational]

5308

\[ {}\left (1+a \left (x +y\right )\right )^{n} y^{\prime }+a \left (x +y\right )^{n} = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

5309

\[ {}x \left (a +x y^{n}\right ) y^{\prime }+b y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5313

\[ {}y^{\prime } \sqrt {y} = \sqrt {x} \]

[_separable]

5314

\[ {}\left (1+\sqrt {x +y}\right ) y^{\prime }+1 = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

5315

\[ {}y^{\prime } \sqrt {x y}+x -y = \sqrt {x y} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5316

\[ {}\left (x -2 \sqrt {x y}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _dAlembert]

5319

\[ {}\left (x -\sqrt {x^{2}+y^{2}}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5321

\[ {}x \left (x +\sqrt {x^{2}+y^{2}}\right ) y^{\prime }+y \sqrt {x^{2}+y^{2}} = 0 \]

[[_homogeneous, ‘class G‘], _dAlembert]

5322

\[ {}x y \left (x +\sqrt {x^{2}-y^{2}}\right ) y^{\prime } = x y^{2}-\left (x^{2}-y^{2}\right )^{{3}/{2}} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5323

\[ {}\left (x \sqrt {1+x^{2}+y^{2}}-y \left (x^{2}+y^{2}\right )\right ) y^{\prime } = x \left (x^{2}+y^{2}\right )+y \sqrt {1+x^{2}+y^{2}} \]

[[_1st_order, _with_linear_symmetries]]

5327

\[ {}\left (1+\left (x +y\right ) \tan \left (y\right )\right ) y^{\prime }+1 = 0 \]

[[_1st_order, _with_linear_symmetries]]

5328

\[ {}x \left (x -y \tan \left (\frac {y}{x}\right )\right ) y^{\prime }+\left (x +y \tan \left (\frac {y}{x}\right )\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5330

\[ {}\left (1-2 x -\ln \left (y\right )\right ) y^{\prime }+2 y = 0 \]

[[_1st_order, _with_linear_symmetries]]

5343

\[ {}{y^{\prime }}^{2} = a^{2} y^{2} \]

[_quadrature]

5345

\[ {}{y^{\prime }}^{2} = x^{2} y^{2} \]

[_separable]

5391

\[ {}{y^{\prime }}^{2}+y y^{\prime } = \left (x +y\right ) x \]

[_quadrature]

5392

\[ {}{y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0 \]

[[_1st_order, _with_linear_symmetries]]

5393

\[ {}{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+x y = 0 \]

[_quadrature]

5396

\[ {}{y^{\prime }}^{2}-2 \left (x -y\right ) y^{\prime }-4 x y = 0 \]

[_quadrature]

5402

\[ {}{y^{\prime }}^{2}+\left (a x +b y\right ) y^{\prime }+a b x y = 0 \]

[_quadrature]

5403

\[ {}{y^{\prime }}^{2}-x y y^{\prime }+y^{2} \ln \left (a y\right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

5404

\[ {}{y^{\prime }}^{2}-\left (1+2 x y\right ) y^{\prime }+2 x y = 0 \]

[_quadrature]

5406

\[ {}{y^{\prime }}^{2}-\left (x -y\right ) y y^{\prime }-x y^{3} = 0 \]

[_separable]

5409

\[ {}{y^{\prime }}^{2}-x y \left (x^{2}+y^{2}\right ) y^{\prime }+x^{4} y^{4} = 0 \]

[_separable]

5421

\[ {}4 {y^{\prime }}^{2}+2 x \,{\mathrm e}^{-2 y} y^{\prime }-{\mathrm e}^{-2 y} = 0 \]

[[_1st_order, _with_linear_symmetries]]

5451

\[ {}x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

[_quadrature]

5454

\[ {}x {y^{\prime }}^{2}-\left (1+x y\right ) y^{\prime }+y = 0 \]

[_quadrature]

5455

\[ {}x {y^{\prime }}^{2}+\left (1-x \right ) y y^{\prime }-y^{2} = 0 \]

[_quadrature]

5456

\[ {}x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-x y = 0 \]

[_quadrature]

5472

\[ {}x^{2} {y^{\prime }}^{2} = y^{2} \]

[_separable]

5474

\[ {}x^{2} {y^{\prime }}^{2} = \left (x -y\right )^{2} \]

[_linear]

5476

\[ {}x^{2} {y^{\prime }}^{2}-y^{\prime } x +y \left (1-y\right ) = 0 \]

[_separable]

5478

\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }-x +y \left (1+y\right ) = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

5483

\[ {}x^{2} {y^{\prime }}^{2}+2 x \left (y+2 x \right ) y^{\prime }-4 a +y^{2} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

5485

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

5487

\[ {}x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }-5 y^{2} = 0 \]

[_separable]

5489

\[ {}x^{2} {y^{\prime }}^{2}-5 x y y^{\prime }+6 y^{2} = 0 \]

[_separable]

5493

\[ {}x^{2} {y^{\prime }}^{2}+\left (a +b \,x^{2} y^{3}\right ) y^{\prime }+a b y^{3} = 0 \]

[_quadrature]

5501

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}-2 x y y^{\prime }-y^{2} = 0 \]

[_separable]

5527

\[ {}{y^{\prime }}^{2} y+\left (x -y\right ) y^{\prime }-x = 0 \]

[_quadrature]

5529

\[ {}{y^{\prime }}^{2} y-\left (1+x y\right ) y^{\prime }+x = 0 \]

[_quadrature]

5530

\[ {}{y^{\prime }}^{2} y+\left (x -y^{2}\right ) y^{\prime }-x y = 0 \]

[_quadrature]

5537

\[ {}\left (x^{2}-a y\right ) {y^{\prime }}^{2}-2 x y y^{\prime } = 0 \]

[_quadrature]

5538

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

[_quadrature]

5539

\[ {}x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}\right ) y^{\prime }+x y = 0 \]

[_separable]

5540

\[ {}x y {y^{\prime }}^{2}+\left (x^{2}-y^{2}\right ) y^{\prime }-x y = 0 \]

[_separable]

5541

\[ {}x y {y^{\prime }}^{2}-\left (x^{2}-y^{2}\right ) y^{\prime }-x y = 0 \]

[_separable]

5543

\[ {}x y {y^{\prime }}^{2}-\left (a -b \,x^{2}+y^{2}\right ) y^{\prime }-b x y = 0 \]

[_rational]

5544

\[ {}x y {y^{\prime }}^{2}+\left (3 x^{2}-2 y^{2}\right ) y^{\prime }-6 x y = 0 \]

[_separable]

5547

\[ {}y^{2} {y^{\prime }}^{2} = a^{2} \]

[_quadrature]

5552

\[ {}y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x = 0 \]

[_quadrature]

5564

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5565

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2}-\left (x^{2}-x y-2 y^{2}\right ) y^{\prime }-\left (x -y\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5569

\[ {}4 y^{2} {y^{\prime }}^{2}+2 \left (1+3 x \right ) x y y^{\prime }+3 x^{3} = 0 \]

[_separable]

5570

\[ {}\left (x^{2}-4 y^{2}\right ) {y^{\prime }}^{2}+6 x y y^{\prime }-4 x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5579

\[ {}4 x^{2} y^{2} {y^{\prime }}^{2} = \left (x^{2}+y^{2}\right )^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5586

\[ {}{y^{\prime }}^{3}+x -y = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

5602

\[ {}{y^{\prime }}^{3}-a x y y^{\prime }+2 a y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries]]

5603

\[ {}{y^{\prime }}^{3}-x y^{4} y^{\prime }-y^{5} = 0 \]

[[_1st_order, _with_linear_symmetries]]

5613

\[ {}{y^{\prime }}^{3}+\left (\cos \left (x \right ) \cot \left (x \right )-y\right ) {y^{\prime }}^{2}-\left (1+y \cos \left (x \right ) \cot \left (x \right )\right ) y^{\prime }+y = 0 \]

[_quadrature]

5614

\[ {}{y^{\prime }}^{3}+\left (2 x -y^{2}\right ) {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0 \]

[_quadrature]

5615

\[ {}{y^{\prime }}^{3}-\left (2 x +y^{2}\right ) {y^{\prime }}^{2}+\left (x^{2}-y^{2}+2 x y^{2}\right ) y^{\prime }-\left (x^{2}-y^{2}\right ) y^{2} = 0 \]

[_quadrature]

5616

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y+y^{2}\right ) {y^{\prime }}^{2}+x y \left (x^{2}+x y+y^{2}\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

5617

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y^{2}+y^{4}\right ) {y^{\prime }}^{2}+x y^{2} \left (x^{2}+x y^{2}+y^{4}\right ) y^{\prime }-x^{3} y^{6} = 0 \]

[_quadrature]

5620

\[ {}3 {y^{\prime }}^{3}-x^{4} y^{\prime }+2 x^{3} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

5624

\[ {}x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+x y\right ) y^{\prime }-x y = 0 \]

[_quadrature]

5625

\[ {}x {y^{\prime }}^{3}-2 {y^{\prime }}^{2} y+4 x^{2} = 0 \]

[[_1st_order, _with_linear_symmetries]]

5632

\[ {}2 x^{3} {y^{\prime }}^{3}+6 x^{2} y {y^{\prime }}^{2}-\left (1-6 x y\right ) y y^{\prime }+2 y^{3} = 0 \]

[[_homogeneous, ‘class G‘]]

5633

\[ {}x^{4} {y^{\prime }}^{3}-x^{3} y {y^{\prime }}^{2}-x^{2} y^{2} y^{\prime }+x y^{3} = 1 \]

[[_1st_order, _with_linear_symmetries]]

5634

\[ {}x^{6} {y^{\prime }}^{3}-y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries]]

5635

\[ {}y {y^{\prime }}^{3}-3 y^{\prime } x +3 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5637

\[ {}\left (x +2 y\right ) {y^{\prime }}^{3}+3 \left (x +y\right ) {y^{\prime }}^{2}+\left (y+2 x \right ) y^{\prime } = 0 \]

[_quadrature]

5638

\[ {}y^{2} {y^{\prime }}^{3}-y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries]]

5639

\[ {}y^{2} {y^{\prime }}^{3}+2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries]]

5640

\[ {}4 y^{2} {y^{\prime }}^{3}-2 y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries]]

5641

\[ {}16 y^{2} {y^{\prime }}^{3}+2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries]]

5644

\[ {}y^{4} {y^{\prime }}^{3}-6 y^{\prime } x +2 y = 0 \]

[[_1st_order, _with_linear_symmetries]]

5662

\[ {}2 \left (1+y\right )^{{3}/{2}}+3 y^{\prime } x -3 y = 0 \]

[_separable]

5674

\[ {}y^{\prime } \sin \left (y^{\prime }\right )+\cos \left (y^{\prime }\right ) = y \]

[_quadrature]

5678

\[ {}{\mathrm e}^{y^{\prime }-y}-{y^{\prime }}^{2}+1 = 0 \]

[_quadrature]

5680

\[ {}\ln \left (y^{\prime }\right )+y^{\prime } x +a = y \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5681

\[ {}\ln \left (y^{\prime }\right )+y^{\prime } x +a +b y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5682

\[ {}\ln \left (y^{\prime }\right )+4 y^{\prime } x -2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5683

\[ {}\ln \left (y^{\prime }\right )+a \left (-y+y^{\prime } x \right ) = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5685

\[ {}y \ln \left (y^{\prime }\right )+y^{\prime }-y \ln \left (y\right )-x y = 0 \]

[_separable]

5686

\[ {}y^{\prime } \ln \left (y^{\prime }\right )-\left (x +1\right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

5689

\[ {}y^{\prime } = \frac {x y}{x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5690

\[ {}y^{\prime } = \frac {x +y-3}{x -y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5691

\[ {}y^{\prime } = \frac {2 x +y-1}{4 x +2 y+5} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5692

\[ {}y^{\prime }-\frac {2 y}{x +1} = \left (x +1\right )^{2} \]

[_linear]

5694

\[ {}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5695

\[ {}y+x y^{2}-y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5701

\[ {}x y \left (x^{2}+1\right ) y^{\prime }-1-y^{2} = 0 \]

[_separable]

5705

\[ {}\left (y-x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5706

\[ {}\left (2 \sqrt {x y}-x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5707

\[ {}y^{\prime } x -y-\sqrt {x^{2}+y^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5708

\[ {}x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5709

\[ {}\left (7 x +5 y\right ) y^{\prime }+10 x +8 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5710

\[ {}2 x -y+1+\left (2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5711

\[ {}\left (7 y-3 x +3\right ) y^{\prime }+7-7 x +3 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5713

\[ {}x \left (-x^{2}+1\right ) y^{\prime }+\left (2 x^{2}-1\right ) y = a \,x^{3} \]

[_linear]

5716

\[ {}\left (x^{2}+1\right ) y^{\prime }+y = \arctan \left (x \right ) \]

[_linear]

5717

\[ {}\left (-x^{2}+1\right ) z^{\prime }-x z = a x z^{2} \]

[_separable]

5721

\[ {}y^{\prime } x +y = y^{2} \ln \left (x \right ) \]

[_Bernoulli]

5733

\[ {}-y+y^{\prime } x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5734

\[ {}\left (7 x +5 y\right ) y^{\prime }+10 x +8 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5735

\[ {}x^{2}+2 x y-y^{2}+\left (y^{2}+2 x y-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5736

\[ {}y^{2}+\left (x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5738

\[ {}\left (x^{2} y^{2}+x y\right ) y+\left (x^{2} y^{2}-1\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5739

\[ {}\left (x^{3} y^{3}+x^{2} y^{2}+x y+1\right ) y+\left (x^{3} y^{3}-x^{2} y^{2}-x y+1\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5763

\[ {}y = y^{\prime } x +x \sqrt {{y^{\prime }}^{2}+1} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5771

\[ {}2 x y+\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5772

\[ {}\left (x +\sqrt {y^{2}-x y}\right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5773

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5774

\[ {}y^{\prime } x -y-x \sin \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5775

\[ {}2 x^{2} y+y^{3}+\left (x y^{2}-2 x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5776

\[ {}y^{2}+\left (x \sqrt {y^{2}-x^{2}}-x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _dAlembert]

5777

\[ {}\frac {y \cos \left (\frac {y}{x}\right )}{x}-\left (\frac {x \sin \left (\frac {y}{x}\right )}{y}+\cos \left (\frac {y}{x}\right )\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5778

\[ {}y+x \ln \left (\frac {y}{x}\right ) y^{\prime }-2 y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5779

\[ {}2 y \,{\mathrm e}^{\frac {x}{y}}+\left (y-2 x \,{\mathrm e}^{\frac {x}{y}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5780

\[ {}x \,{\mathrm e}^{\frac {y}{x}}-y \sin \left (\frac {y}{x}\right )+x \sin \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5781

\[ {}x^{2}+y^{2} = 2 x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5782

\[ {}x \,{\mathrm e}^{\frac {y}{x}}+y = y^{\prime } x \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

5783

\[ {}y^{\prime }-\frac {y}{x}+\csc \left (\frac {y}{x}\right ) = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

5784

\[ {}x y-y^{2}-x^{2} y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5785

\[ {}x +2 y-4-\left (2 x -4 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5786

\[ {}3 x +2 y+1-\left (3 x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5788

\[ {}x +y-1+\left (2 x +2 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5789

\[ {}x +y-1-\left (x -y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5790

\[ {}x +y+\left (2 x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5791

\[ {}7 y-3+\left (2 x +1\right ) y^{\prime } = 0 \]

[_separable]

5792

\[ {}x +2 y+\left (3 x +6 y+3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5793

\[ {}x +2 y+\left (-1+y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5794

\[ {}3 x -2 y+4-\left (2 x +7 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5796

\[ {}3 x +2 y+3-\left (x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5797

\[ {}y+7+\left (2 x +y+3\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5798

\[ {}x +y+2-\left (x -y-4\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5819

\[ {}y \left (2 y^{3} x^{2}+3\right )+x \left (y^{3} x^{2}-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5825

\[ {}x^{2}-y^{2}-y-\left (x^{2}-y^{2}-x \right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

5839

\[ {}y^{\prime } x +y = x^{3} \]

[_linear]

5840

\[ {}y^{\prime }+a y = b \]

[_quadrature]

5841

\[ {}y^{\prime } x +y = y^{2} \ln \left (x \right ) \]

[_Bernoulli]

5842

\[ {}x^{\prime }+2 x y = {\mathrm e}^{-y^{2}} \]

[_linear]

5844

\[ {}y^{\prime }-\frac {2 x y}{x^{2}+1} = 1 \]

[_linear]

5848

\[ {}y^{\prime }+2 y = 3 \,{\mathrm e}^{-2 x} \]

[[_linear, ‘class A‘]]

5849

\[ {}y^{\prime }+2 y = \frac {3 \,{\mathrm e}^{-2 x}}{4} \]

[[_linear, ‘class A‘]]

5854

\[ {}-y+y^{\prime } x = x^{2} \sin \left (x \right ) \]

[_linear]

5855

\[ {}y^{\prime } x +x y^{2}-y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5856

\[ {}y^{\prime } x -y \left (-1+2 y \ln \left (x \right )\right ) = 0 \]

[_Bernoulli]

5857

\[ {}x^{2} \left (x -1\right ) y^{\prime }-y^{2}-x \left (x -2\right ) y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5858

\[ {}y^{\prime }-y = {\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

5864

\[ {}y^{\prime } = \frac {1}{x^{2}}-\frac {y}{x}-y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

5865

\[ {}y^{\prime } = 1+\frac {y}{x}-\frac {y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

5868

\[ {}\left (x +1\right ) y^{\prime }-1-y = \left (x +1\right ) \sqrt {1+y} \]

[[_1st_order, _with_linear_symmetries]]

5869

\[ {}{\mathrm e}^{y} \left (y^{\prime }+1\right ) = {\mathrm e}^{x} \]

[[_homogeneous, ‘class C‘], _dAlembert]

5871

\[ {}\left (x -y\right )^{2} y^{\prime } = 4 \]

[[_homogeneous, ‘class C‘], _dAlembert]

5872

\[ {}-y+y^{\prime } x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5873

\[ {}\left (3 x +2 y+1\right ) y^{\prime }+4 x +3 y+2 = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5874

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5875

\[ {}y+\left (1+y^{2} {\mathrm e}^{2 x}\right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries]]

5876

\[ {}x^{2} y+y^{2}+x^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

5878

\[ {}y^{\prime } = \left (x^{2}+2 y-1\right )^{{2}/{3}}-x \]

[[_1st_order, _with_linear_symmetries]]

5879

\[ {}y^{\prime } x +y = x^{2} \left (1+{\mathrm e}^{x}\right ) y^{2} \]

[_Bernoulli]

5880

\[ {}2 y-x y \ln \left (x \right )-2 x \ln \left (x \right ) y^{\prime } = 0 \]

[_separable]

5881

\[ {}y^{\prime }+a y = k \,{\mathrm e}^{b x} \]

[[_linear, ‘class A‘]]

5882

\[ {}y^{\prime } = \left (x +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

5886

\[ {}y^{\prime } x -y^{2}+1 = 0 \]

[_separable]

5888

\[ {}y^{\prime } x = x \,{\mathrm e}^{\frac {y}{x}}+x +y \]

[[_homogeneous, ‘class A‘], _dAlembert]

5890

\[ {}y^{\prime } x -y \left (\ln \left (x y\right )-1\right ) = 0 \]

[[_homogeneous, ‘class G‘]]

5891

\[ {}x^{3} y^{\prime }-y^{2}-x^{2} y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5892

\[ {}y^{\prime } x +a y+b \,x^{n} = 0 \]

[_linear]

5893

\[ {}y^{\prime } x -y-x \sin \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5894

\[ {}\left (x y-x^{2}\right ) y^{\prime }+y^{2}-3 x y-2 x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5896

\[ {}x^{2} y^{\prime }+y^{2}+x y+x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

5899

\[ {}\left (x^{2}-1\right ) y^{\prime }+x y-3 x y^{2} = 0 \]

[_separable]

5900

\[ {}\left (x^{2}-1\right ) y^{\prime }-2 x y \ln \left (y\right ) = 0 \]

[_separable]

5903

\[ {}\left (2 x y+4 x^{3}\right ) y^{\prime }+y^{2}+12 x^{2} y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5905

\[ {}\left (x^{2}-y\right ) y^{\prime }-4 x y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5906

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5907

\[ {}2 x y y^{\prime }+3 x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5908

\[ {}\left (2 x y^{3}-x^{4}\right ) y^{\prime }+2 x^{3} y-y^{4} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5909

\[ {}\left (x y-1\right )^{2} x y^{\prime }+\left (1+x^{2} y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5910

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (y+2 x \right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5911

\[ {}3 x y^{2} y^{\prime }+y^{3}-2 x = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

5912

\[ {}2 y^{3} y^{\prime }+x y^{2}-x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6019

\[ {}-a y^{3}-\frac {b}{x^{{3}/{2}}}+y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Abel]

6020

\[ {}a x y^{3}+b y^{2}+y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _Abel]

6025

\[ {}y^{\prime }+y \tan \left (x \right ) = 0 \]

[_separable]

6029

\[ {}y^{\prime } = {\mathrm e}^{a x}+a y \]

[[_linear, ‘class A‘]]

6032

\[ {}y^{\prime } = a y^{2} x \]

[_separable]

6034

\[ {}x y \left (x^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

6036

\[ {}y^{\prime }+b^{2} y^{2} = a^{2} \]

[_quadrature]

6037

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

6039

\[ {}a x y^{\prime }+2 y = x y y^{\prime } \]

[_separable]

6075

\[ {}y^{\prime }+y^{2} = \frac {a^{2}}{x^{4}} \]

[_rational, _Riccati]

6092

\[ {}y^{\prime } = y \]

[_quadrature]

6093

\[ {}y^{\prime } x = y \]
i.c.

[_separable]

6096

\[ {}x y y^{\prime }+1+y^{2} = 0 \]
i.c.

[_separable]

6100

\[ {}y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

6101

\[ {}\left (1+y\right ) y^{\prime } = y \]
i.c.

[_quadrature]

6102

\[ {}y^{\prime }-x y = x \]
i.c.

[_separable]

6103

\[ {}2 y^{\prime } = 3 \left (y-2\right )^{{1}/{3}} \]
i.c.

[_quadrature]

6104

\[ {}\left (x +x y\right ) y^{\prime }+y = 0 \]
i.c.

[_separable]

6120

\[ {}y^{\prime }+\frac {y}{x} = 2 x^{{3}/{2}} \sqrt {y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6121

\[ {}3 x y^{2} y^{\prime }+3 y^{3} = 1 \]

[_separable]

6123

\[ {}\left (x -y\right ) y^{\prime }+x +y+1 = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6125

\[ {}x^{2} y^{\prime }+y^{2}-x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6126

\[ {}y y^{\prime } = -x +\sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6127

\[ {}x y+\left (y^{2}-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6128

\[ {}y^{2}-x y+\left (x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6129

\[ {}y^{\prime } = \cos \left (x +y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

6130

\[ {}y^{\prime } = \frac {y}{x}-\tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

6131

\[ {}\left (x -1\right ) y^{\prime }+y-\frac {1}{x^{2}}+\frac {2}{x^{3}} = 0 \]

[_linear]

6132

\[ {}y^{\prime } = x y^{2}-\frac {2 y}{x}-\frac {1}{x^{3}} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

6134

\[ {}y^{\prime } = {\mathrm e}^{-x} y^{2}+y-{\mathrm e}^{x} \]

[[_1st_order, _with_linear_symmetries], _Riccati]

6208

\[ {}x^{2} y^{\prime }-x y = \frac {1}{x} \]

[_linear]

6214

\[ {}3 x^{3} y^{2} y^{\prime }-y^{3} x^{2} = 1 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6216

\[ {}y^{\prime }-2 y-y^{2} {\mathrm e}^{3 x} = 0 \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

6218

\[ {}y+2 x -y^{\prime } x = 0 \]

[_linear]

6224

\[ {}\left (y+2 x \right ) y^{\prime }-x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6226

\[ {}\sin \left (x \right )^{2} y^{\prime }+\sin \left (x \right )^{2}+\left (x +y\right ) \sin \left (2 x \right ) = 0 \]

[_linear]

6232

\[ {}3 x^{2} y+x^{3} y^{\prime } = 0 \]
i.c.

[_separable]

6233

\[ {}-y+y^{\prime } x = x^{2} \]
i.c.

[_linear]

6237

\[ {}y^{\prime } x = x y+y \]

[_separable]

6239

\[ {}y^{\prime } = 3 x^{2} y \]

[_separable]

6241

\[ {}y^{\prime } x = y \]

[_separable]

6256

\[ {}y^{\prime }-\sin \left (x +y\right ) = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

6257

\[ {}y^{\prime } = 4 y^{2}-3 y+1 \]

[_quadrature]

6262

\[ {}y^{\prime } x = \frac {1}{y^{3}} \]

[_separable]

6263

\[ {}x^{\prime } = 3 x t^{2} \]

[_separable]

6266

\[ {}x v^{\prime } = \frac {1-4 v^{2}}{3 v} \]

[_separable]

6267

\[ {}y^{\prime } = \frac {\sec \left (y\right )^{2}}{x^{2}+1} \]

[_separable]

6268

\[ {}y^{\prime } = 3 x^{2} \left (1+y^{2}\right )^{{3}/{2}} \]

[_separable]

6269

\[ {}x^{\prime }-x^{3} = x \]

[_quadrature]

6271

\[ {}\frac {y^{\prime }}{y}+y \,{\mathrm e}^{\cos \left (x \right )} \sin \left (x \right ) = 0 \]

[_separable]

6272

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (x \right ) \]
i.c.

[_separable]

6273

\[ {}y^{\prime } = x^{3} \left (1-y\right ) \]
i.c.

[_separable]

6277

\[ {}x^{2}+2 y y^{\prime } = 0 \]
i.c.

[_separable]

6279

\[ {}y^{\prime } = 8 x^{3} {\mathrm e}^{-2 y} \]
i.c.

[_separable]

6280

\[ {}y^{\prime } = x^{2} \left (1+y\right ) \]
i.c.

[_separable]

6284

\[ {}y^{\prime } = \sqrt {1+\sin \left (x \right )}\, \left (1+y^{2}\right ) \]
i.c.

[_separable]

6285

\[ {}y^{\prime } = 2 y-2 t y \]
i.c.

[_separable]

6286

\[ {}y^{\prime } = y^{{1}/{3}} \]

[_quadrature]

6287

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

6288

\[ {}y^{\prime } = \left (x -3\right ) \left (1+y\right )^{{2}/{3}} \]

[_separable]

6289

\[ {}y^{\prime } = x y^{3} \]

[_separable]

6290

\[ {}y^{\prime } = x y^{3} \]
i.c.

[_separable]

6291

\[ {}y^{\prime } = x y^{3} \]
i.c.

[_separable]

6292

\[ {}y^{\prime } = x y^{3} \]
i.c.

[_separable]

6293

\[ {}y^{\prime } = y^{2}-3 y+2 \]
i.c.

[_quadrature]

6296

\[ {}\left (t^{2}+1\right ) y^{\prime } = t y-y \]

[_separable]

6299

\[ {}3 r = r^{\prime }-\theta ^{3} \]

[[_linear, ‘class A‘]]

6300

\[ {}y^{\prime }-y-{\mathrm e}^{3 x} = 0 \]

[[_linear, ‘class A‘]]

6301

\[ {}y^{\prime } = \frac {y}{x}+2 x +1 \]

[_linear]

6303

\[ {}y^{\prime } x +2 y = \frac {1}{x^{3}} \]

[_linear]

6304

\[ {}t +y+1-y^{\prime } = 0 \]

[[_linear, ‘class A‘]]

6305

\[ {}y^{\prime } = x^{2} {\mathrm e}^{-4 x}-4 y \]

[[_linear, ‘class A‘]]

6306

\[ {}y x^{\prime }+2 x = 5 y^{3} \]

[_linear]

6308

\[ {}\left (x^{2}+1\right ) y^{\prime }+x y-x = 0 \]

[_separable]

6310

\[ {}y^{\prime }-\frac {y}{x} = x \,{\mathrm e}^{x} \]
i.c.

[_linear]

6311

\[ {}y^{\prime }+4 y-{\mathrm e}^{-x} = 0 \]
i.c.

[[_linear, ‘class A‘]]

6313

\[ {}y^{\prime }+\frac {3 y}{x}+2 = 3 x \]
i.c.

[_linear]

6317

\[ {}\left ({\mathrm e}^{4 y}+2 x \right ) y^{\prime }-1 = 0 \]

[[_1st_order, _with_exponential_symmetries]]

6319

\[ {}y^{\prime }+\frac {3 y}{x} = x^{2} \]

[_linear]

6321

\[ {}u^{\prime } = \alpha \left (1-u\right )-\beta u \]

[_quadrature]

6322

\[ {}x^{2} y+x^{4} \cos \left (x \right )-x^{3} y^{\prime } = 0 \]

[_linear]

6323

\[ {}x^{{10}/{3}}-2 y+y^{\prime } x = 0 \]

[_linear]

6324

\[ {}\sqrt {-2 y-y^{2}}+\left (-x^{2}+2 x +3\right ) y^{\prime } = 0 \]

[_separable]

6340

\[ {}y^{\prime }-4 y = 32 x^{2} \]

[[_linear, ‘class A‘]]

6342

\[ {}y^{\prime }+\frac {3 y}{x} = x^{2}-4 x +3 \]

[_linear]

6343

\[ {}2 x y^{3}-\left (-x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

6344

\[ {}t^{3} y^{2}+\frac {t^{4} y^{\prime }}{y^{6}} = 0 \]

[_separable]

6398

\[ {}y^{\prime }-y = {\mathrm e}^{2 x} \]

[[_linear, ‘class A‘]]

6399

\[ {}x^{2} y^{\prime }+2 x y-x +1 = 0 \]
i.c.

[_linear]

6400

\[ {}y^{\prime }+y = \left (x +1\right )^{2} \]
i.c.

[[_linear, ‘class A‘]]

6402

\[ {}y^{\prime }+\frac {y}{1-x}+2 x -x^{2} = 0 \]

[_linear]

6403

\[ {}y^{\prime }+\frac {y}{1-x}+x -x^{2} = 0 \]

[_linear]

6404

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1+x y \]

[_linear]

6405

\[ {}y^{\prime }+x y = x y^{2} \]

[_separable]

6406

\[ {}3 y^{\prime } x +y+x^{2} y^{4} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6415

\[ {}y^{\prime }-\frac {2 y}{x}-x^{2} = 0 \]

[_linear]

6416

\[ {}y^{\prime }+\frac {2 y}{x}-x^{3} = 0 \]

[_linear]

6419

\[ {}\left (x +1\right )^{2} y^{\prime } = 1+y^{2} \]

[_separable]

6420

\[ {}y^{\prime }+2 y = {\mathrm e}^{3 x} \]

[[_linear, ‘class A‘]]

6421

\[ {}-y+y^{\prime } x = x^{2} \]

[_linear]

6423

\[ {}x \cos \left (y\right ) y^{\prime }-\sin \left (y\right ) = 0 \]

[_separable]

6424

\[ {}\left (x^{3}+x y^{2}\right ) y^{\prime } = 2 y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6425

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y = x \]

[_separable]

6427

\[ {}y^{\prime } x -2 y = x^{3} \cos \left (x \right ) \]

[_linear]

6428

\[ {}y^{\prime }+\frac {y}{x} = y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6429

\[ {}y^{\prime } x +3 y = x^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6430

\[ {}x \left (y-3\right ) y^{\prime } = 4 y \]

[_separable]

6431

\[ {}\left (x^{3}+1\right ) y^{\prime } = x^{2} y \]
i.c.

[_separable]

6432

\[ {}x^{3}+\left (1+y\right )^{2} y^{\prime } = 0 \]

[_separable]

6435

\[ {}\left (2 y-x \right ) y^{\prime } = y+2 x \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6436

\[ {}x y+y^{2}+\left (x^{2}-x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6437

\[ {}x^{3}+y^{3} = 3 x y^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6438

\[ {}y-3 x +\left (4 y+3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6439

\[ {}\left (x^{3}+3 x y^{2}\right ) y^{\prime } = y^{3}+3 x^{2} y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6445

\[ {}\left (3 x +3 y-4\right ) y^{\prime } = -x -y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6447

\[ {}x -y-1+\left (4 y+x -1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6448

\[ {}\left (7 y-3 x +3\right ) y^{\prime }+7-7 x +3 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6449

\[ {}\left (1+x y\right ) y+x \left (1+x y+x^{2} y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

6457

\[ {}x^{2}-2 x y+5 y^{2} = \left (x^{2}+2 x y+y^{2}\right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6459

\[ {}y+\left (x^{2}-4 x \right ) y^{\prime } = 0 \]

[_separable]

6461

\[ {}y^{\prime } = \frac {2 x y+y^{2}}{x^{2}+2 x y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6462

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \left (1+y\right ) \]

[_separable]

6463

\[ {}y^{\prime } x +2 y = 3 x -1 \]
i.c.

[_linear]

6464

\[ {}x^{2} y^{\prime } = y^{2}-x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6465

\[ {}y^{\prime } = {\mathrm e}^{3 x -2 y} \]
i.c.

[_separable]

6467

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6468

\[ {}2 x y y^{\prime } = x^{2}-y^{2} \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

6469

\[ {}y^{\prime } = \frac {x -2 y+1}{2 x -4 y} \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6470

\[ {}\left (-x^{3}+1\right ) y^{\prime }+x^{2} y = x^{2} \left (-x^{3}+1\right ) \]

[_linear]

6472

\[ {}y^{\prime }+x +x y^{2} = 0 \]
i.c.

[_separable]

6475

\[ {}x \left (1+y^{2}\right )-y \left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

6478

\[ {}y^{\prime }+\frac {y}{x} = x y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6516

\[ {}y^{\prime }-5 y = 3 \,{\mathrm e}^{x}-2 x +1 \]

[[_linear, ‘class A‘]]

6523

\[ {}y^{\prime }-y = {\mathrm e}^{x} \]

[[_linear, ‘class A‘]]

6533

\[ {}y^{\prime }+\frac {4 y}{x} = x^{4} \]

[_linear]

6542

\[ {}y^{\prime }-\frac {y}{x} = x^{2} \]

[_linear]

6569

\[ {}y^{\prime } x = 2 y \]

[_separable]

6570

\[ {}y y^{\prime }+x = 0 \]

[_separable]

6572

\[ {}2 x^{3} y^{\prime } = y \left (3 x^{2}+y^{2}\right ) \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6579

\[ {}4 y+y^{\prime } x = 0 \]

[_separable]

6580

\[ {}1+2 y+\left (-x^{2}+4\right ) y^{\prime } = 0 \]

[_separable]

6581

\[ {}y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

6582

\[ {}1+y-\left (x +1\right ) y^{\prime } = 0 \]

[_separable]

6583

\[ {}x y^{2}+y+\left (x^{2} y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6584

\[ {}x \sin \left (\frac {y}{x}\right )-y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

6586

\[ {}y \sqrt {x^{2}+y^{2}}-x \left (x +\sqrt {x^{2}+y^{2}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _dAlembert]

6587

\[ {}x +y+1+\left (2 x +2 y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6588

\[ {}1+2 y-\left (4-x \right ) y^{\prime } = 0 \]

[_separable]

6589

\[ {}\left (x^{2}+1\right ) y^{\prime }+x y = 0 \]

[_separable]

6590

\[ {}x +2 y+\left (2 x +3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6591

\[ {}2 y^{\prime } x -2 y = \sqrt {x^{2}+4 y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6592

\[ {}\left (7 y-3 x +3\right ) y^{\prime }+7-7 x +3 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6594

\[ {}y^{2}-x^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6595

\[ {}y \left (1+2 x y\right )+x \left (1-x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6596

\[ {}1+\left (-x^{2}+1\right ) \cot \left (y\right ) y^{\prime } = 0 \]

[_separable]

6597

\[ {}x^{3}+y^{3}+3 x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

6598

\[ {}3 x +2 y+1-\left (3 x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6599

\[ {}y^{\prime } x +2 y = 0 \]
i.c.

[_separable]

6600

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6603

\[ {}y^{\prime } = -2 \left (2 x +3 y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

6615

\[ {}y \left (x -2 y\right )-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6616

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6617

\[ {}x^{2}+y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

6619

\[ {}x +y+1-\left (x -y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6632

\[ {}1+y^{2} = \left (x^{2}+x \right ) y^{\prime } \]

[_separable]

6641

\[ {}y^{\prime }+y = 2+2 x \]

[[_linear, ‘class A‘]]

6642

\[ {}y^{\prime }-y = x y \]

[_separable]

6643

\[ {}-3 y-\left (x -2\right ) {\mathrm e}^{x}+y^{\prime } x = 0 \]

[_linear]

6645

\[ {}y^{\prime }+y = y^{2} {\mathrm e}^{x} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

6648

\[ {}y^{\prime } x +y-x^{3} y^{6} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6655

\[ {}2+y^{2}-\left (x y+2 y+y^{3}\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

6657

\[ {}2 x y^{5}-y+2 y^{\prime } x = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6659

\[ {}y^{\prime } x = 2 y+x^{3} {\mathrm e}^{x} \]
i.c.

[_linear]

6666

\[ {}x^{2} {y^{\prime }}^{2}+x y y^{\prime }-6 y^{2} = 0 \]

[_separable]

6667

\[ {}x {y^{\prime }}^{2}+\left (y-1-x^{2}\right ) y^{\prime }-x \left (-1+y\right ) = 0 \]

[_quadrature]

6676

\[ {}y = 2 y^{\prime } x +y^{2} {y^{\prime }}^{3} \]

[[_1st_order, _with_linear_symmetries]]

6689

\[ {}{y^{\prime }}^{3}-4 x^{4} y^{\prime }+8 x^{3} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

6794

\[ {}y^{\prime } x = 1-x +2 y \]

[_linear]

6883

\[ {}\sin \left (y^{\prime }\right ) = x +y \]

[[_homogeneous, ‘class C‘], _dAlembert]

6885

\[ {}y^{2}-1+y^{\prime } x = 0 \]

[_separable]

6886

\[ {}2 y^{\prime }+y = 0 \]

[_quadrature]

6887

\[ {}y^{\prime }+20 y = 24 \]

[_quadrature]

6891

\[ {}y^{\prime } = 25+y^{2} \]

[_quadrature]

6892

\[ {}y^{\prime } = 2 x y^{2} \]

[_separable]

6893

\[ {}2 y^{\prime } = y^{3} \cos \left (x \right ) \]

[_separable]

6894

\[ {}x^{\prime } = \left (x-1\right ) \left (1-2 x\right ) \]

[_quadrature]

6895

\[ {}2 x y+\left (x^{2}-y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6896

\[ {}p^{\prime } = p \left (1-p\right ) \]

[_quadrature]

6897

\[ {}y^{\prime }+4 x y = 8 x^{3} \]

[_linear]

6904

\[ {}y^{\prime } x -2 y = 0 \]

[_separable]

6905

\[ {}y^{\prime } = -\frac {x}{y} \]

[_separable]

6906

\[ {}y^{\prime }+2 y = 0 \]

[_quadrature]

6907

\[ {}5 y^{\prime } = 2 y \]

[_quadrature]

6914

\[ {}3 y^{\prime } x +5 y = 10 \]

[_separable]

6915

\[ {}y^{\prime } = y^{2}+2 y-3 \]

[_quadrature]

6916

\[ {}\left (-1+y\right ) y^{\prime } = 1 \]

[_quadrature]

6920

\[ {}y y^{\prime }+\sqrt {16-y^{2}} = 0 \]

[_quadrature]

6924

\[ {}y^{\prime } = \sqrt {1-y^{2}} \]

[_quadrature]

6929

\[ {}y^{\prime } = 5-y \]

[_quadrature]

6930

\[ {}y^{\prime } = y^{2}+4 \]

[_quadrature]

6933

\[ {}y^{\prime } = y-y^{2} \]
i.c.

[_quadrature]

6934

\[ {}y^{\prime } = y-y^{2} \]
i.c.

[_quadrature]

6935

\[ {}y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

6936

\[ {}y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

6937

\[ {}y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

6938

\[ {}y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

6947

\[ {}y^{\prime } = 3 y^{{2}/{3}} \]
i.c.

[_quadrature]

6948

\[ {}y^{\prime } x = 2 y \]
i.c.

[_separable]

6950

\[ {}y^{\prime } = \sqrt {x y} \]

[[_homogeneous, ‘class G‘]]

6951

\[ {}y^{\prime } x = y \]

[_separable]

6952

\[ {}y^{\prime }-y = x \]

[[_linear, ‘class A‘]]

6955

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime } = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6956

\[ {}\left (y-x \right ) y^{\prime } = x +y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6961

\[ {}y^{\prime } x = y \]
i.c.

[_separable]

6962

\[ {}y^{\prime } = 1+y^{2} \]
i.c.

[_quadrature]

6963

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

6964

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

6965

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

6966

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

6967

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

6968

\[ {}y y^{\prime } = 3 x \]
i.c.

[_separable]

6969

\[ {}y y^{\prime } = 3 x \]
i.c.

[_separable]

6977

\[ {}y^{\prime } = x -2 y \]
i.c.

[[_linear, ‘class A‘]]

6980

\[ {}y^{\prime }+2 y = 3 x -6 \]

[[_linear, ‘class A‘]]

6984

\[ {}y^{\prime } = 2 y-4 \]

[_quadrature]

6985

\[ {}y^{\prime } x = y \]

[_separable]

6989

\[ {}y^{\prime } = y \left (y-3\right ) \]

[_quadrature]

6990

\[ {}3 y^{\prime } x -2 y = 0 \]

[_separable]

6991

\[ {}\left (2 y-2\right ) y^{\prime } = 2 x -1 \]
i.c.

[_separable]

6992

\[ {}y^{\prime } x +y = 2 x \]
i.c.

[_linear]

7004

\[ {}y^{\prime } x +y = \frac {1}{y^{2}} \]

[_separable]

7007

\[ {}\left (1-x y\right ) y^{\prime } = y^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7009

\[ {}y^{\prime }+2 y = 3 x \]

[[_linear, ‘class A‘]]

7032

\[ {}y^{\prime } = x +y \]
i.c.

[[_linear, ‘class A‘]]

7033

\[ {}y^{\prime } = x +y \]
i.c.

[[_linear, ‘class A‘]]

7034

\[ {}y y^{\prime } = -x \]
i.c.

[_separable]

7035

\[ {}y y^{\prime } = -x \]
i.c.

[_separable]

7036

\[ {}y^{\prime } = \frac {1}{y} \]
i.c.

[_quadrature]

7037

\[ {}y^{\prime } = \frac {1}{y} \]
i.c.

[_quadrature]

7038

\[ {}y^{\prime } = \frac {x^{2}}{5}+y \]
i.c.

[[_linear, ‘class A‘]]

7039

\[ {}y^{\prime } = \frac {x^{2}}{5}+y \]
i.c.

[[_linear, ‘class A‘]]

7040

\[ {}y^{\prime } = x \,{\mathrm e}^{y} \]
i.c.

[_separable]

7041

\[ {}y^{\prime } = x \,{\mathrm e}^{y} \]
i.c.

[_separable]

7044

\[ {}y^{\prime } = 1-\frac {y}{x} \]
i.c.

[_linear]

7045

\[ {}y^{\prime } = 1-\frac {y}{x} \]
i.c.

[_linear]

7046

\[ {}y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

7049

\[ {}y^{\prime } = x^{2}-2 y \]

[[_linear, ‘class A‘]]

7050

\[ {}y^{\prime } = y-y^{3} \]

[_quadrature]

7051

\[ {}y^{\prime } = y^{2}-y^{4} \]

[_quadrature]

7052

\[ {}y^{\prime } = y^{2}-3 y \]

[_quadrature]

7053

\[ {}y^{\prime } = y^{2}-y^{3} \]

[_quadrature]

7054

\[ {}y^{\prime } = \left (y-2\right )^{4} \]

[_quadrature]

7055

\[ {}y^{\prime } = 10+3 y-y^{2} \]

[_quadrature]

7056

\[ {}y^{\prime } = y^{2} \left (4-y^{2}\right ) \]

[_quadrature]

7057

\[ {}y^{\prime } = y \left (2-y\right ) \left (4-y\right ) \]

[_quadrature]

7058

\[ {}y^{\prime } = y \ln \left (y+2\right ) \]

[_quadrature]

7059

\[ {}y^{\prime } = \left (y \,{\mathrm e}^{y}-9 y\right ) {\mathrm e}^{-y} \]

[_quadrature]

7060

\[ {}y^{\prime } = \frac {2 y}{\pi }-\sin \left (y\right ) \]

[_quadrature]

7061

\[ {}y^{\prime } = y^{2}-y-6 \]

[_quadrature]

7062

\[ {}m v^{\prime } = m g -k v^{2} \]

[_quadrature]

7066

\[ {}y^{\prime }-\left (-1+y\right )^{2} = 0 \]

[_quadrature]

7067

\[ {}y^{\prime } x = 4 y \]

[_separable]

7068

\[ {}y^{\prime }+2 x y^{2} = 0 \]

[_separable]

7069

\[ {}y^{\prime } = {\mathrm e}^{3 x +2 y} \]

[_separable]

7072

\[ {}y^{\prime } = \frac {\left (2 y+3\right )^{2}}{\left (4 x +5\right )^{2}} \]

[_separable]

7077

\[ {}s^{\prime } = k s \]

[_quadrature]

7078

\[ {}q^{\prime } = k \left (q-70\right ) \]

[_quadrature]

7079

\[ {}p^{\prime } = p-p^{2} \]

[_quadrature]

7080

\[ {}n^{\prime }+n = n t \,{\mathrm e}^{t +2} \]

[_separable]

7084

\[ {}\left ({\mathrm e}^{x}+{\mathrm e}^{-x}\right ) y^{\prime } = y^{2} \]

[_separable]

7085

\[ {}x^{\prime } = 4 x^{2}+4 \]
i.c.

[_quadrature]

7086

\[ {}y^{\prime } = \frac {y^{2}-1}{x^{2}-1} \]
i.c.

[_separable]

7087

\[ {}x^{2} y^{\prime } = y-x y \]
i.c.

[_separable]

7088

\[ {}y^{\prime }+2 y = 1 \]
i.c.

[_quadrature]

7089

\[ {}\sqrt {1-y^{2}}-\sqrt {-x^{2}+1}\, y^{\prime } = 0 \]
i.c.

[_separable]

7090

\[ {}\left (x^{4}+1\right ) y^{\prime }+x \left (1+4 y^{2}\right ) = 0 \]
i.c.

[_separable]

7091

\[ {}y^{\prime } = -y \ln \left (y\right ) \]
i.c.

[_quadrature]

7092

\[ {}x \sinh \left (y\right ) y^{\prime } = \cosh \left (y\right ) \]
i.c.

[_separable]

7093

\[ {}y^{\prime } = y \,{\mathrm e}^{-x^{2}} \]
i.c.

[_separable]

7094

\[ {}y^{\prime } = y^{2} \sin \left (x^{2}\right ) \]
i.c.

[_separable]

7095

\[ {}y^{\prime } = \left (1+y^{2}\right ) \sqrt {1+\cos \left (x^{3}\right )} \]
i.c.

[_separable]

7097

\[ {}y^{\prime } = \frac {1+3 x}{2 y} \]
i.c.

[_separable]

7099

\[ {}{\mathrm e}^{y}-{\mathrm e}^{-x} y^{\prime } = 0 \]
i.c.

[_separable]

7103

\[ {}y^{\prime } = y^{2}-4 \]
i.c.

[_quadrature]

7104

\[ {}y^{\prime } x = y^{2}-y \]
i.c.

[_separable]

7106

\[ {}y^{\prime } x = y^{2}-y \]
i.c.

[_separable]

7107

\[ {}y^{\prime } x = y^{2}-y \]
i.c.

[_separable]

7109

\[ {}y^{\prime } = \left (-1+y\right )^{2} \]
i.c.

[_quadrature]

7110

\[ {}y^{\prime } = \left (-1+y\right )^{2} \]
i.c.

[_quadrature]

7111

\[ {}y^{\prime } = \left (-1+y\right )^{2}+\frac {1}{100} \]
i.c.

[_quadrature]

7112

\[ {}y^{\prime } = \left (-1+y\right )^{2}-\frac {1}{100} \]
i.c.

[_quadrature]

7113

\[ {}y^{\prime } = y-y^{3} \]
i.c.

[_quadrature]

7114

\[ {}y^{\prime } = y-y^{3} \]
i.c.

[_quadrature]

7115

\[ {}y^{\prime } = y-y^{3} \]
i.c.

[_quadrature]

7116

\[ {}y^{\prime } = y-y^{3} \]
i.c.

[_quadrature]

7117

\[ {}y^{\prime } = \frac {1}{y-3} \]
i.c.

[_quadrature]

7118

\[ {}y^{\prime } = \frac {1}{y-3} \]
i.c.

[_quadrature]

7119

\[ {}y^{\prime } = \frac {1}{y-3} \]
i.c.

[_quadrature]

7120

\[ {}y^{\prime } = \frac {1}{y-3} \]
i.c.

[_quadrature]

7124

\[ {}y^{\prime } = y^{{2}/{3}}-y \]

[_quadrature]

7127

\[ {}y^{\prime } = -\frac {x}{y} \]
i.c.

[_separable]

7128

\[ {}y^{\prime } = x \sqrt {y} \]

[_separable]

7129

\[ {}y^{\prime } = \sqrt {1+y^{2}}\, \sin \left (y\right )^{2} \]
i.c.

[_quadrature]

7130

\[ {}y^{\prime } = y \]
i.c.

[_quadrature]

7131

\[ {}y^{\prime } = y+\frac {y}{x \ln \left (x \right )} \]
i.c.

[_separable]

7134

\[ {}m^{\prime } = -\frac {k}{m^{2}} \]
i.c.

[_quadrature]

7135

\[ {}u^{\prime } = a \sqrt {1+u^{2}} \]
i.c.

[_quadrature]

7136

\[ {}x^{\prime } = k \left (A -x\right )^{2} \]
i.c.

[_quadrature]

7145

\[ {}y^{\prime } = 5 y \]

[_quadrature]

7146

\[ {}y^{\prime }+2 y = 0 \]

[_quadrature]

7147

\[ {}y^{\prime }+y = {\mathrm e}^{3 x} \]

[[_linear, ‘class A‘]]

7148

\[ {}3 y^{\prime }+12 y = 4 \]

[_quadrature]

7149

\[ {}y^{\prime }+3 x^{2} y = x^{2} \]

[_separable]

7150

\[ {}y^{\prime }+2 x y = x^{3} \]

[_linear]

7151

\[ {}x^{2} y^{\prime }+x y = 1 \]

[_linear]

7152

\[ {}y^{\prime } = 2 y+x^{2}+5 \]

[[_linear, ‘class A‘]]

7153

\[ {}-y+y^{\prime } x = x^{2} \sin \left (x \right ) \]

[_linear]

7154

\[ {}y^{\prime } x +2 y = 3 \]

[_separable]

7155

\[ {}4 y+y^{\prime } x = x^{3}-x \]

[_linear]

7159

\[ {}y-4 \left (x +y^{6}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

7164

\[ {}\left (x +2\right )^{2} y^{\prime } = 5-8 y-4 x y \]

[_linear]

7166

\[ {}p^{\prime }+2 t p = p+4 t -2 \]

[_separable]

7167

\[ {}y^{\prime } x +\left (1+3 x \right ) y = {\mathrm e}^{-3 x} \]

[_linear]

7168

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 y = \left (x +1\right )^{2} \]

[_linear]

7169

\[ {}y^{\prime } = x +5 y \]
i.c.

[[_linear, ‘class A‘]]

7170

\[ {}y^{\prime } = 2 x -3 y \]
i.c.

[[_linear, ‘class A‘]]

7173

\[ {}L i^{\prime }+R i = E \]
i.c.

[_quadrature]

7174

\[ {}T^{\prime } = k \left (T-T_{m} \right ) \]
i.c.

[_quadrature]

7175

\[ {}y^{\prime } x +y = 4 x +1 \]
i.c.

[_linear]

7179

\[ {}y^{\prime }-\sin \left (x \right ) y = 2 \sin \left (x \right ) \]
i.c.

[_separable]

7192

\[ {}y^{\prime }-\sin \left (x^{2}\right ) y = 0 \]
i.c.

[_separable]

7193

\[ {}1 = \left (x +y^{2}\right ) y^{\prime } \]

[[_1st_order, _with_exponential_symmetries]]

7199

\[ {}e^{\prime } = -\frac {e}{r c} \]
i.c.

[_quadrature]

7200

\[ {}2 x -1+\left (3 y+7\right ) y^{\prime } = 0 \]

[_separable]

7382

\[ {}y^{\prime } = \frac {x^{2}}{y} \]

[_separable]

7384

\[ {}y^{\prime } = \sin \left (x \right ) y \]

[_separable]

7385

\[ {}y^{\prime } x = \sqrt {1-y^{2}} \]

[_separable]

7387

\[ {}x y y^{\prime } = \sqrt {1+y^{2}} \]

[_separable]

7388

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

7390

\[ {}y^{\prime } x +y = y^{2} \]
i.c.

[_separable]

7391

\[ {}2 x^{2} y y^{\prime }+y^{2} = 2 \]

[_separable]

7392

\[ {}y^{\prime }-x y^{2} = 2 x y \]

[_separable]

7393

\[ {}\left (1+z^{\prime }\right ) {\mathrm e}^{-z} = 1 \]

[_quadrature]

7396

\[ {}\frac {y}{x -1}+\frac {x y^{\prime }}{1+y} = 0 \]

[_separable]

7398

\[ {}\frac {1}{\sqrt {x}}+\frac {y^{\prime }}{\sqrt {y}} = 0 \]

[_separable]

7399

\[ {}\frac {1}{\sqrt {-x^{2}+1}}+\frac {y^{\prime }}{\sqrt {1-y^{2}}} = 0 \]

[_separable]

7401

\[ {}y^{\prime } = \left (-1+y\right ) \left (x +1\right ) \]

[_separable]

7402

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

7403

\[ {}y^{\prime } = \frac {\sqrt {y}}{\sqrt {x}} \]

[_separable]

7404

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]

[_separable]

7405

\[ {}z^{\prime } = 10^{x +z} \]

[_separable]

7407

\[ {}y^{\prime } = \cos \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

7408

\[ {}y^{\prime }-y = 2 x -3 \]

[[_linear, ‘class A‘]]

7410

\[ {}y^{\prime }+y = 2 x +1 \]

[[_linear, ‘class A‘]]

7411

\[ {}y^{\prime } = \cos \left (x -y-1\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

7412

\[ {}y^{\prime }+\sin \left (x +y\right )^{2} = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

7413

\[ {}y^{\prime } = 2 \sqrt {2 x +y+1} \]

[[_homogeneous, ‘class C‘], _dAlembert]

7414

\[ {}y^{\prime } = \left (x +y+1\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

7417

\[ {}x -y+\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7418

\[ {}y-2 x y+x^{2} y^{\prime } = 0 \]

[_separable]

7420

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7421

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime } = 2 x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7422

\[ {}-y+y^{\prime } x = x \tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

7423

\[ {}y^{\prime } x = y-x \,{\mathrm e}^{\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

7424

\[ {}-y+y^{\prime } x = \left (x +y\right ) \ln \left (\frac {x +y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

7425

\[ {}y^{\prime } x = y \cos \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

7426

\[ {}y+\sqrt {x y}-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7427

\[ {}y^{\prime } x -\sqrt {x^{2}-y^{2}}-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7428

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7430

\[ {}-y+y^{\prime } x = y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7431

\[ {}y^{2}+\left (x^{2}-x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7432

\[ {}x^{2}+x y+y^{2} = x^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

7433

\[ {}\frac {1}{x^{2}-x y+y^{2}} = \frac {y^{\prime }}{2 y^{2}-x y} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7434

\[ {}y^{\prime } = \frac {2 x y}{3 x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7435

\[ {}y^{\prime } = \frac {x}{y}+\frac {y}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7436

\[ {}y^{\prime } x = y+\sqrt {y^{2}-x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7437

\[ {}y+\left (2 \sqrt {x y}-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

7438

\[ {}y^{\prime } x = y \ln \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

7439

\[ {}y^{\prime } \left (y^{\prime }+y\right ) = \left (x +y\right ) x \]
i.c.

[_quadrature]

7441

\[ {}x^{2} {y^{\prime }}^{2}-3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

7442

\[ {}-y+y^{\prime } x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7444

\[ {}y^{\prime }+\frac {x +2 y}{x} = 0 \]

[_linear]

7445

\[ {}y^{\prime } = \frac {y}{x +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7447

\[ {}y^{\prime } = \frac {x +y-2}{y-x -4} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7448

\[ {}2 x -4 y+6+\left (x +y-2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7449

\[ {}y^{\prime } = \frac {2 y-x +5}{2 x -y-4} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7450

\[ {}y^{\prime } = -\frac {4 x +3 y+15}{2 x +y+7} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7451

\[ {}y^{\prime } = \frac {x +3 y-5}{x -y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7452

\[ {}y^{\prime } = \frac {2 \left (y+2\right )^{2}}{\left (x +y+1\right )^{2}} \]

[[_homogeneous, ‘class C‘], _rational]

7453

\[ {}2 x +y+1-\left (4 x +2 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7454

\[ {}x -y-1+\left (y-x +2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7455

\[ {}\left (x +4 y\right ) y^{\prime } = 2 x +3 y-5 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7456

\[ {}y+2 = \left (2 x +y-4\right ) y^{\prime } \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7457

\[ {}\left (y^{\prime }+1\right ) \ln \left (\frac {x +y}{x +3}\right ) = \frac {x +y}{x +3} \]

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

7458

\[ {}y^{\prime } = \frac {x -2 y+5}{y-2 x -4} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7459

\[ {}y^{\prime } = \frac {3 x -y+1}{2 x +y+4} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7460

\[ {}2 y^{\prime } x +\left (x^{2} y^{4}+1\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7476

\[ {}2 x +3+\left (2 y-2\right ) y^{\prime } = 0 \]

[_separable]

7477

\[ {}2 x +4 y+\left (2 x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7502

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

[_separable]

7505

\[ {}y^{\prime } x -2 \sqrt {x y} = y \]

[[_homogeneous, ‘class A‘], _dAlembert]

7506

\[ {}y^{\prime } = \frac {x +y-1}{x -y+3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7509

\[ {}y^{2}-x y+x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7510

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7511

\[ {}y^{\prime } = \frac {y}{2 x}+\frac {x^{2}}{2 y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7512

\[ {}y^{\prime } = -\frac {2}{t}+\frac {y}{t}+\frac {y^{2}}{t} \]

[_separable]

7515

\[ {}{y^{\prime }}^{2}-a^{2} y^{2} = 0 \]

[_quadrature]

7543

\[ {}y+\sqrt {x^{2}+y^{2}}-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7547

\[ {}\left (1+x^{2} y^{2}\right ) y+\left (x^{2} y^{2}-1\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

7550

\[ {}\phi ^{\prime }-\frac {\phi ^{2}}{2}-\phi \cot \left (\theta \right ) = 0 \]

[_Bernoulli]

7555

\[ {}y \,{\mathrm e}^{x y}+x \,{\mathrm e}^{x y} y^{\prime } = 0 \]

[_separable]

7560

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7561

\[ {}x^{2}-y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7564

\[ {}x +y y^{\prime }+y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7583

\[ {}y^{\prime }+y \cos \left (x \right ) = 0 \]

[_separable]

7588

\[ {}y^{\prime }+5 y = 2 \]

[_quadrature]

7590

\[ {}y^{\prime } = k y \]

[_quadrature]

7591

\[ {}y^{\prime }-2 y = 1 \]

[_quadrature]

7592

\[ {}y^{\prime }+y = {\mathrm e}^{x} \]

[[_linear, ‘class A‘]]

7593

\[ {}y^{\prime }-2 y = x^{2}+x \]

[[_linear, ‘class A‘]]

7594

\[ {}3 y^{\prime }+y = 2 \,{\mathrm e}^{-x} \]

[[_linear, ‘class A‘]]

7595

\[ {}y^{\prime }+3 y = {\mathrm e}^{i x} \]

[[_linear, ‘class A‘]]

7596

\[ {}y^{\prime }+i y = x \]

[[_linear, ‘class A‘]]

7597

\[ {}L y^{\prime }+R y = E \]

[_quadrature]

7599

\[ {}L y^{\prime }+R y = E \,{\mathrm e}^{i \omega x} \]
i.c.

[[_linear, ‘class A‘]]

7601

\[ {}y^{\prime }+2 x y = x \]

[_separable]

7602

\[ {}y^{\prime } x +y = 3 x^{3}-1 \]

[_linear]

7603

\[ {}y^{\prime }+y \,{\mathrm e}^{x} = 3 \,{\mathrm e}^{x} \]

[_separable]

7605

\[ {}y^{\prime }+2 x y = x \,{\mathrm e}^{-x^{2}} \]

[_linear]

7607

\[ {}x^{2} y^{\prime }+2 x y = 1 \]

[_linear]

7609

\[ {}y^{\prime } = 1+y \]
i.c.

[_quadrature]

7610

\[ {}y^{\prime } = 1+y^{2} \]
i.c.

[_quadrature]

7611

\[ {}y^{\prime } = 1+y^{2} \]
i.c.

[_quadrature]

7731

\[ {}y^{\prime } = x^{2} y \]

[_separable]

7732

\[ {}y y^{\prime } = x \]

[_separable]

7735

\[ {}y^{\prime } = x^{2} y^{2}-4 x^{2} \]

[_separable]

7736

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

7737

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

7738

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

7739

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7740

\[ {}y^{\prime } = \frac {y^{2}}{x y+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7741

\[ {}y^{\prime } = \frac {x^{2}+x y+y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

7742

\[ {}y^{\prime } = \frac {y+x \,{\mathrm e}^{-\frac {2 y}{x}}}{x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

7743

\[ {}y^{\prime } = \frac {x -y+2}{x +y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7744

\[ {}y^{\prime } = \frac {2 x +3 y+1}{x -2 y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7745

\[ {}y^{\prime } = \frac {x +y+1}{2 x +2 y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7746

\[ {}y^{\prime } = \frac {\left (x +y-1\right )^{2}}{2 \left (x +2\right )^{2}} \]

[[_homogeneous, ‘class C‘], _rational, _Riccati]

7774

\[ {}y^{\prime } x = 2 y \]

[_separable]

7775

\[ {}y y^{\prime } = {\mathrm e}^{2 x} \]

[_separable]

7776

\[ {}y^{\prime } = k y \]

[_quadrature]

7781

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7782

\[ {}2 x y y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7784

\[ {}y^{\prime } = \frac {y^{2}}{x y-x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7785

\[ {}\left (y \cos \left (y\right )-\sin \left (y\right )+x \right ) y^{\prime } = y \]

[[_1st_order, _with_linear_symmetries]]

7786

\[ {}1+y^{2}+y^{2} y^{\prime } = 0 \]

[_quadrature]

7805

\[ {}y^{\prime } = \frac {2 x y^{2}}{1-x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7807

\[ {}x^{5} y^{\prime }+y^{5} = 0 \]

[_separable]

7808

\[ {}y^{\prime } = 4 x y \]

[_separable]

7809

\[ {}y^{\prime }+y \tan \left (x \right ) = 0 \]

[_separable]

7810

\[ {}\left (x^{2}+1\right ) y^{\prime }+1+y^{2} = 0 \]

[_separable]

7811

\[ {}y \ln \left (y\right )-y^{\prime } x = 0 \]

[_separable]

7814

\[ {}y^{\prime }-y \tan \left (x \right ) = 0 \]

[_separable]

7815

\[ {}x y y^{\prime } = -1+y \]

[_separable]

7816

\[ {}x y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

7817

\[ {}y y^{\prime } = x +1 \]
i.c.

[_separable]

7820

\[ {}y^{2} y^{\prime } = x +2 \]
i.c.

[_separable]

7821

\[ {}y^{\prime } = x^{2} y^{2} \]
i.c.

[_separable]

7841

\[ {}y^{\prime } x +y = x^{4} y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7843

\[ {}y^{\prime } x +y = x y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7846

\[ {}y-y^{\prime } x = y^{\prime } y^{2} {\mathrm e}^{y} \]

[[_1st_order, _with_linear_symmetries]]

7847

\[ {}y^{\prime } x +2 = x^{3} \left (-1+y\right ) y^{\prime } \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

7848

\[ {}y^{\prime } x = 2 x^{2} y+y \ln \left (x \right ) \]

[_separable]

7850

\[ {}\left (x +\frac {2}{y}\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7854

\[ {}y+y \cos \left (x y\right )+\left (x +x \cos \left (x y\right )\right ) y^{\prime } = 0 \]

[_separable]

7858

\[ {}1+y+\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

7863

\[ {}2 x \left (1+\sqrt {x^{2}-y}\right ) = \sqrt {x^{2}-y}\, y^{\prime } \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

7869

\[ {}\frac {y-y^{\prime } x}{\left (x +y\right )^{2}}+y^{\prime } = 1 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

7871

\[ {}x^{2}-2 y^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7872

\[ {}x^{2} y^{\prime }-3 x y-2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7874

\[ {}x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )+x \]

[[_homogeneous, ‘class A‘], _dAlembert]

7875

\[ {}y^{\prime } x = y+2 x \,{\mathrm e}^{-\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

7876

\[ {}x -y-\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7877

\[ {}y^{\prime } x = 2 x -6 y \]

[_linear]

7878

\[ {}y^{\prime } x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7879

\[ {}x^{2} y^{\prime } = 2 x y+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7880

\[ {}x^{3}+y^{3}-x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7881

\[ {}y^{\prime } = \frac {x +y+4}{x -y-6} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7882

\[ {}y^{\prime } = \frac {x +y+4}{x +y-6} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7883

\[ {}2 x -2 y+\left (-1+y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7884

\[ {}y^{\prime } = \frac {x +y-1}{x +4 y+2} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7885

\[ {}2 x +3 y-1-4 \left (x +1\right ) y^{\prime } = 0 \]

[_linear]

7886

\[ {}y^{\prime } = \frac {1-x y^{2}}{2 x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7887

\[ {}y^{\prime } = \frac {2+3 x y^{2}}{4 x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7888

\[ {}y^{\prime } = \frac {y-x y^{2}}{x +x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7889

\[ {}y^{\prime } = \sin \left (\frac {y}{x}\right )-\cos \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

7890

\[ {}{\mathrm e}^{\frac {x}{y}}-\frac {y y^{\prime }}{x} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

7891

\[ {}y^{\prime } = \frac {x^{2}-x y}{y^{2} \cos \left (\frac {x}{y}\right )} \]

[[_homogeneous, ‘class A‘], _dAlembert]

7892

\[ {}y^{\prime } = \frac {y \tan \left (\frac {y}{x}\right )}{x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

7904

\[ {}y^{\prime } = \frac {2 y}{x}+\frac {x^{3}}{y}+x \tan \left (\frac {y}{x^{2}}\right ) \]

[[_homogeneous, ‘class G‘]]

7917

\[ {}y^{\prime } x +y = x \]

[_linear]

7919

\[ {}x^{2} y^{\prime } = y \]

[_separable]

7921

\[ {}y^{\prime } = \frac {x^{2}+y^{2}}{x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7922

\[ {}y^{\prime } = \frac {x +2 y}{2 x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7923

\[ {}x^{2} y^{\prime }+2 x y = 0 \]

[_separable]

7925

\[ {}-y+y^{\prime } x = 2 x \]
i.c.

[_linear]

7927

\[ {}y^{2} y^{\prime } = x \]
i.c.

[_separable]

7929

\[ {}y^{\prime } = \frac {x +y}{x -y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7930

\[ {}y^{\prime } = \frac {x^{2}+2 y^{2}}{x^{2}-2 y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7931

\[ {}2 x \cos \left (y\right )-x^{2} \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

7932

\[ {}\frac {1}{y}-\frac {x y^{\prime }}{y^{2}} = 0 \]

[_separable]

8073

\[ {}y^{\prime } = 2 x y \]

[_separable]

8075

\[ {}y^{\prime }+y = 1 \]

[_quadrature]

8077

\[ {}y^{\prime }-y = 2 \]

[_quadrature]

8079

\[ {}y^{\prime }+y = 0 \]

[_quadrature]

8081

\[ {}y^{\prime }-y = 0 \]

[_quadrature]

8083

\[ {}y^{\prime }-y = x^{2} \]

[[_linear, ‘class A‘]]

8085

\[ {}y^{\prime } x = y \]

[_separable]

8087

\[ {}x^{2} y^{\prime } = y \]

[_separable]

8089

\[ {}y^{\prime }-\frac {y}{x} = x^{2} \]

[_linear]

8090

\[ {}y^{\prime }+\frac {y}{x} = x \]

[_linear]

8094

\[ {}y^{\prime } = x -y \]
i.c.

[[_linear, ‘class A‘]]

8215

\[ {}y^{\prime }-2 y = x^{2} \]
i.c.

[[_linear, ‘class A‘]]

8435

\[ {}x^{2} {y^{\prime }}^{2}-y^{2} = 0 \]

[_separable]

8436

\[ {}x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

[_quadrature]

8437

\[ {}x^{2} {y^{\prime }}^{2}-5 x y y^{\prime }+6 y^{2} = 0 \]

[_separable]

8438

\[ {}x^{2} {y^{\prime }}^{2}+y^{\prime } x -y^{2}-y = 0 \]

[_separable]

8439

\[ {}x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-x y = 0 \]

[_quadrature]

8440

\[ {}{y^{\prime }}^{2}-\left (x^{2} y+3\right ) y^{\prime }+3 x^{2} y = 0 \]

[_quadrature]

8441

\[ {}x {y^{\prime }}^{2}-\left (1+x y\right ) y^{\prime }+y = 0 \]

[_quadrature]

8442

\[ {}{y^{\prime }}^{2}-x^{2} y^{2} = 0 \]

[_separable]

8443

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8444

\[ {}{y^{\prime }}^{2} y+\left (x -y^{2}\right ) y^{\prime }-x y = 0 \]

[_quadrature]

8445

\[ {}{y^{\prime }}^{2}-x y \left (x +y\right ) y^{\prime }+x^{3} y^{3} = 0 \]

[_separable]

8446

\[ {}\left (4 x -y\right ) {y^{\prime }}^{2}+6 \left (x -y\right ) y^{\prime }+2 x -5 y = 0 \]

[_quadrature]

8447

\[ {}\left (x -y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8448

\[ {}x y {y^{\prime }}^{2}+\left (-1+x y^{2}\right ) y^{\prime }-y = 0 \]

[_quadrature]

8449

\[ {}\left (x^{2}+y^{2}\right )^{2} {y^{\prime }}^{2} = 4 x^{2} y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8450

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2}+\left (2 y^{2}+x y-x^{2}\right ) y^{\prime }+y \left (y-x \right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8451

\[ {}x y \left (x^{2}+y^{2}\right ) \left (-1+{y^{\prime }}^{2}\right ) = y^{\prime } \left (x^{4}+x^{2} y^{2}+y^{4}\right ) \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

8452

\[ {}x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+x y\right ) y^{\prime }-x y = 0 \]

[_quadrature]

8453

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

[_quadrature]

8462

\[ {}y^{4} {y^{\prime }}^{3}-6 y^{\prime } x +2 y = 0 \]

[[_1st_order, _with_linear_symmetries]]

8465

\[ {}2 x {y^{\prime }}^{3}-6 {y^{\prime }}^{2} y+x^{4} = 0 \]

[[_1st_order, _with_linear_symmetries]]

8474

\[ {}x^{6} {y^{\prime }}^{3}-3 y^{\prime } x -3 y = 0 \]

[[_1st_order, _with_linear_symmetries]]

8475

\[ {}y = x^{6} {y^{\prime }}^{3}-y^{\prime } x \]

[[_1st_order, _with_linear_symmetries]]

8534

\[ {}6 x {y^{\prime }}^{2}-\left (3 x +2 y\right ) y^{\prime }+y = 0 \]

[_quadrature]

8539

\[ {}y^{2} {y^{\prime }}^{2}-y \left (x +1\right ) y^{\prime }+x = 0 \]

[_quadrature]

8541

\[ {}4 y^{2} {y^{\prime }}^{3}-2 y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries]]

8550

\[ {}x^{2} {y^{\prime }}^{2} = \left (x -y\right )^{2} \]

[_linear]

8553

\[ {}x {y^{\prime }}^{2}+\left (1-x \right ) y y^{\prime }-y^{2} = 0 \]

[_quadrature]

8556

\[ {}x {y^{\prime }}^{3}-2 {y^{\prime }}^{2} y+4 x^{2} = 0 \]

[[_1st_order, _with_linear_symmetries]]

8697

\[ {}y^{\prime } = \frac {y}{x \ln \left (x \right )} \]

[_separable]

8698

\[ {}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1 \]
i.c.

[_separable]

8699

\[ {}y^{\prime }+\frac {2 y}{x} = 5 x^{2} \]

[_linear]

8701

\[ {}y^{\prime } = \frac {2 x -y}{x +4 y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8702

\[ {}y^{\prime }+\frac {2 y}{x} = 6 x^{4} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

8717

\[ {}y^{\prime } = 1+y \]

[_quadrature]

8720

\[ {}y^{\prime } = y \]

[_quadrature]

8724

\[ {}y^{\prime } = \frac {2 y}{x} \]
i.c.

[_separable]

8725

\[ {}y^{\prime } = \frac {2 y}{x} \]

[_separable]

8728

\[ {}y^{\prime } = \frac {-x y-1}{4 x^{3} y-2 x^{2}} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

8733

\[ {}y^{\prime } = \sqrt {y}+x \]

[[_1st_order, _with_linear_symmetries], _Chini]

8734

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

8742

\[ {}y^{\prime } = \frac {5 x^{2}-x y+y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

8743

\[ {}2 t +3 x+\left (x+2\right ) x^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8744

\[ {}y^{\prime } = \frac {1}{1-y} \]
i.c.

[_quadrature]

8745

\[ {}p^{\prime } = a p-b p^{2} \]
i.c.

[_quadrature]

8746

\[ {}y^{2}+\frac {2}{x}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

8751

\[ {}y y^{\prime }-y = x \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8758

\[ {}f^{\prime } = \frac {1}{f} \]

[_quadrature]

8771

\[ {}y^{\prime }+\sin \left (x -y\right ) = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

8789

\[ {}x^{\prime } = 4 A k \left (\frac {x}{A}\right )^{{3}/{4}}-3 k x \]

[_quadrature]

8792

\[ {}y^{\prime } = \frac {y \left (1+\frac {a^{2} x}{\sqrt {a^{2} \left (x^{2}+1\right )}}\right )}{\sqrt {a^{2} \left (x^{2}+1\right )}} \]

[_separable]

8794

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

8796

\[ {}y^{\prime } = \sqrt {1-y^{2}} \]

[_quadrature]

8860

\[ {}w^{\prime } = -\frac {1}{2}-\frac {\sqrt {1-12 w}}{2} \]
i.c.

[_quadrature]

8886

\[ {}y^{\prime } = {\mathrm e}^{-\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

8952

\[ {}y^{\prime } = y \left (1-y^{2}\right ) \]

[_quadrature]

8980

\[ {}y^{\prime } = \frac {y}{2 y \ln \left (y\right )+y-x} \]

[[_1st_order, _with_linear_symmetries]]

8982

\[ {}x^{2} y^{\prime }+{\mathrm e}^{-y} = 0 \]

[_separable]

8990

\[ {}y^{\prime } = y a x \]

[_separable]

8991

\[ {}y^{\prime } = a x +y \]

[[_linear, ‘class A‘]]

8992

\[ {}y^{\prime } = a x +b y \]

[[_linear, ‘class A‘]]

8993

\[ {}y^{\prime } = y \]

[_quadrature]

8994

\[ {}y^{\prime } = b y \]

[_quadrature]

8999

\[ {}c y^{\prime } = a x +y \]

[[_linear, ‘class A‘]]

9000

\[ {}c y^{\prime } = a x +b y \]

[[_linear, ‘class A‘]]

9001

\[ {}c y^{\prime } = y \]

[_quadrature]

9002

\[ {}c y^{\prime } = b y \]

[_quadrature]

9012

\[ {}y^{\prime } = \cos \left (x \right )+\frac {y}{x} \]

[_linear]

9044

\[ {}y^{\prime } = \sqrt {1+6 x +y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

9045

\[ {}y^{\prime } = \left (1+6 x +y\right )^{{1}/{3}} \]

[[_homogeneous, ‘class C‘], _dAlembert]

9046

\[ {}y^{\prime } = \left (1+6 x +y\right )^{{1}/{4}} \]

[[_homogeneous, ‘class C‘], _dAlembert]

9047

\[ {}y^{\prime } = \left (a +b x +y\right )^{4} \]

[[_homogeneous, ‘class C‘], _dAlembert]

9048

\[ {}y^{\prime } = \left (\pi +x +7 y\right )^{{7}/{2}} \]

[[_homogeneous, ‘class C‘], _dAlembert]

9049

\[ {}y^{\prime } = \left (a +b x +c y\right )^{6} \]

[[_homogeneous, ‘class C‘], _dAlembert]

9050

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

9051

\[ {}y^{\prime } = 10+{\mathrm e}^{x +y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

9130

\[ {}y^{\prime } = \left (x +y\right )^{4} \]

[[_homogeneous, ‘class C‘], _dAlembert]

9171

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

10016

\[ {}y^{\prime }+a y-c \,{\mathrm e}^{b x} = 0 \]

[[_linear, ‘class A‘]]

10018

\[ {}y^{\prime }+2 x y-x \,{\mathrm e}^{-x^{2}} = 0 \]

[_linear]

10023

\[ {}y^{\prime }-\left (a +\cos \left (\ln \left (x \right )\right )+\sin \left (\ln \left (x \right )\right )\right ) y = 0 \]

[_separable]

10026

\[ {}y^{\prime }+y^{2}-1 = 0 \]

[_quadrature]

10029

\[ {}y^{\prime }+y^{2}-2 x^{2} y+x^{4}-2 x -1 = 0 \]

[[_1st_order, _with_linear_symmetries], _Riccati]

10031

\[ {}y^{\prime }-y^{2}-3 y+4 = 0 \]

[_quadrature]

10033

\[ {}y^{\prime }-\left (x +y\right )^{2} = 0 \]

[[_homogeneous, ‘class C‘], _Riccati]

10037

\[ {}y^{\prime }+a y^{2}-b = 0 \]

[_quadrature]

10040

\[ {}y^{\prime }-\left (A y-a \right ) \left (B y-b \right ) = 0 \]

[_quadrature]

10043

\[ {}y^{\prime }-x y^{2}-3 x y = 0 \]

[_separable]

10045

\[ {}y^{\prime }-a \,x^{n} \left (1+y^{2}\right ) = 0 \]

[_separable]

10049

\[ {}y^{\prime }+f \left (x \right ) \left (y^{2}+2 a y+b \right ) = 0 \]

[_separable]

10052

\[ {}y^{\prime }-a y^{3}-\frac {b}{x^{{3}/{2}}} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Abel]

10053

\[ {}y^{\prime }-\operatorname {a3} y^{3}-\operatorname {a2} y^{2}-\operatorname {a1} y-\operatorname {a0} = 0 \]

[_quadrature]

10055

\[ {}y^{\prime }+a x y^{3}+b y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _Abel]

10066

\[ {}y^{\prime }-a y^{n}-b \,x^{\frac {n}{-n +1}} = 0 \]

[[_homogeneous, ‘class G‘], _Chini]

10072

\[ {}y^{\prime }-a \sqrt {y}-b x = 0 \]

[[_homogeneous, ‘class G‘], _Chini]

10073

\[ {}y^{\prime }-a \sqrt {1+y^{2}}-b = 0 \]

[_quadrature]

10074

\[ {}y^{\prime }-\frac {\sqrt {y^{2}-1}}{\sqrt {x^{2}-1}} = 0 \]

[_separable]

10090

\[ {}y^{\prime }-a \cos \left (y\right )+b = 0 \]

[_quadrature]

10091

\[ {}y^{\prime }-\cos \left (b x +a y\right ) = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

10098

\[ {}y^{\prime }-f \left (a x +b y\right ) = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

10100

\[ {}y^{\prime }-\frac {y-x f \left (x^{2}+a y^{2}\right )}{x +a y f \left (x^{2}+a y^{2}\right )} = 0 \]

[[_1st_order, _with_linear_symmetries]]

10105

\[ {}y^{\prime } x -y-\frac {x}{\ln \left (x \right )} = 0 \]

[_linear]

10106

\[ {}y^{\prime } x -y-x^{2} \sin \left (x \right ) = 0 \]

[_linear]

10107

\[ {}y^{\prime } x -y-\frac {x \cos \left (\ln \left (\ln \left (x \right )\right )\right )}{\ln \left (x \right )} = 0 \]

[_linear]

10108

\[ {}y^{\prime } x +a y+b \,x^{n} = 0 \]

[_linear]

10110

\[ {}y^{\prime } x -y^{2}+1 = 0 \]

[_separable]

10115

\[ {}y^{\prime } x +x y^{2}-y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

10116

\[ {}y^{\prime } x +x y^{2}-y-a \,x^{3} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

10117

\[ {}y^{\prime } x +x y^{2}-\left (2 x^{2}+1\right ) y-x^{3} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

10122

\[ {}y^{\prime } x -y^{2} \ln \left (x \right )+y = 0 \]

[_Bernoulli]

10123

\[ {}y^{\prime } x -y \left (-1+2 y \ln \left (x \right )\right ) = 0 \]

[_Bernoulli]

10126

\[ {}y^{\prime } x -\sqrt {x^{2}+y^{2}}-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10127

\[ {}y^{\prime } x +a \sqrt {x^{2}+y^{2}}-y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10130

\[ {}y^{\prime } x -x \,{\mathrm e}^{\frac {y}{x}}-y-x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10131

\[ {}y^{\prime } x -y \ln \left (y\right ) = 0 \]

[_separable]

10132

\[ {}y^{\prime } x -y \left (\ln \left (x y\right )-1\right ) = 0 \]

[[_homogeneous, ‘class G‘]]

10136

\[ {}y^{\prime } x -y-x \sin \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10137

\[ {}y^{\prime } x +x \cos \left (\frac {y}{x}\right )-y+x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10138

\[ {}y^{\prime } x +x \tan \left (\frac {y}{x}\right )-y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10139

\[ {}y^{\prime } x -y f \left (x y\right ) = 0 \]

[[_homogeneous, ‘class G‘]]

10140

\[ {}y^{\prime } x -y f \left (x^{a} y^{b}\right ) = 0 \]

[[_homogeneous, ‘class G‘]]

10143

\[ {}2 y^{\prime } x -y-2 x^{3} = 0 \]

[_linear]

10144

\[ {}\left (2 x +1\right ) y^{\prime }-4 \,{\mathrm e}^{-y}+2 = 0 \]

[_separable]

10148

\[ {}x^{2} y^{\prime }-\left (x -1\right ) y = 0 \]

[_separable]

10149

\[ {}x^{2} y^{\prime }+y^{2}+x y+x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

10150

\[ {}x^{2} y^{\prime }-y^{2}-x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

10151

\[ {}x^{2} y^{\prime }-y^{2}-x y-x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

10153

\[ {}x^{2} \left (y^{\prime }+y^{2}\right )+4 x y+2 = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

10154

\[ {}x^{2} \left (y^{\prime }+y^{2}\right )+y a x +b = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

10156

\[ {}x^{2} \left (y^{\prime }+a y^{2}\right )-b = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

10162

\[ {}\left (x^{2}+1\right ) y^{\prime }+x y-x \left (x^{2}+1\right ) = 0 \]

[_linear]

10166

\[ {}\left (x^{2}-1\right ) y^{\prime }-x y+a = 0 \]

[_linear]

10168

\[ {}\left (x^{2}-1\right ) y^{\prime }+y^{2}-2 x y+1 = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

10169

\[ {}\left (x^{2}-1\right ) y^{\prime }-y \left (y-x \right ) = 0 \]

[_rational, _Bernoulli]

10171

\[ {}\left (x^{2}-1\right ) y^{\prime }+a y^{2} x +x y = 0 \]

[_separable]

10172

\[ {}\left (x^{2}-1\right ) y^{\prime }-2 x y \ln \left (y\right ) = 0 \]

[_separable]

10175

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }+y^{2}+k \left (y+x -a \right ) \left (y+x -b \right ) = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

10178

\[ {}x \left (2 x -1\right ) y^{\prime }+y^{2}-\left (4 x +1\right ) y+4 x = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

10180

\[ {}3 x^{2} y^{\prime }-7 y^{2}-3 x y-x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

10183

\[ {}x^{3} y^{\prime }-y^{2}-x^{4} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

10184

\[ {}x^{3} y^{\prime }-y^{2}-x^{2} y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

10185

\[ {}x^{3} y^{\prime }-x^{4} y^{2}+x^{2} y+20 = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

10187

\[ {}x \left (x^{2}+1\right ) y^{\prime }+x^{2} y = 0 \]

[_separable]

10188

\[ {}x \left (x^{2}-1\right ) y^{\prime }-\left (2 x^{2}-1\right ) y+a \,x^{3} = 0 \]

[_linear]

10190

\[ {}x^{2} \left (x -1\right ) y^{\prime }-y^{2}-x \left (x -2\right ) y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

10194

\[ {}x^{4} \left (y^{\prime }+y^{2}\right )+a = 0 \]

[_rational, [_Riccati, _special]]

10196

\[ {}\left (2 x^{4}-x \right ) y^{\prime }-2 \left (x^{3}-1\right ) y = 0 \]

[_separable]

10197

\[ {}\left (a \,x^{2}+b x +c \right )^{2} \left (y^{\prime }+y^{2}\right )+A = 0 \]

[_rational, _Riccati]

10199

\[ {}x^{n} y^{\prime }+y^{2}-\left (n -1\right ) x^{n -1} y+x^{2 n -2} = 0 \]

[[_homogeneous, ‘class G‘], _Riccati]

10200

\[ {}x^{n} y^{\prime }-a y^{2}-b \,x^{2 n -2} = 0 \]

[[_homogeneous, ‘class G‘], _Riccati]

10201

\[ {}x^{2 n +1} y^{\prime }-a y^{3}-b \,x^{3 n} = 0 \]

[[_homogeneous, ‘class G‘], _Abel]

10202

\[ {}x^{m \left (n -1\right )+n} y^{\prime }-a y^{n}-b \,x^{n \left (m +1\right )} = 0 \]

[[_homogeneous, ‘class G‘]]

10203

\[ {}\sqrt {x^{2}-1}\, y^{\prime }-\sqrt {y^{2}-1} = 0 \]

[_separable]

10206

\[ {}x y^{\prime } \ln \left (x \right )+y-a x \left (1+\ln \left (x \right )\right ) = 0 \]

[_linear]

10217

\[ {}y y^{\prime }+a y+x = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10222

\[ {}y y^{\prime }-\sqrt {a y^{2}+b} = 0 \]

[_quadrature]

10224

\[ {}y y^{\prime }-x \,{\mathrm e}^{\frac {x}{y}} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10226

\[ {}\left (1+y\right ) y^{\prime }-y-x = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10227

\[ {}\left (x +y-1\right ) y^{\prime }-y+2 x +3 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10228

\[ {}\left (y+2 x -2\right ) y^{\prime }-y+x +1 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10229

\[ {}\left (y-2 x +1\right ) y^{\prime }+y+x = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10231

\[ {}\left (y-x^{2}\right ) y^{\prime }+4 x y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10234

\[ {}\left (2 y+x +1\right ) y^{\prime }-2 y-x +1 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10235

\[ {}\left (2 y+x +7\right ) y^{\prime }-y+2 x +4 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10236

\[ {}\left (2 y-x \right ) y^{\prime }-y-2 x = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10237

\[ {}\left (2 y-6 x \right ) y^{\prime }-y+3 x +2 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10238

\[ {}\left (4 y+2 x +3\right ) y^{\prime }-2 y-x -1 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10239

\[ {}\left (4 y-2 x -3\right ) y^{\prime }+2 y-x -1 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10240

\[ {}\left (4 y-3 x -5\right ) y^{\prime }-3 y+7 x +2 = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10241

\[ {}\left (4 y+11 x -11\right ) y^{\prime }-25 y-8 x +62 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10242

\[ {}\left (12 y-5 x -8\right ) y^{\prime }-5 y+2 x +3 = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10244

\[ {}\left (a y+b x +c \right ) y^{\prime }+\alpha y+\beta x +\gamma = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10245

\[ {}x y y^{\prime }+y^{2}+x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

10249

\[ {}x \left (y+4\right ) y^{\prime }-y^{2}-2 y-2 x = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

10251

\[ {}\left (\left (x +y\right ) x +a \right ) y^{\prime }-y \left (x +y\right )-b = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

10252

\[ {}\left (x y-x^{2}\right ) y^{\prime }+y^{2}-3 x y-2 x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

10253

\[ {}2 x y y^{\prime }-y^{2}+a x = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

10254

\[ {}2 x y y^{\prime }-y^{2}+a \,x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

10255

\[ {}2 x y y^{\prime }+2 y^{2}+1 = 0 \]

[_separable]

10258

\[ {}\left (2 x y+4 x^{3}\right ) y^{\prime }+y^{2}+112 x^{2} y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

10259

\[ {}x \left (2 x +3 y\right ) y^{\prime }+3 \left (x +y\right )^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

10260

\[ {}\left (3 x +2\right ) \left (y-2 x -1\right ) y^{\prime }-y^{2}+x y-7 x^{2}-9 x -3 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

10262

\[ {}\left (y a x +b \,x^{n}\right ) y^{\prime }+\alpha y^{3}+\beta y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

10267

\[ {}x \left (x y-2\right ) y^{\prime }+y^{3} x^{2}+x y^{2}-2 y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

10268

\[ {}x \left (x y-3\right ) y^{\prime }+x y^{2}-y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

10273

\[ {}\left (2 x^{2} y+x \right ) y^{\prime }-y^{3} x^{2}+2 x y^{2}+y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

10274

\[ {}\left (2 x^{2} y-x \right ) y^{\prime }-2 x y^{2}-y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

10275

\[ {}\left (2 x^{2} y-x^{3}\right ) y^{\prime }+y^{3}-4 x y^{2}+2 x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

10277

\[ {}2 x \left (x^{3} y+1\right ) y^{\prime }+\left (3 x^{3} y-1\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

10284

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (y+2 x \right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

10285

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime }-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10289

\[ {}\left (y^{2}-x^{2}\right ) y^{\prime }+2 x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10290

\[ {}\left (x^{4}+y^{2}\right ) y^{\prime }-4 x^{3} y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

10293

\[ {}\left (x +y\right )^{2} y^{\prime }-a^{2} = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

10294

\[ {}\left (y^{2}+2 x y-x^{2}\right ) y^{\prime }-y^{2}+2 x y+x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10295

\[ {}\left (y+3 x -1\right )^{2} y^{\prime }-\left (2 y-1\right ) \left (4 y+6 x -3\right ) = 0 \]

[[_homogeneous, ‘class C‘], _rational]

10297

\[ {}\left (x^{2}+4 y^{2}\right ) y^{\prime }-x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10298

\[ {}\left (3 x^{2}+2 x y+4 y^{2}\right ) y^{\prime }+y^{2}+6 x y+2 x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

10299

\[ {}\left (1-3 x +2 y\right )^{2} y^{\prime }-\left (3 y-2 x -4\right )^{2} = 0 \]

[[_homogeneous, ‘class C‘], _rational]

10300

\[ {}\left (2 y-4 x +1\right )^{2} y^{\prime }-\left (y-2 x \right )^{2} = 0 \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

10303

\[ {}\left (a y^{2}+2 b x y+c \,x^{2}\right ) y^{\prime }+b y^{2}+2 c x y+d \,x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

10304

\[ {}\left (b \left (\beta y+\alpha x \right )^{2}-\beta \left (a x +b y\right )\right ) y^{\prime }+a \left (\beta y+\alpha x \right )^{2}-\alpha \left (a x +b y\right ) = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

10305

\[ {}\left (a y+b x +c \right )^{2} y^{\prime }+\left (\alpha y+\beta x +\gamma \right )^{2} = 0 \]

[[_homogeneous, ‘class C‘], _rational]

10306

\[ {}x \left (y^{2}-3 x \right ) y^{\prime }+2 y^{3}-5 x y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

10307

\[ {}x \left (y^{2}+x^{2}-a \right ) y^{\prime }-\left (a +x^{2}+y^{2}\right ) y = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10308

\[ {}x \left (y^{2}+x y-x^{2}\right ) y^{\prime }-y^{3}+x y^{2}+x^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10309

\[ {}x \left (y^{2}+x^{2} y+x^{2}\right ) y^{\prime }-2 y^{3}-2 x^{2} y^{2}+x^{4} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10310

\[ {}2 x \left (5 x^{2}+y^{2}\right ) y^{\prime }+y^{3}-x^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10311

\[ {}3 x y^{2} y^{\prime }+y^{3}-2 x = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

10312

\[ {}\left (3 x y^{2}-x^{2}\right ) y^{\prime }+y^{3}-2 x y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

10313

\[ {}6 x y^{2} y^{\prime }+x +2 y^{3} = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

10314

\[ {}\left (6 x y^{2}+x^{2}\right ) y^{\prime }-y \left (3 y^{2}-x \right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational]

10315

\[ {}\left (x^{2} y^{2}+x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

10316

\[ {}\left (x y-1\right )^{2} x y^{\prime }+\left (1+x^{2} y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

10317

\[ {}\left (10 x^{3} y^{2}+x^{2} y+2 x \right ) y^{\prime }+5 y^{3} x^{2}+x y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational]

10319

\[ {}\left (y^{3}-x^{3}\right ) y^{\prime }-x^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10321

\[ {}2 y^{3} y^{\prime }+x y^{2} = 0 \]

[_separable]

10323

\[ {}\left (2 y^{3}+5 x^{2} y\right ) y^{\prime }+5 x y^{2}+x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

10324

\[ {}\left (20 y^{3}-3 x y^{2}+6 x^{2} y+3 x^{3}\right ) y^{\prime }-y^{3}+6 x y^{2}+9 x^{2} y+4 x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

10328

\[ {}\left (2 x y^{3}-x^{4}\right ) y^{\prime }-y^{4}+2 x^{3} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10334

\[ {}\left (2 y^{3} x^{2}+x^{2} y^{2}-2 x \right ) y^{\prime }-2 y-1 = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

10338

\[ {}y \left (y^{3}-2 x^{3}\right ) y^{\prime }+\left (2 y^{3}-x^{3}\right ) x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10339

\[ {}y \left (\left (b x +a y\right )^{3}+b \,x^{3}\right ) y^{\prime }+x \left (\left (b x +a y\right )^{3}+a y^{3}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10341

\[ {}a \,x^{2} y^{n} y^{\prime }-2 y^{\prime } x +y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

10342

\[ {}y^{m} x^{n} \left (a x y^{\prime }+b y\right )+\alpha x y^{\prime }+\beta y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

10343

\[ {}\left (f \left (x +y\right )+1\right ) y^{\prime }+f \left (x +y\right ) = 0 \]

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

10345

\[ {}\left (\sqrt {x y}-1\right ) x y^{\prime }-\left (\sqrt {x y}+1\right ) y = 0 \]

[[_homogeneous, ‘class G‘]]

10346

\[ {}\left (2 x^{{5}/{2}} y^{{3}/{2}}+x^{2} y-x \right ) y^{\prime }-x^{{3}/{2}} y^{{5}/{2}}+x y^{2}-y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

10347

\[ {}\left (\sqrt {x +y}+1\right ) y^{\prime }+1 = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

10350

\[ {}\left (\sqrt {x^{2}+y^{2}}+x \right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10351

\[ {}\left (y \sqrt {x^{2}+y^{2}}+\left (y^{2}-x^{2}\right ) \sin \left (\alpha \right )-2 x y \cos \left (\alpha \right )\right ) y^{\prime }+x \sqrt {x^{2}+y^{2}}+2 x y \sin \left (\alpha \right )+\left (y^{2}-x^{2}\right ) \cos \left (\alpha \right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10352

\[ {}\left (x \sqrt {1+x^{2}+y^{2}}-y \left (x^{2}+y^{2}\right )\right ) y^{\prime }-y \sqrt {1+x^{2}+y^{2}}-x \left (x^{2}+y^{2}\right ) = 0 \]

[[_1st_order, _with_linear_symmetries]]

10355

\[ {}x \left (3 \,{\mathrm e}^{x y}+2 \,{\mathrm e}^{-x y}\right ) \left (y^{\prime } x +y\right )+1 = 0 \]

[[_homogeneous, ‘class G‘]]

10357

\[ {}\left (\ln \left (y\right )+2 x -1\right ) y^{\prime }-2 y = 0 \]

[[_1st_order, _with_linear_symmetries]]

10362

\[ {}x y^{\prime } \cot \left (\frac {y}{x}\right )+2 x \sin \left (\frac {y}{x}\right )-y \cot \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘]]

10366

\[ {}x y^{\prime } \cos \left (y\right )+\sin \left (y\right ) = 0 \]

[_separable]

10373

\[ {}y^{\prime } \cos \left (a y\right )-b \left (1-c \cos \left (a y\right )\right ) \sqrt {\cos \left (a y\right )^{2}-1+c \cos \left (a y\right )} = 0 \]

[_quadrature]

10375

\[ {}\left (x^{2} y \sin \left (x y\right )-4 x \right ) y^{\prime }+x y^{2} \sin \left (x y\right )-y = 0 \]

[[_homogeneous, ‘class G‘]]

10376

\[ {}\left (-y+y^{\prime } x \right ) \cos \left (\frac {y}{x}\right )^{2}+x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10377

\[ {}\left (y \sin \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right )\right ) x y^{\prime }-\left (x \cos \left (\frac {y}{x}\right )+y \sin \left (\frac {y}{x}\right )\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10378

\[ {}\left (y f \left (x^{2}+y^{2}\right )-x \right ) y^{\prime }+y+x f \left (x^{2}+y^{2}\right ) = 0 \]

[[_1st_order, _with_linear_symmetries]]

10400

\[ {}{y^{\prime }}^{2}+\left (y^{\prime }-y\right ) {\mathrm e}^{x} = 0 \]

[[_1st_order, _with_linear_symmetries]]

10404

\[ {}{y^{\prime }}^{2}+\left (b x +a y\right ) y^{\prime }+a b x y = 0 \]

[_quadrature]

10405

\[ {}{y^{\prime }}^{2}-x y y^{\prime }+y^{2} \ln \left (a y\right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

10408

\[ {}{y^{\prime }}^{2}+y \left (y-x \right ) y^{\prime }-x y^{3} = 0 \]

[_separable]

10445

\[ {}\left (y^{\prime } x +y+2 x \right )^{2}-4 x y-4 x^{2}-4 a = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

10447

\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+y \left (1+y\right )-x = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

10450

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

10452

\[ {}x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }-5 y^{2} = 0 \]

[_separable]

10454

\[ {}x^{2} {y^{\prime }}^{2}+\left (x^{2} y-2 x y+x^{3}\right ) y^{\prime }+\left (y^{2}-x^{2} y\right ) \left (1-x \right ) = 0 \]

[_linear]

10456

\[ {}x^{2} {y^{\prime }}^{2}+\left (a \,x^{2} y^{3}+b \right ) y^{\prime }+a b y^{3} = 0 \]

[_quadrature]

10460

\[ {}\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+y^{2} = 0 \]

[_separable]

10482

\[ {}y {y^{\prime }}^{2}-\left (y-x \right ) y^{\prime }-x = 0 \]

[_quadrature]

10492

\[ {}x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}\right ) y^{\prime }+x y = 0 \]

[_separable]

10496

\[ {}a x y {y^{\prime }}^{2}-\left (a y^{2}+b \,x^{2}+c \right ) y^{\prime }+b x y = 0 \]

[_rational]

10516

\[ {}x y^{2} {y^{\prime }}^{2}-2 y^{3} y^{\prime }+2 x y^{2}-x^{3} = 0 \]

[_separable]

10537

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y+y^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

10538

\[ {}{y^{\prime }}^{3}-x y^{4} y^{\prime }-y^{5} = 0 \]

[[_1st_order, _with_linear_symmetries]]

10548

\[ {}x^{3} {y^{\prime }}^{3}-3 x^{2} y {y^{\prime }}^{2}+\left (3 x y^{2}+x^{6}\right ) y^{\prime }-y^{3}-2 x^{5} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

10549

\[ {}2 \left (y^{\prime } x +y\right )^{3}-y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘]]

10550

\[ {}{y^{\prime }}^{3} \sin \left (x \right )-\left (\sin \left (x \right ) y-\cos \left (x \right )^{2}\right ) {y^{\prime }}^{2}-\left (y \cos \left (x \right )^{2}+\sin \left (x \right )\right ) y^{\prime }+\sin \left (x \right ) y = 0 \]

[_quadrature]

10552

\[ {}y^{2} {y^{\prime }}^{3}+2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries]]

10553

\[ {}16 y^{2} {y^{\prime }}^{3}+2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries]]

10555

\[ {}x^{7} y^{2} {y^{\prime }}^{3}-\left (3 x^{6} y^{3}-1\right ) {y^{\prime }}^{2}+3 x^{5} y^{4} y^{\prime }-x^{4} y^{5} = 0 \]

[[_homogeneous, ‘class G‘]]

10564

\[ {}a {y^{\prime }}^{m}+b {y^{\prime }}^{n}-y = 0 \]

[_quadrature]

10568

\[ {}x \left (\sqrt {{y^{\prime }}^{2}+1}+y^{\prime }\right )-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

10571

\[ {}a y \sqrt {{y^{\prime }}^{2}+1}-2 x y y^{\prime }+y^{2}-x^{2} = 0 \]

[‘y=_G(x,y’)‘]

10574

\[ {}\ln \left (y^{\prime }\right )+y^{\prime } x +a y+b = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

10575

\[ {}\ln \left (y^{\prime }\right )+a \left (-y+y^{\prime } x \right ) = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

10576

\[ {}y \ln \left (y^{\prime }\right )+y^{\prime }-y \ln \left (y\right )-x y = 0 \]

[_separable]

10579

\[ {}{y^{\prime }}^{2} \sin \left (y^{\prime }\right )-y = 0 \]

[_quadrature]

10588

\[ {}y^{\prime } = F \left (\frac {y}{x +a}\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

10589

\[ {}y^{\prime } = 2 x +F \left (y-x^{2}\right ) \]

[[_1st_order, _with_linear_symmetries]]

10590

\[ {}y^{\prime } = -\frac {a x}{2}+F \left (y+\frac {a \,x^{2}}{4}+\frac {b x}{2}\right ) \]

[[_1st_order, _with_linear_symmetries]]

10591

\[ {}y^{\prime } = F \left (y \,{\mathrm e}^{-b x}\right ) {\mathrm e}^{b x} \]

[[_1st_order, _with_linear_symmetries]]

10595

\[ {}y^{\prime } = \frac {2 a}{y+2 F \left (y^{2}-4 a x \right ) a} \]

[[_1st_order, _with_linear_symmetries]]

10600

\[ {}y^{\prime } = \frac {F \left (-\frac {-1+y \ln \left (x \right )}{y}\right ) y^{2}}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

10607

\[ {}y^{\prime } = \frac {-2 x^{2}+x +F \left (y+x^{2}-x \right )}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

10608

\[ {}y^{\prime } = \frac {2 a}{x^{2} \left (-y+2 F \left (\frac {x y^{2}-4 a}{x}\right ) a \right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

10609

\[ {}y^{\prime } = \frac {y+F \left (\frac {y}{x}\right )}{x -1} \]

[[_homogeneous, ‘class D‘]]

10611

\[ {}y^{\prime } = \frac {F \left (-\frac {-1+2 y \ln \left (x \right )}{y}\right ) y^{2}}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

10616

\[ {}y^{\prime } = -\frac {y^{2} \left (2 x -F \left (-\frac {x y-2}{2 y}\right )\right )}{4 x} \]

[NONE]

10619

\[ {}y^{\prime } = \frac {\sqrt {y}}{\sqrt {y}+F \left (\frac {x -y}{\sqrt {y}}\right )} \]

[[_1st_order, _with_linear_symmetries]]

10623

\[ {}y^{\prime } = \frac {\left (y \,{\mathrm e}^{-\frac {x^{2}}{4}} x +2 F \left (y \,{\mathrm e}^{-\frac {x^{2}}{4}}\right )\right ) {\mathrm e}^{\frac {x^{2}}{4}}}{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

10627

\[ {}y^{\prime } = -\frac {-x^{2}+2 x^{3} y-F \left (\left (x y-1\right ) x \right )}{x^{4}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10631

\[ {}y^{\prime } = \frac {y^{2}+2 x y+x^{2}+{\mathrm e}^{2 F \left (-\left (x -y\right ) \left (x +y\right )\right )}}{y^{2}+2 x y+x^{2}-{\mathrm e}^{2 F \left (-\left (x -y\right ) \left (x +y\right )\right )}} \]

[[_1st_order, _with_linear_symmetries]]

10632

\[ {}y^{\prime } = \frac {1}{y+\sqrt {x}} \]

[[_homogeneous, ‘class G‘], [_Abel, ‘2nd type‘, ‘class C‘]]

10633

\[ {}y^{\prime } = \frac {1}{y+2+\sqrt {3 x +1}} \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

10634

\[ {}y^{\prime } = \frac {x^{2}}{y+x^{{3}/{2}}} \]

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

10635

\[ {}y^{\prime } = \frac {x^{{5}/{3}}}{y+x^{{4}/{3}}} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

10638

\[ {}y^{\prime } = \frac {\left (-1+y \ln \left (x \right )\right )^{2}}{x} \]

[_Riccati]

10639

\[ {}y^{\prime } = \frac {x \left (-2+3 \sqrt {x^{2}+3 y}\right )}{3} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

10640

\[ {}y^{\prime } = \frac {\left (-1+2 y \ln \left (x \right )\right )^{2}}{x} \]

[_Riccati]

10641

\[ {}y^{\prime } = \frac {{\mathrm e}^{b x}}{y \,{\mathrm e}^{-b x}+1} \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

10642

\[ {}y^{\prime } = \frac {x^{2} \left (1+2 \sqrt {x^{3}-6 y}\right )}{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

10643

\[ {}y^{\prime } = \frac {{\mathrm e}^{x}}{y \,{\mathrm e}^{-x}+1} \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

10644

\[ {}y^{\prime } = \frac {{\mathrm e}^{\frac {2 x}{3}}}{y \,{\mathrm e}^{-\frac {2 x}{3}}+1} \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

10646

\[ {}y^{\prime } = \frac {x \left (x +2 \sqrt {x^{3}-6 y}\right )}{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

10647

\[ {}y^{\prime } = \left (-\ln \left (y\right )+x^{2}\right ) y \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10654

\[ {}y^{\prime } = \frac {x \left (-2+3 x \sqrt {x^{2}+3 y}\right )}{3} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

10656

\[ {}y^{\prime } = \left (-\ln \left (y\right )+x \right ) y \]

[[_1st_order, _with_linear_symmetries]]

10657

\[ {}y^{\prime } = \frac {x^{3}+x^{2}+2 \sqrt {x^{3}-6 y}}{2 x +2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

10660

\[ {}y^{\prime } = -\frac {x}{4}+\frac {1}{4}+x \sqrt {x^{2}-2 x +1+8 y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

10661

\[ {}y^{\prime } = -\frac {x}{2}-\frac {a}{2}+x \sqrt {x^{2}+2 a x +a^{2}+4 y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

10662

\[ {}y^{\prime } = \frac {\left (\ln \left (y\right )+x^{2}\right ) y}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10664

\[ {}y^{\prime } = -\frac {x}{2}+1+x \sqrt {x^{2}-4 x +4 y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

10665

\[ {}y^{\prime } = -\frac {2 x^{2}+2 x -3 \sqrt {x^{2}+3 y}}{3 \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

10666

\[ {}y^{\prime } = \frac {y^{3} {\mathrm e}^{-\frac {4 x}{3}}}{y \,{\mathrm e}^{-\frac {2 x}{3}}+1} \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

10667

\[ {}y^{\prime } = \frac {\left (\ln \left (y\right )+x^{3}\right ) y}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10668

\[ {}y^{\prime } = -\frac {x}{4}+\frac {1}{4}+x^{2} \sqrt {x^{2}-2 x +1+8 y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

10669

\[ {}y^{\prime } = -\frac {x^{2}-1-4 \sqrt {x^{2}-2 x +1+8 y}}{4 \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

10670

\[ {}y^{\prime } = -\frac {a x}{2}-\frac {b}{2}+x \sqrt {a^{2} x^{2}+2 a b x +b^{2}+4 a y-4 c} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

10671

\[ {}y^{\prime } = -\frac {x}{2}-\frac {a}{2}+x^{2} \sqrt {x^{2}+2 a x +a^{2}+4 y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

10672

\[ {}y^{\prime } = -\frac {a x}{2}-\frac {b}{2}+x^{2} \sqrt {a^{2} x^{2}+2 a b x +b^{2}+4 a y-4 c} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

10673

\[ {}y^{\prime } = \frac {x}{2}+\frac {1}{2}+x^{2} \sqrt {x^{2}+2 x +1-4 y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

10675

\[ {}y^{\prime } = -\frac {x}{2}+1+x^{2} \sqrt {x^{2}-4 x +4 y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

10677

\[ {}y^{\prime } = \left (-\ln \left (y\right )+1+x^{2}+x^{3}\right ) y \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10678

\[ {}y^{\prime } = \frac {y^{3} {\mathrm e}^{-2 b x}}{y \,{\mathrm e}^{-b x}+1} \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

10679

\[ {}y^{\prime } = \frac {y^{3} {\mathrm e}^{-2 x}}{y \,{\mathrm e}^{-x}+1} \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

10685

\[ {}y^{\prime } = -\frac {x^{2}-x -2-2 \sqrt {x^{2}-4 x +4 y}}{2 \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

10691

\[ {}y^{\prime } = \frac {x^{2}+2 x +1+2 \sqrt {x^{2}+2 x +1-4 y}}{2 x +2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

10693

\[ {}y^{\prime } = \frac {2 a}{x \left (-x y+2 a y^{2} x -8 a^{2}\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

10694

\[ {}y^{\prime } = \frac {y \left (-1+\ln \left (\left (x +1\right ) x \right ) y x^{4}-\ln \left (\left (x +1\right ) x \right ) x^{3}\right )}{x} \]

[_Bernoulli]

10704

\[ {}y^{\prime } = \left (1+y^{2} {\mathrm e}^{-2 b x}+y^{3} {\mathrm e}^{-3 b x}\right ) {\mathrm e}^{b x} \]

[[_1st_order, _with_linear_symmetries], _Abel]

10708

\[ {}y^{\prime } = \left (1+y^{2} {\mathrm e}^{-\frac {4 x}{3}}+y^{3} {\mathrm e}^{-2 x}\right ) {\mathrm e}^{\frac {2 x}{3}} \]

[[_1st_order, _with_linear_symmetries], _Abel]

10709

\[ {}y^{\prime } = \left (1+y^{2} {\mathrm e}^{-2 x}+y^{3} {\mathrm e}^{-3 x}\right ) {\mathrm e}^{x} \]

[[_1st_order, _with_linear_symmetries], _Abel]

10714

\[ {}y^{\prime } = \frac {y \left (1-x +y x^{2} \ln \left (x \right )+x^{3} y-x \ln \left (x \right )-x^{2}\right )}{\left (x -1\right ) x} \]

[_Bernoulli]

10716

\[ {}y^{\prime } = \frac {\left (\ln \left (y\right )+x +x^{3}+x^{4}\right ) y}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10721

\[ {}y^{\prime } = \frac {-\ln \left (x \right )+{\mathrm e}^{\frac {1}{x}}+4 x^{2} y+2 x +2 x y^{2}+2 x^{3}}{\ln \left (x \right )-{\mathrm e}^{\frac {1}{x}}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

10724

\[ {}y^{\prime } = \frac {-b y a +b^{2}+a b +b^{2} x -b a \sqrt {x}-a^{2}}{a \left (-a y+b +a +b x -a \sqrt {x}\right )} \]

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10725

\[ {}y^{\prime } = -\frac {y \left (-\ln \left (\frac {1}{x}\right )+{\mathrm e}^{x}+y x^{2} \ln \left (x \right )+x^{3} y-x \ln \left (x \right )-x^{2}\right )}{\left (-\ln \left (\frac {1}{x}\right )+{\mathrm e}^{x}\right ) x} \]

[_Bernoulli]

10728

\[ {}y^{\prime } = -\frac {x^{2}+x +a x +a -2 \sqrt {x^{2}+2 a x +a^{2}+4 y}}{2 \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

10730

\[ {}y^{\prime } = \frac {y \left (-{\mathrm e}^{x}+\ln \left (2 x \right ) x^{2} y-\ln \left (2 x \right ) x \right ) {\mathrm e}^{-x}}{x} \]

[_Bernoulli]

10732

\[ {}y^{\prime } = \frac {\left (18 x^{{3}/{2}}+36 y^{2}-12 x^{3} y+x^{6}\right ) \sqrt {x}}{36} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

10733

\[ {}y^{\prime } = -\frac {y^{3}}{\left (-1+2 y \ln \left (x \right )-y\right ) x} \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

10734

\[ {}y^{\prime } = \frac {2 a}{y+2 a y^{4}-16 a^{2} x y^{2}+32 a^{3} x^{2}} \]

[[_1st_order, _with_linear_symmetries]]

10735

\[ {}y^{\prime } = -\frac {y^{3}}{\left (-1+y \ln \left (x \right )-y\right ) x} \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

10736

\[ {}y^{\prime } = \frac {-\ln \left (x \right )+2 \ln \left (2 x \right ) x y+\ln \left (2 x \right )+\ln \left (2 x \right ) y^{2}+\ln \left (2 x \right ) x^{2}}{\ln \left (x \right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

10737

\[ {}y^{\prime } = -\frac {b y a -b c +b^{2} x +b a \sqrt {x}-a^{2}}{a \left (a y-c +b x +a \sqrt {x}\right )} \]

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10742

\[ {}y^{\prime } = \frac {1+2 y}{x \left (-2+x y^{2}+2 x y^{3}\right )} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

10746

\[ {}y^{\prime } = \frac {\left (-1+2 y \ln \left (x \right )\right )^{3}}{\left (-1+2 y \ln \left (x \right )-y\right ) x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

10747

\[ {}y^{\prime } = \frac {2 x^{2}+2 x +x^{4}-2 x^{2} y-1+y^{2}}{x +1} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

10749

\[ {}y^{\prime } = \frac {2 a}{-x^{2} y+2 a y^{4} x^{2}-16 a^{2} x y^{2}+32 a^{3}} \]

[‘y=_G(x,y’)‘]

10750

\[ {}y^{\prime } = \frac {1+2 y}{x \left (-2+x y+2 x y^{2}\right )} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

10756

\[ {}y^{\prime } = \frac {\left (-1+y \ln \left (x \right )\right )^{3}}{\left (-1+y \ln \left (x \right )-y\right ) x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

10758

\[ {}y^{\prime } = -\frac {y \left (\tan \left (x \right )+\ln \left (2 x \right ) x -\ln \left (2 x \right ) x^{2} y\right )}{x \tan \left (x \right )} \]

[_Bernoulli]

10762

\[ {}y^{\prime } = \frac {\left (\ln \left (y\right ) x +\ln \left (y\right )+x^{4}\right ) y}{x \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10766

\[ {}y^{\prime } = \frac {y^{{3}/{2}}}{y^{{3}/{2}}+x^{2}-2 x y+y^{2}} \]

[[_1st_order, _with_linear_symmetries], _rational]

10768

\[ {}y^{\prime } = \frac {-4 x y+x^{3}+2 x^{2}-4 x -8}{-8 y+2 x^{2}+4 x -8} \]

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10772

\[ {}y^{\prime } = \frac {-4 x y-x^{3}+4 x^{2}-4 x +8}{8 y+2 x^{2}-8 x +8} \]

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10774

\[ {}y^{\prime } = \frac {\left (\ln \left (y\right ) x +\ln \left (y\right )+x \right ) y}{x \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10777

\[ {}y^{\prime } = \frac {y \left (-\ln \left (x \right )-x \ln \left (\frac {\left (x -1\right ) \left (x +1\right )}{x}\right )+\ln \left (\frac {\left (x -1\right ) \left (x +1\right )}{x}\right ) x^{2} y\right )}{x \ln \left (x \right )} \]

[_Bernoulli]

10778

\[ {}y^{\prime } = \frac {-8 x y-x^{3}+2 x^{2}-8 x +32}{32 y+4 x^{2}-8 x +32} \]

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10779

\[ {}y^{\prime } = \frac {y \left (1+y\right )}{x \left (-y-1+x y\right )} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

10782

\[ {}y^{\prime } = \frac {-4 y a x -a^{2} x^{3}-2 a \,x^{2} b -4 a x +8}{8 y+2 a \,x^{2}+4 b x +8} \]

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10784

\[ {}y^{\prime } = \frac {x y+x +y^{2}}{\left (x -1\right ) \left (x +y\right )} \]

[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

10785

\[ {}y^{\prime } = \frac {-4 x y-x^{3}-2 a \,x^{2}-4 x +8}{8 y+2 x^{2}+4 a x +8} \]

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10786

\[ {}y^{\prime } = \frac {x -y+\sqrt {y}}{x -y+\sqrt {y}+1} \]

[[_1st_order, _with_linear_symmetries], _rational]

10787

\[ {}y^{\prime } = \frac {y \left (-\ln \left (\frac {1}{x}\right )-\ln \left (\frac {x^{2}+1}{x}\right ) x +\ln \left (\frac {x^{2}+1}{x}\right ) x^{2} y\right )}{x \ln \left (\frac {1}{x}\right )} \]

[_Bernoulli]

10788

\[ {}y^{\prime } = \frac {y \left (1+y\right )}{x \left (-y-1+x y^{4}\right )} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

10790

\[ {}y^{\prime } = \frac {x^{3} y+x^{3}+x y^{2}+y^{3}}{\left (x -1\right ) x^{3}} \]

[[_homogeneous, ‘class D‘], _rational, _Abel]

10793

\[ {}y^{\prime } = \frac {y \left (-\tanh \left (\frac {1}{x}\right )-\ln \left (\frac {x^{2}+1}{x}\right ) x +\ln \left (\frac {x^{2}+1}{x}\right ) x^{2} y\right )}{x \tanh \left (\frac {1}{x}\right )} \]

[_Bernoulli]

10794

\[ {}y^{\prime } = -\frac {y \left (\tanh \left (x \right )+\ln \left (2 x \right ) x -\ln \left (2 x \right ) x^{2} y\right )}{x \tanh \left (x \right )} \]

[_Bernoulli]

10795

\[ {}y^{\prime } = \frac {-\sinh \left (x \right )+x^{2} \ln \left (x \right )+2 y \ln \left (x \right ) x +\ln \left (x \right )+y^{2} \ln \left (x \right )}{\sinh \left (x \right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

10796

\[ {}y^{\prime } = -\frac {\ln \left (x \right )-\sinh \left (x \right ) x^{2}-2 \sinh \left (x \right ) x y-\sinh \left (x \right )-\sinh \left (x \right ) y^{2}}{\ln \left (x \right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

10799

\[ {}y^{\prime } = -\frac {y \left (\ln \left (x -1\right )+\coth \left (x +1\right ) x -\coth \left (x +1\right ) x^{2} y\right )}{x \ln \left (x -1\right )} \]

[_Bernoulli]

10800

\[ {}y^{\prime } = -\frac {\ln \left (x -1\right )-\coth \left (x +1\right ) x^{2}-2 \coth \left (x +1\right ) x y-\coth \left (x +1\right )-\coth \left (x +1\right ) y^{2}}{\ln \left (x -1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

10803

\[ {}y^{\prime } = \frac {y \left (-\cosh \left (\frac {1}{x +1}\right ) x +\cosh \left (\frac {1}{x +1}\right )-x +x^{2} y-x^{2}+x^{3} y\right )}{x \left (x -1\right ) \cosh \left (\frac {1}{x +1}\right )} \]

[_Bernoulli]

10804

\[ {}y^{\prime } = -\frac {y \left (1+x y\right )}{x \left (x y+1-y\right )} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

10806

\[ {}y^{\prime } = \frac {x^{3}+3 a \,x^{2}+3 a^{2} x +a^{3}+x y^{2}+a y^{2}+y^{3}}{\left (x +a \right )^{3}} \]

[[_homogeneous, ‘class C‘], _rational, _Abel]

10808

\[ {}y^{\prime } = \frac {y \left (-1-\cosh \left (\frac {x +1}{x -1}\right ) x +\cosh \left (\frac {x +1}{x -1}\right ) x^{2} y-\cosh \left (\frac {x +1}{x -1}\right ) x^{2}+\cosh \left (\frac {x +1}{x -1}\right ) x^{3} y\right )}{x} \]

[_Bernoulli]

10810

\[ {}y^{\prime } = \frac {y \left (-1-x \,{\mathrm e}^{\frac {x +1}{x -1}}+x^{2} {\mathrm e}^{\frac {x +1}{x -1}} y-x^{2} {\mathrm e}^{\frac {x +1}{x -1}}+x^{3} {\mathrm e}^{\frac {x +1}{x -1}} y\right )}{x} \]

[_Bernoulli]

10811

\[ {}y^{\prime } = \frac {-b^{3}+6 b^{2} x -12 b \,x^{2}+8 x^{3}-4 b y^{2}+8 x y^{2}+8 y^{3}}{\left (2 x -b \right )^{3}} \]

[[_homogeneous, ‘class C‘], _rational, _Abel]

10812

\[ {}y^{\prime } = \frac {\left (y \,{\mathrm e}^{-\frac {x^{2}}{4}} x +2+2 y^{2} {\mathrm e}^{-\frac {x^{2}}{2}}+2 y^{3} {\mathrm e}^{-\frac {3 x^{2}}{4}}\right ) {\mathrm e}^{\frac {x^{2}}{4}}}{2} \]

[_Abel]

10819

\[ {}y^{\prime } = \frac {\left (1+2 y\right ) \left (1+y\right )}{x \left (-2 y-2+x +2 x y\right )} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

10820

\[ {}y^{\prime } = \frac {-125+300 x -240 x^{2}+64 x^{3}-80 y^{2}+64 x y^{2}+64 y^{3}}{\left (4 x -5\right )^{3}} \]

[[_homogeneous, ‘class C‘], _rational, _Abel]

10829

\[ {}y^{\prime } = \frac {y}{x \left (-1+x y+x y^{3}+x y^{4}\right )} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

10835

\[ {}y^{\prime } = \frac {y \left (x^{3}+x^{2} y+y^{2}\right )}{x^{2} \left (x -1\right ) \left (x +y\right )} \]

[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

10839

\[ {}y^{\prime } = \frac {\left (1+2 y\right ) \left (1+y\right )}{x \left (-2 y-2+x y^{3}+2 x y^{4}\right )} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

10850

\[ {}y^{\prime } = \frac {\left ({\mathrm e}^{-\frac {y}{x}} y+x \,{\mathrm e}^{-\frac {y}{x}}+x^{2}\right ) {\mathrm e}^{\frac {y}{x}}}{x} \]

[[_1st_order, _with_linear_symmetries]]

10851

\[ {}y^{\prime } = \frac {\left ({\mathrm e}^{-\frac {y}{x}} y+x \,{\mathrm e}^{-\frac {y}{x}}+x^{3}\right ) {\mathrm e}^{\frac {y}{x}}}{x} \]

[[_1st_order, _with_linear_symmetries]]

10862

\[ {}y^{\prime } = \frac {b^{3}+y^{2} b^{3}+2 y b^{2} a x +x^{2} b \,a^{2}+y^{3} b^{3}+3 y^{2} b^{2} a x +3 y b \,a^{2} x^{2}+a^{3} x^{3}}{b^{3}} \]

[[_homogeneous, ‘class C‘], _Abel]

10863

\[ {}y^{\prime } = \frac {\alpha ^{3}+y^{2} \alpha ^{3}+2 y \alpha ^{2} \beta x +\alpha \,\beta ^{2} x^{2}+y^{3} \alpha ^{3}+3 y^{2} \alpha ^{2} \beta x +3 y \alpha \,\beta ^{2} x^{2}+\beta ^{3} x^{3}}{\alpha ^{3}} \]

[[_homogeneous, ‘class C‘], _Abel]

10869

\[ {}y^{\prime } = \frac {a^{3}+y^{2} a^{3}+2 y a^{2} b x +a \,b^{2} x^{2}+y^{3} a^{3}+3 y^{2} a^{2} b x +3 y a \,b^{2} x^{2}+b^{3} x^{3}}{a^{3}} \]

[[_homogeneous, ‘class C‘], _Abel]

10874

\[ {}y^{\prime } = \frac {y \left ({\mathrm e}^{-\frac {x^{2}}{2}} x y+{\mathrm e}^{-\frac {x^{2}}{4}} x +2 y^{2} {\mathrm e}^{-\frac {3 x^{2}}{4}}\right ) {\mathrm e}^{\frac {x^{2}}{4}}}{2 y \,{\mathrm e}^{-\frac {x^{2}}{4}}+2} \]

[[_Abel, ‘2nd type‘, ‘class C‘], [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10877

\[ {}y^{\prime } = -\frac {2 x}{3}+1+y^{2}+\frac {2 x^{2} y}{3}+\frac {x^{4}}{9}+y^{3}+x^{2} y^{2}+\frac {x^{4} y}{3}+\frac {x^{6}}{27} \]

[[_1st_order, _with_linear_symmetries], _Abel]

10878

\[ {}y^{\prime } = 2 x +1+y^{2}-2 x^{2} y+x^{4}+y^{3}-3 x^{2} y^{2}+3 x^{4} y-x^{6} \]

[[_1st_order, _with_linear_symmetries], _Abel]

10883

\[ {}y^{\prime } = \frac {1+2 y}{x \left (-2+x +x y^{2}+3 x y^{3}+2 x y+2 x y^{4}\right )} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

10886

\[ {}y^{\prime } = -\frac {y^{2} \left (x^{2} y-2 x -2 x y+y\right )}{2 \left (-2+x y-2 y\right ) x} \]

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

10887

\[ {}y^{\prime } = \frac {-2 x y+2 x^{3}-2 x -y^{3}+3 x^{2} y^{2}-3 x^{4} y+x^{6}}{-y+x^{2}-1} \]

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

10890

\[ {}y^{\prime } = -\frac {2 a}{-y-2 a -2 a y^{4}+16 a^{2} x y^{2}-32 a^{3} x^{2}-2 a y^{6}+24 y^{4} a^{2} x -96 y^{2} a^{3} x^{2}+128 a^{4} x^{3}} \]

[[_1st_order, _with_linear_symmetries]]

10891

\[ {}y^{\prime } = \frac {-18 x y-6 x^{3}-18 x +27 y^{3}+27 x^{2} y^{2}+9 x^{4} y+x^{6}}{27 y+9 x^{2}+27} \]

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

10896

\[ {}y^{\prime } = \frac {2 x^{2}-4 x^{3} y+1+x^{4} y^{2}+x^{6} y^{3}-3 y^{2} x^{5}+3 x^{4} y-x^{3}}{x^{4}} \]

[_rational, _Abel]

10898

\[ {}y^{\prime } = \frac {6 x^{2} y-2 x +1-5 x^{3} y^{2}-2 x y+x^{4} y^{3}}{x^{2} \left (x^{2} y-x +1\right )} \]

[_rational, [_Abel, ‘2nd type‘, ‘class C‘], [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10902

\[ {}y^{\prime } = \frac {y^{2}+2 x y+x^{2}+{\mathrm e}^{-\frac {2}{-y^{2}+x^{2}-1}}}{y^{2}+2 x y+x^{2}-{\mathrm e}^{-\frac {2}{-y^{2}+x^{2}-1}}} \]

[[_1st_order, _with_linear_symmetries]]

10910

\[ {}y^{\prime } = \frac {2 a \left (-y^{2}+4 a x -1\right )}{-y^{3}+4 y a x -y-2 a y^{6}+24 y^{4} a^{2} x -96 y^{2} a^{3} x^{2}+128 a^{4} x^{3}} \]

[[_1st_order, _with_linear_symmetries], _rational]

10922

\[ {}y^{\prime } = \frac {2 a x}{-x^{3} y+2 a \,x^{3}+2 a y^{4} x^{3}-16 y^{2} a^{2} x^{2}+32 a^{3} x +2 a y^{6} x^{3}-24 y^{4} a^{2} x^{2}+96 y^{2} x \,a^{3}-128 a^{4}} \]

[_rational]

10923

\[ {}y^{\prime } = -\frac {-y^{3}-y+2 y^{2} \ln \left (x \right )-\ln \left (x \right )^{2} y^{3}-1+3 y \ln \left (x \right )-3 \ln \left (x \right )^{2} y^{2}+\ln \left (x \right )^{3} y^{3}}{y x} \]

[[_Abel, ‘2nd type‘, ‘class C‘]]

10924

\[ {}y^{\prime } = \frac {2 a \left (x y^{2}-4 a +x \right )}{-x^{3} y^{3}+4 a \,x^{2} y-x^{3} y+2 a y^{6} x^{3}-24 y^{4} a^{2} x^{2}+96 y^{2} x \,a^{3}-128 a^{4}} \]

[_rational]

10925

\[ {}y^{\prime } = -\frac {-y^{3}-y+4 y^{2} \ln \left (x \right )-4 \ln \left (x \right )^{2} y^{3}-1+6 y \ln \left (x \right )-12 \ln \left (x \right )^{2} y^{2}+8 \ln \left (x \right )^{3} y^{3}}{y x} \]

[[_Abel, ‘2nd type‘, ‘class C‘]]

10929

\[ {}y^{\prime } = \frac {y^{{3}/{2}} \left (x -y+\sqrt {y}\right )}{y^{{3}/{2}} x -y^{{5}/{2}}+y^{2}+x^{3}-3 x^{2} y+3 x y^{2}-y^{3}} \]

[[_1st_order, _with_linear_symmetries], _rational]

10932

\[ {}y^{\prime } = \frac {y^{2}}{y^{2}+y^{{3}/{2}}+\sqrt {y}\, x^{2}-2 y^{{3}/{2}} x +y^{{5}/{2}}+x^{3}-3 x^{2} y+3 x y^{2}-y^{3}} \]

[[_1st_order, _with_linear_symmetries], _rational]

10933

\[ {}y^{\prime } = \frac {y^{2}+2 x y+x^{2}+{\mathrm e}^{-2 \left (x -y\right ) \left (x +y\right )}}{y^{2}+2 x y+x^{2}-{\mathrm e}^{-2 \left (x -y\right ) \left (x +y\right )}} \]

[[_1st_order, _with_linear_symmetries]]

10935

\[ {}y^{\prime } = \frac {y^{2}+2 x y+x^{2}+{\mathrm e}^{2 \left (x -y\right )^{2} \left (x +y\right )^{2}}}{y^{2}+2 x y+x^{2}-{\mathrm e}^{2 \left (x -y\right )^{2} \left (x +y\right )^{2}}} \]

[[_1st_order, _with_linear_symmetries]]

10936

\[ {}y^{\prime } = \frac {-8 y^{3} x^{2}+16 x y^{2}+16 x y^{3}-8+12 x y-6 x^{2} y^{2}+x^{3} y^{3}}{16 \left (-2+x y-2 y\right ) x} \]

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

10939

\[ {}y^{\prime } = -\frac {16 x y^{3}-8 y^{3}-8 y+8 x y^{2}-2 y^{3} x^{2}-8+12 x y-6 x^{2} y^{2}+x^{3} y^{3}}{32 y x} \]

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

10941

\[ {}y^{\prime } = \frac {-3 x^{2} y-2 x^{3}-2 x -x y^{2}-y+x^{3} y^{3}+3 x^{4} y^{2}+3 x^{5} y+x^{6}}{x \left (x y+x^{2}+1\right )} \]

[_rational, [_Abel, ‘2nd type‘, ‘class C‘], [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10944

\[ {}y^{\prime } = \frac {x}{2}+1+y^{2}+\frac {x^{2} y}{4}-x y-\frac {x^{4}}{8}+\frac {x^{3}}{8}+\frac {x^{2}}{4}+y^{3}-\frac {3 x^{2} y^{2}}{4}-\frac {3 x y^{2}}{2}+\frac {3 x^{4} y}{16}+\frac {3 x^{3} y}{4}-\frac {x^{6}}{64}-\frac {3 x^{5}}{32} \]

[[_1st_order, _with_linear_symmetries], _Abel]

10945

\[ {}y^{\prime } = -\frac {x}{2}+1+y^{2}+\frac {7 x^{2} y}{2}-2 x y+\frac {13 x^{4}}{16}-\frac {3 x^{3}}{2}+x^{2}+y^{3}+\frac {3 x^{2} y^{2}}{4}-3 x y^{2}+\frac {3 x^{4} y}{16}-\frac {3 x^{3} y}{2}+\frac {x^{6}}{64}-\frac {3 x^{5}}{16} \]

[[_1st_order, _with_linear_symmetries], _Abel]

10946

\[ {}y^{\prime } = -\frac {x}{4}+1+y^{2}+\frac {7 x^{2} y}{16}-\frac {x y}{2}+\frac {5 x^{4}}{128}-\frac {5 x^{3}}{64}+\frac {x^{2}}{16}+y^{3}+\frac {3 x^{2} y^{2}}{8}-\frac {3 x y^{2}}{4}+\frac {3 x^{4} y}{64}-\frac {3 x^{3} y}{16}+\frac {x^{6}}{512}-\frac {3 x^{5}}{256} \]

[[_1st_order, _with_linear_symmetries], _Abel]

10948

\[ {}y^{\prime } = \frac {-x^{2}+x +1+y^{2}+5 x^{2} y-2 x y+4 x^{4}-3 x^{3}+y^{3}+3 x^{2} y^{2}-3 x y^{2}+3 x^{4} y-6 x^{3} y+x^{6}-3 x^{5}}{x} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel]

10949

\[ {}y^{\prime } = \frac {-32 x y+16 x^{3}+16 x^{2}-32 x -64 y^{3}+48 x^{2} y^{2}+96 x y^{2}-12 x^{4} y-48 x^{3} y-48 x^{2} y+x^{6}+6 x^{5}+12 x^{4}}{-64 y+16 x^{2}+32 x -64} \]

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

10951

\[ {}y^{\prime } = \frac {-32 x y-72 x^{3}+32 x^{2}-32 x +64 y^{3}+48 x^{2} y^{2}-192 x y^{2}+12 x^{4} y-96 x^{3} y+192 x^{2} y+x^{6}-12 x^{5}+48 x^{4}}{64 y+16 x^{2}-64 x +64} \]

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

10952

\[ {}y^{\prime } = -\frac {y^{2}+2 x y+x^{2}+{\mathrm e}^{\frac {2 \left (x -y\right )^{3} \left (x +y\right )^{3}}{-y^{2}+x^{2}-1}}}{-y^{2}-2 x y-x^{2}+{\mathrm e}^{\frac {2 \left (x -y\right )^{3} \left (x +y\right )^{3}}{-y^{2}+x^{2}-1}}} \]

[[_1st_order, _with_linear_symmetries]]

10953

\[ {}y^{\prime } = \frac {-128 x y-24 x^{3}+32 x^{2}-128 x +512 y^{3}+192 x^{2} y^{2}-384 x y^{2}+24 x^{4} y-96 x^{3} y+96 x^{2} y+x^{6}-6 x^{5}+12 x^{4}}{512 y+64 x^{2}-128 x +512} \]

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

10954

\[ {}y^{\prime } = \frac {-32 y a x -8 a^{2} x^{3}-16 a \,x^{2} b -32 a x +64 y^{3}+48 x^{2} a y^{2}+96 y^{2} b x +12 y a^{2} x^{4}+48 y a \,x^{3} b +48 y b^{2} x^{2}+a^{3} x^{6}+6 a^{2} x^{5} b +12 a \,x^{4} b^{2}+8 b^{3} x^{3}}{64 y+16 a \,x^{2}+32 b x +64} \]

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

10955

\[ {}y^{\prime } = \frac {-32 x y-8 x^{3}-16 a \,x^{2}-32 x +64 y^{3}+48 x^{2} y^{2}+96 a y^{2} x +12 x^{4} y+48 y a \,x^{3}+48 a^{2} x^{2} y+x^{6}+6 x^{5} a +12 a^{2} x^{4}+8 a^{3} x^{3}}{64 y+16 x^{2}+32 a x +64} \]

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

10959

\[ {}y^{\prime } = \frac {x^{2} y+x^{4}+2 x^{3}-3 x^{2}+x y+x +y^{3}+3 x^{2} y^{2}-3 x y^{2}+3 x^{4} y-6 x^{3} y+x^{6}-3 x^{5}}{x \left (y+x^{2}-x +1\right )} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

10960

\[ {}y^{\prime } = -\frac {a x}{2}+1+y^{2}+\frac {a \,x^{2} y}{2}+b x y+\frac {a^{2} x^{4}}{16}+\frac {a \,x^{3} b}{4}+\frac {b^{2} x^{2}}{4}+y^{3}+\frac {3 x^{2} a y^{2}}{4}+\frac {3 y^{2} b x}{2}+\frac {3 y a^{2} x^{4}}{16}+\frac {3 y a \,x^{3} b}{4}+\frac {3 y b^{2} x^{2}}{4}+\frac {a^{3} x^{6}}{64}+\frac {3 a^{2} x^{5} b}{32}+\frac {3 a \,x^{4} b^{2}}{16}+\frac {b^{3} x^{3}}{8} \]

[[_1st_order, _with_linear_symmetries], _Abel]

10961

\[ {}y^{\prime } = -\frac {x}{2}+1+y^{2}+\frac {x^{2} y}{2}+y a x +\frac {x^{4}}{16}+\frac {a \,x^{3}}{4}+\frac {a^{2} x^{2}}{4}+y^{3}+\frac {3 x^{2} y^{2}}{4}+\frac {3 a y^{2} x}{2}+\frac {3 x^{4} y}{16}+\frac {3 y a \,x^{3}}{4}+\frac {3 a^{2} x^{2} y}{4}+\frac {x^{6}}{64}+\frac {3 x^{5} a}{32}+\frac {3 a^{2} x^{4}}{16}+\frac {a^{3} x^{3}}{8} \]

[[_1st_order, _with_linear_symmetries], _Abel]

10971

\[ {}y^{\prime } = \frac {y^{2}+2 x y+x^{2}+{\mathrm e}^{2+2 y^{4}-4 x^{2} y^{2}+2 x^{4}+2 y^{6}-6 x^{2} y^{4}+6 x^{4} y^{2}-2 x^{6}}}{y^{2}+2 x y+x^{2}-{\mathrm e}^{2+2 y^{4}-4 x^{2} y^{2}+2 x^{4}+2 y^{6}-6 x^{2} y^{4}+6 x^{4} y^{2}-2 x^{6}}} \]

[[_1st_order, _with_linear_symmetries]]

10979

\[ {}y^{\prime } = \frac {y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right ) x +y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x +y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )-\sin \left (\frac {y}{x}\right ) y x -y \sin \left (\frac {y}{x}\right )+2 \sin \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x}{2 \cos \left (\frac {y}{x}\right ) \sin \left (\frac {y}{2 x}\right ) x \cos \left (\frac {y}{2 x}\right ) \left (x +1\right )} \]

[[_homogeneous, ‘class D‘]]

10981

\[ {}y^{\prime } = \frac {\left (1+x y\right )^{3}}{x^{5}} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel]

10983

\[ {}y^{\prime } = y \left (y^{2}+y \,{\mathrm e}^{b x}+{\mathrm e}^{2 b x}\right ) {\mathrm e}^{-2 b x} \]

[[_1st_order, _with_linear_symmetries], _Abel]

10984

\[ {}y^{\prime } = y^{3}-3 x^{2} y^{2}+3 x^{4} y-x^{6}+2 x \]

[[_1st_order, _with_linear_symmetries], _Abel]

10985

\[ {}y^{\prime } = y^{3}+x^{2} y^{2}+\frac {x^{4} y}{3}+\frac {x^{6}}{27}-\frac {2 x}{3} \]

[[_1st_order, _with_linear_symmetries], _Abel]

10989

\[ {}y^{\prime } = \frac {y^{3}-3 x y^{2}+3 x^{2} y-x^{3}+x}{x} \]

[[_1st_order, _with_linear_symmetries], _rational, _Abel]

10992

\[ {}y^{\prime } = \frac {y \,{\mathrm e}^{-\frac {x^{2}}{2}} \left (2 y^{2}+2 y \,{\mathrm e}^{\frac {x^{2}}{4}}+2 \,{\mathrm e}^{\frac {x^{2}}{2}}+x \,{\mathrm e}^{\frac {x^{2}}{2}}\right )}{2} \]

[_Abel]

10993

\[ {}y^{\prime } = \frac {y^{3}-3 x y^{2}+3 x^{2} y-x^{3}+x^{2}}{\left (x -1\right ) \left (x +1\right )} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel]

10995

\[ {}y^{\prime } = \frac {\left (1+x y\right ) \left (x^{2} y^{2}+x^{2} y+2 x y+1+x +x^{2}\right )}{x^{5}} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel]

11009

\[ {}y^{\prime } = \frac {\left (y-x +\ln \left (x +1\right )\right )^{2}+x}{x +1} \]

[[_1st_order, _with_linear_symmetries], _Riccati]

12002

\[ {}y^{\prime } = f \left (y\right ) \]

[_quadrature]

12006

\[ {}y^{\prime } = f \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

12013

\[ {}y^{\prime } = a \,x^{n} y^{2}+b \,x^{-n -2} \]

[[_homogeneous, ‘class G‘], _Riccati]

12019

\[ {}x^{2} y^{\prime } = x^{2} a y^{2}+b \]

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

12024

\[ {}x^{4} y^{\prime } = -x^{4} y^{2}-a^{2} \]

[_rational, [_Riccati, _special]]

12026

\[ {}\left (a \,x^{2}+b x +c \right )^{2} \left (y^{\prime }+y^{2}\right )+A = 0 \]

[_rational, _Riccati]

12045

\[ {}y^{\prime } x = a \,x^{n} y^{2}+b y+c \,x^{-n} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

12052

\[ {}\left (a x +c \right ) y^{\prime } = \alpha \left (b x +a y\right )^{2}+\beta \left (b x +a y\right )-b x +\gamma \]

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

12055

\[ {}x^{2} y^{\prime } = x^{2} a y^{2}+b x y+c \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

12064

\[ {}\left (a \,x^{2}+b \right ) y^{\prime }+y^{2}-2 x y+\left (1-a \right ) x^{2}-b = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

12065

\[ {}\left (a \,x^{2}+b x +c \right ) y^{\prime } = y^{2}+\left (2 \lambda x +b \right ) y+\lambda \left (\lambda -a \right ) x^{2}+\mu \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

12069

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }+y^{2}+k \left (y+x -a \right ) \left (y+x -b \right ) = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

12095

\[ {}y^{\prime } = a \,{\mathrm e}^{\lambda x} y^{2}+b y+c \,{\mathrm e}^{-\lambda x} \]

[[_1st_order, _with_linear_symmetries], _Riccati]

12107

\[ {}y^{\prime } = a \,{\mathrm e}^{\lambda x} y^{2}+b \,{\mathrm e}^{-\lambda x} \]

[[_1st_order, _with_linear_symmetries], _Riccati]

12168

\[ {}y^{\prime } x = \left (a y+b \ln \left (x \right )\right )^{2} \]

[[_1st_order, _with_linear_symmetries], _Riccati]

12326

\[ {}y y^{\prime }-y = A \]

[_quadrature]

12327

\[ {}y y^{\prime }-y = A x +B \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12405

\[ {}y y^{\prime } = \frac {y}{\sqrt {a x +b}}+1 \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class B‘]]

12415

\[ {}y y^{\prime } = \left (3 a x +b \right ) y-a^{2} x^{3}-a \,x^{2} b +c x \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12494

\[ {}\left (A y+B x +a \right ) y^{\prime }+B y+k x +b = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12495

\[ {}\left (y+a x +b \right ) y^{\prime } = \alpha y+\beta x +\gamma \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12799

\[ {}\frac {y^{2}-2 x^{2}}{x y^{2}-x^{3}}+\frac {\left (2 y^{2}-x^{2}\right ) y^{\prime }}{y^{3}-x^{2} y} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

12800

\[ {}\frac {1}{\sqrt {x^{2}+y^{2}}}+\left (\frac {1}{y}-\frac {x}{y \sqrt {x^{2}+y^{2}}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

12801

\[ {}y^{\prime } x +x +y = 0 \]

[_linear]

12802

\[ {}6 x -2 y+1+\left (2 y-2 x -3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12804

\[ {}\left (x +1\right ) y^{2}-x^{3} y^{\prime } = 0 \]

[_separable]

12807

\[ {}x \,{\mathrm e}^{\frac {y}{x}}+y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12808

\[ {}2 x^{2} y+3 y^{3}-\left (x^{3}+2 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12809

\[ {}y^{2}-x y+x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12810

\[ {}2 x^{2} y+y^{3}-x^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12811

\[ {}y^{3}+x^{3} y^{\prime } = 0 \]

[_separable]

12812

\[ {}x +y \cos \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12813

\[ {}4 x +3 y+1+\left (x +y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12814

\[ {}4 x -y+2+\left (x +y+3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12815

\[ {}2 x +y-\left (4 x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12816

\[ {}y+2 x y^{2}-y^{3} x^{2}+2 x^{2} y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

12817

\[ {}2 y+3 x y^{2}+\left (2 x^{2} y+x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12818

\[ {}y+x y^{2}+\left (x -x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12821

\[ {}y^{\prime }-\frac {2 y}{x +1} = \left (x +1\right )^{3} \]

[_linear]

12823

\[ {}x^{2} y^{\prime }+\left (1-2 x \right ) y = x^{2} \]

[_linear]

12828

\[ {}y^{\prime }-\frac {1+y}{x +1} = \sqrt {1+y} \]

[[_1st_order, _with_linear_symmetries]]

12829

\[ {}x^{4} y \left (3 y+2 y^{\prime } x \right )+x^{2} \left (4 y+3 y^{\prime } x \right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12830

\[ {}y^{2} \left (3 y-6 y^{\prime } x \right )-x \left (y-2 y^{\prime } x \right ) = 0 \]

[_separable]

12831

\[ {}2 x^{3} y-y^{2}-\left (2 x^{4}+x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12832

\[ {}y^{2}-x y+x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12834

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12835

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12836

\[ {}x -y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

12838

\[ {}3 x^{2}+6 x y+3 y^{2}+\left (2 x^{2}+3 x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12841

\[ {}x^{3} y-y^{4}+\left (x y^{3}-x^{4}\right ) y^{\prime } = 0 \]

[_separable]

12842

\[ {}y^{2}-x^{2}+2 m x y+\left (m y^{2}-m \,x^{2}-2 x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12843

\[ {}y^{\prime } x -y+2 x^{2} y-x^{3} = 0 \]

[_linear]

12844

\[ {}\left (x +y\right ) y^{\prime }-1 = 0 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

12845

\[ {}x +y y^{\prime }+y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12848

\[ {}\sqrt {1-y^{2}}+\sqrt {-x^{2}+1}\, y^{\prime } = 0 \]

[_separable]

12849

\[ {}y^{\prime }-x^{2} y = x^{5} \]

[_linear]

12850

\[ {}\left (y-x \right )^{2} y^{\prime } = 1 \]

[[_homogeneous, ‘class C‘], _dAlembert]

12853

\[ {}\left (y-x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12854

\[ {}-y+y^{\prime } x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12855

\[ {}-y+y^{\prime } x = \sqrt {x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12856

\[ {}x \sin \left (\frac {y}{x}\right )-y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12857

\[ {}x -2 y+5+\left (2 x -y+4\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12859

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x y = a y^{2} x \]

[_separable]

12860

\[ {}x y^{2} \left (3 y+y^{\prime } x \right )-2 y+y^{\prime } x = 0 \]

[[_homogeneous, ‘class G‘], _rational]

12861

\[ {}\left (x^{2}+1\right ) y^{\prime }+y = \arctan \left (x \right ) \]

[_linear]

12862

\[ {}5 x y-3 y^{3}+\left (3 x^{2}-7 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

12864

\[ {}x y^{2}+y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

12866

\[ {}3 x^{2} y+\left (x^{3}+x^{3} y^{2}\right ) y^{\prime } = 0 \]

[_separable]

12868

\[ {}2 x +3 y-1+\left (2 x +3 y-5\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12869

\[ {}y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12871

\[ {}\left (x^{2}+y^{2}\right ) \left (x +y y^{\prime }\right )+\sqrt {1+x^{2}+y^{2}}\, \left (y-y^{\prime } x \right ) = 0 \]

[[_1st_order, _with_linear_symmetries]]

12872

\[ {}1+{\mathrm e}^{\frac {y}{x}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12873

\[ {}y^{\prime } x -y^{2} \ln \left (x \right )+y = 0 \]

[_Bernoulli]

12875

\[ {}\left (2 \sqrt {x y}-x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12876

\[ {}{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+x y = 0 \]

[_quadrature]

12881

\[ {}{y^{\prime }}^{3}-\left (2 x +y^{2}\right ) {y^{\prime }}^{2}+\left (x^{2}-y^{2}+2 x y^{2}\right ) y^{\prime }-\left (x^{2}-y^{2}\right ) y^{2} = 0 \]

[_quadrature]

12882

\[ {}2 y^{\prime } x -y+\ln \left (y^{\prime }\right ) = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

12885

\[ {}y^{\prime }+2 x y = x^{2}+y^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

12888

\[ {}x +y^{\prime } y \left (2 {y^{\prime }}^{2}+3\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12891

\[ {}{y^{\prime }}^{3}-4 x y y^{\prime }+8 y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries]]

12898

\[ {}y = 2 y^{\prime } x +y^{2} {y^{\prime }}^{3} \]

[[_1st_order, _with_linear_symmetries]]

12906

\[ {}\left (-y+y^{\prime } x \right ) \left (x +y y^{\prime }\right ) = a^{2} y^{\prime } \]

[_rational]

12909

\[ {}x^{2} {y^{\prime }}^{2}-2 \left (x y+2 y^{\prime }\right ) y^{\prime }+y^{2} = 0 \]

[_separable]

13025

\[ {}x^{\prime } = \frac {2 x}{t} \]

[_separable]

13026

\[ {}x^{\prime } = -\frac {t}{x} \]

[_separable]

13027

\[ {}x^{\prime } = -x^{2} \]

[_quadrature]

13029

\[ {}x^{\prime } = {\mathrm e}^{-x} \]

[_quadrature]

13030

\[ {}x^{\prime }+2 x = t^{2}+4 t +7 \]

[[_linear, ‘class A‘]]

13031

\[ {}2 t x^{\prime } = x \]

[_separable]

13034

\[ {}x^{\prime } = x \left (1-\frac {x}{4}\right ) \]

[_quadrature]

13044

\[ {}x^{\prime } = \sqrt {x} \]
i.c.

[_quadrature]

13045

\[ {}x^{\prime } = {\mathrm e}^{-2 x} \]
i.c.

[_quadrature]

13046

\[ {}y^{\prime } = 1+y^{2} \]

[_quadrature]

13047

\[ {}u^{\prime } = \frac {1}{5-2 u} \]

[_quadrature]

13048

\[ {}x^{\prime } = a x+b \]

[_quadrature]

13049

\[ {}Q^{\prime } = \frac {Q}{4+Q^{2}} \]

[_quadrature]

13050

\[ {}x^{\prime } = {\mathrm e}^{x^{2}} \]

[_quadrature]

13051

\[ {}y^{\prime } = r \left (a -y\right ) \]

[_quadrature]

13052

\[ {}x^{\prime } = \frac {2 x}{1+t} \]

[_separable]

13054

\[ {}\left (2 u+1\right ) u^{\prime }-1-t = 0 \]

[_separable]

13055

\[ {}R^{\prime } = \left (1+t \right ) \left (1+R^{2}\right ) \]

[_separable]

13056

\[ {}y^{\prime }+y+\frac {1}{y} = 0 \]

[_quadrature]

13057

\[ {}\left (1+t \right ) x^{\prime }+x^{2} = 0 \]

[_separable]

13058

\[ {}y^{\prime } = \frac {1}{2 y+1} \]
i.c.

[_quadrature]

13059

\[ {}x^{\prime } = \left (4 t -x\right )^{2} \]
i.c.

[[_homogeneous, ‘class C‘], _Riccati]

13060

\[ {}x^{\prime } = 2 t x^{2} \]
i.c.

[_separable]

13061

\[ {}x^{\prime } = t^{2} {\mathrm e}^{-x} \]
i.c.

[_separable]

13062

\[ {}x^{\prime } = x \left (x+4\right ) \]
i.c.

[_quadrature]

13063

\[ {}x^{\prime } = {\mathrm e}^{t +x} \]
i.c.

[_separable]

13064

\[ {}T^{\prime } = 2 a t \left (T^{2}-a^{2}\right ) \]
i.c.

[_separable]

13067

\[ {}y^{\prime } = \frac {2 t y^{2}}{t^{2}+1} \]
i.c.

[_separable]

13069

\[ {}x^{\prime } = 6 t \left (x-1\right )^{{2}/{3}} \]

[_separable]

13070

\[ {}x^{\prime } = \frac {4 t^{2}+3 x^{2}}{2 t x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13071

\[ {}x^{\prime } {\mathrm e}^{2 t}+2 x \,{\mathrm e}^{2 t} = {\mathrm e}^{-t} \]
i.c.

[[_linear, ‘class A‘]]

13073

\[ {}y^{\prime } = \frac {y^{2}+2 t y}{t^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13074

\[ {}y^{\prime } = -y^{2} {\mathrm e}^{-t^{2}} \]
i.c.

[_separable]

13081

\[ {}x^{\prime } = -\frac {2 x}{t}+t \]

[_linear]

13082

\[ {}y^{\prime }+y = {\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

13083

\[ {}x^{\prime }+2 t x = {\mathrm e}^{-t^{2}} \]

[_linear]

13084

\[ {}t x^{\prime } = -x+t^{2} \]

[_linear]

13085

\[ {}\theta ^{\prime } = -a \theta +{\mathrm e}^{b t} \]

[[_linear, ‘class A‘]]

13086

\[ {}\left (t^{2}+1\right ) x^{\prime } = -3 t x+6 t \]

[_separable]

13087

\[ {}x^{\prime }+\frac {5 x}{t} = 1+t \]
i.c.

[_linear]

13088

\[ {}x^{\prime } = \left (a +\frac {b}{t}\right ) x \]
i.c.

[_separable]

13090

\[ {}N^{\prime } = N-9 \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

13091

\[ {}\cos \left (\theta \right ) v^{\prime }+v = 3 \]

[_separable]

13092

\[ {}R^{\prime } = \frac {R}{t}+t \,{\mathrm e}^{-t} \]
i.c.

[_linear]

13094

\[ {}x^{\prime } = 2 t x \]

[_separable]

13097

\[ {}x^{\prime } = \left (t +x\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

13098

\[ {}x^{\prime } = a x+b \]

[_quadrature]

13099

\[ {}x^{\prime }+p \left (t \right ) x = 0 \]

[_separable]

13100

\[ {}x^{\prime } = \frac {2 x}{3 t}+\frac {2 t}{x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13101

\[ {}x^{\prime } = x \left (1+x \,{\mathrm e}^{t}\right ) \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

13102

\[ {}x^{\prime } = -\frac {x}{t}+\frac {1}{t x^{2}} \]

[_separable]

13103

\[ {}t^{2} y^{\prime }+2 t y-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13104

\[ {}x^{\prime } = a x+b x^{3} \]

[_quadrature]

13106

\[ {}x^{3}+3 t x^{2} x^{\prime } = 0 \]

[_separable]

13109

\[ {}x+3 t x^{2} x^{\prime } = 0 \]

[_separable]

13110

\[ {}x^{2}-t^{2} x^{\prime } = 0 \]

[_separable]

13111

\[ {}t \cot \left (x\right ) x^{\prime } = -2 \]

[_separable]

13246

\[ {}y^{\prime }+y = x +1 \]

[[_linear, ‘class A‘]]

13250

\[ {}2 x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

13251

\[ {}y^{\prime } x +y = x^{3} y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

13252

\[ {}y^{\prime }+3 y = 3 x^{2} {\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

13253

\[ {}y^{\prime }+4 x y = 8 x \]

[_separable]

13262

\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x} \]
i.c.

[[_linear, ‘class A‘]]

13263

\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x} \]
i.c.

[[_linear, ‘class A‘]]

13270

\[ {}y^{\prime } = \frac {y^{2}}{x -2} \]
i.c.

[_separable]

13271

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

13272

\[ {}3 x +2 y+\left (2 x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13279

\[ {}\frac {\left (2 s-1\right ) s^{\prime }}{t}+\frac {s-s^{2}}{t^{2}} = 0 \]

[_separable]

13285

\[ {}\frac {3-y}{x^{2}}+\frac {\left (y^{2}-2 x \right ) y^{\prime }}{x y^{2}} = 0 \]
i.c.

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

13286

\[ {}\frac {1+8 x y^{{2}/{3}}}{x^{{2}/{3}} y^{{1}/{3}}}+\frac {\left (2 x^{{4}/{3}} y^{{2}/{3}}-x^{{1}/{3}}\right ) y^{\prime }}{y^{{4}/{3}}} = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _exact, _rational]

13287

\[ {}4 x +3 y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

13288

\[ {}y^{2}+2 x y-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13289

\[ {}y+x \left (x^{2}+y^{2}\right )^{2}+\left (y \left (x^{2}+y^{2}\right )^{2}-x \right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

13290

\[ {}4 x y+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

13291

\[ {}x y+2 x +y+2+\left (x^{2}+2 x \right ) y^{\prime } = 0 \]

[_separable]

13292

\[ {}2 r \left (s^{2}+1\right )+\left (r^{4}+1\right ) s^{\prime } = 0 \]

[_separable]

13294

\[ {}\tan \left (\theta \right )+2 r \theta ^{\prime } = 0 \]

[_separable]

13297

\[ {}x +y-y^{\prime } x = 0 \]

[_linear]

13298

\[ {}2 x y+3 y^{2}-\left (2 x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13299

\[ {}v^{3}+\left (u^{3}-u v^{2}\right ) v^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

13300

\[ {}x \tan \left (\frac {y}{x}\right )+y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

13301

\[ {}\left (2 s^{2}+2 s t +t^{2}\right ) s^{\prime }+s^{2}+2 s t -t^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

13302

\[ {}x^{3}+y^{2} \sqrt {x^{2}+y^{2}}-x y \sqrt {x^{2}+y^{2}}\, y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

13304

\[ {}y+2+y \left (x +4\right ) y^{\prime } = 0 \]
i.c.

[_separable]

13307

\[ {}x^{2}+3 y^{2}-2 x y y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13308

\[ {}2 x -5 y+\left (4 x -y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13309

\[ {}3 x^{2}+9 x y+5 y^{2}-\left (6 x^{2}+4 x y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13310

\[ {}x +2 y+\left (2 x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13311

\[ {}3 x -y-\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13312

\[ {}x^{2}+2 y^{2}+\left (4 x y-y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

13313

\[ {}2 x^{2}+2 x y+y^{2}+\left (2 x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13314

\[ {}y^{\prime }+\frac {3 y}{x} = 6 x^{2} \]

[_linear]

13315

\[ {}x^{4} y^{\prime }+2 x^{3} y = 1 \]

[_linear]

13316

\[ {}y^{\prime }+3 y = 3 x^{2} {\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

13317

\[ {}y^{\prime }+4 x y = 8 x \]

[_separable]

13318

\[ {}x^{\prime }+\frac {x}{t^{2}} = \frac {1}{t^{2}} \]

[_separable]

13319

\[ {}\left (u^{2}+1\right ) v^{\prime }+4 v u = 3 u \]

[_separable]

13328

\[ {}y^{\prime }-\frac {y}{x} = -\frac {y^{2}}{x} \]

[_separable]

13329

\[ {}y^{\prime } x +y = -2 x^{6} y^{4} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

13332

\[ {}y^{\prime } x -2 y = 2 x^{4} \]
i.c.

[_linear]

13333

\[ {}y^{\prime }+3 x^{2} y = x^{2} \]
i.c.

[_separable]

13335

\[ {}2 x \left (1+y\right )-\left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

13338

\[ {}y^{\prime }+\frac {y}{2 x} = \frac {x}{y^{3}} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

13339

\[ {}y^{\prime } x +y = \left (x y\right )^{{3}/{2}} \]
i.c.

[[_homogeneous, ‘class G‘], _rational]

13344

\[ {}a y^{\prime }+b y = k \,{\mathrm e}^{-\lambda x} \]

[[_linear, ‘class A‘]]

13348

\[ {}y^{\prime } = \left (1-x \right ) y^{2}+\left (2 x -1\right ) y-x \]

[_Riccati]

13350

\[ {}y^{\prime } = -8 x y^{2}+4 x \left (4 x +1\right ) y-8 x^{3}-4 x^{2}+1 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

13351

\[ {}6 x^{2} y-\left (x^{3}+1\right ) y^{\prime } = 0 \]

[_separable]

13352

\[ {}\left (3 x^{2} y^{2}-x \right ) y^{\prime }+2 x y^{3}-y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

13353

\[ {}y-1+x \left (x +1\right ) y^{\prime } = 0 \]

[_separable]

13354

\[ {}x^{2}-2 y+y^{\prime } x = 0 \]

[_linear]

13355

\[ {}3 x -5 y+\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13356

\[ {}{\mathrm e}^{2 x} y^{2}+\left ({\mathrm e}^{2 x} y-2 y\right ) y^{\prime } = 0 \]

[_separable]

13357

\[ {}8 x^{3} y-12 x^{3}+\left (x^{4}+1\right ) y^{\prime } = 0 \]

[_separable]

13358

\[ {}2 x^{2}+x y+y^{2}+2 x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

13359

\[ {}y^{\prime } = \frac {4 x^{3} y^{2}-3 x^{2} y}{x^{3}-2 x^{4} y} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13360

\[ {}\left (x +1\right ) y^{\prime }+x y = {\mathrm e}^{-x} \]

[_linear]

13361

\[ {}y^{\prime } = \frac {2 x -7 y}{3 y-8 x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13362

\[ {}x^{2} y^{\prime }+x y = x y^{3} \]

[_separable]

13363

\[ {}\left (x^{3}+1\right ) y^{\prime }+6 x^{2} y = 6 x^{2} \]

[_separable]

13364

\[ {}y^{\prime } = \frac {2 x^{2}+y^{2}}{2 x y-x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13365

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13366

\[ {}2 y^{2}+8+\left (-x^{2}+1\right ) y y^{\prime } = 0 \]
i.c.

[_separable]

13367

\[ {}{\mathrm e}^{2 x} y^{2}-2 x +{\mathrm e}^{2 x} y y^{\prime } = 0 \]
i.c.

[_exact, _Bernoulli]

13369

\[ {}4 x y y^{\prime } = 1+y^{2} \]
i.c.

[_separable]

13370

\[ {}y^{\prime } = \frac {2 x +7 y}{2 x -2 y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13371

\[ {}y^{\prime } = \frac {x y}{x^{2}+1} \]
i.c.

[_separable]

13374

\[ {}x^{2} y^{\prime }+x y = \frac {y^{3}}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13379

\[ {}4 x y^{2}+6 y+\left (5 x^{2} y+8 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13380

\[ {}8 y^{3} x^{2}-2 y^{4}+\left (5 x^{3} y^{2}-8 x y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13381

\[ {}5 x +2 y+1+\left (2 x +y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13382

\[ {}3 x -y+1-\left (6 x -2 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13383

\[ {}x -2 y-3+\left (2 x +y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13384

\[ {}10 x -4 y+12-\left (x +5 y+3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13385

\[ {}6 x +4 y+1+\left (4 x +2 y+2\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13386

\[ {}3 x -y-6+\left (x +y+2\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13387

\[ {}2 x +3 y+1+\left (4 x +6 y+1\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13388

\[ {}4 x +3 y+1+\left (x +y+1\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13713

\[ {}x^{\prime } {\mathrm e}^{3 t}+3 x \,{\mathrm e}^{3 t} = {\mathrm e}^{-t} \]
i.c.

[[_linear, ‘class A‘]]

13714

\[ {}x^{\prime } = -x+1 \]

[_quadrature]

13715

\[ {}x^{\prime } = x \left (2-x\right ) \]

[_quadrature]

13716

\[ {}x^{\prime } = \left (1+x\right ) \left (2-x\right ) \sin \left (x\right ) \]

[_quadrature]

13717

\[ {}x^{\prime } = -x \left (-x+1\right ) \left (2-x\right ) \]

[_quadrature]

13718

\[ {}x^{\prime } = x^{2}-x^{4} \]

[_quadrature]

13719

\[ {}x^{\prime } = t^{3} \left (-x+1\right ) \]
i.c.

[_separable]

13720

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (x \right ) \]
i.c.

[_separable]

13721

\[ {}x^{\prime } = t^{2} x \]

[_separable]

13722

\[ {}x^{\prime } = -x^{2} \]

[_quadrature]

13723

\[ {}y^{\prime } = y^{2} {\mathrm e}^{-t^{2}} \]

[_separable]

13724

\[ {}x^{\prime }+p x = q \]

[_quadrature]

13725

\[ {}y^{\prime } x = k y \]

[_separable]

13726

\[ {}i^{\prime } = p \left (t \right ) i \]

[_separable]

13727

\[ {}x^{\prime } = \lambda x \]

[_quadrature]

13728

\[ {}m v^{\prime } = -m g +k v^{2} \]

[_quadrature]

13729

\[ {}x^{\prime } = k x-x^{2} \]
i.c.

[_quadrature]

13730

\[ {}x^{\prime } = -x \left (k^{2}+x^{2}\right ) \]
i.c.

[_quadrature]

13731

\[ {}y^{\prime }+\frac {y}{x} = x^{2} \]

[_linear]

13732

\[ {}x^{\prime }+t x = 4 t \]
i.c.

[_separable]

13737

\[ {}x^{\prime }+5 x = t \]

[[_linear, ‘class A‘]]

13747

\[ {}x y+y^{2}+x^{2}-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

13748

\[ {}x^{\prime } = \frac {x^{2}+t \sqrt {t^{2}+x^{2}}}{t x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

13749

\[ {}x^{\prime } = k x-x^{2} \]

[_quadrature]

13849

\[ {}12 x +6 y-9+\left (5 x +2 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13850

\[ {}y^{\prime } x = y+\sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

13851

\[ {}y^{\prime } x +y = x^{3} \]

[_linear]

13852

\[ {}y-y^{\prime } x = x^{2} y y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13853

\[ {}x^{\prime }+3 x = {\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

13855

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

13857

\[ {}x \left (\ln \left (x \right )-\ln \left (y\right )\right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

13858

\[ {}x y {y^{\prime }}^{2}-\left (x^{2}+y^{2}\right ) y^{\prime }+x y = 0 \]

[_separable]

13859

\[ {}{y^{\prime }}^{2} = 9 y^{4} \]

[_quadrature]

13860

\[ {}x^{\prime } = {\mathrm e}^{\frac {x}{t}}+\frac {x}{t} \]

[[_homogeneous, ‘class A‘], _dAlembert]

13862

\[ {}y = y^{\prime } x +\frac {1}{y} \]

[_separable]

13864

\[ {}y^{\prime } = \frac {y}{x +y^{3}} \]

[[_homogeneous, ‘class G‘], _rational]

13867

\[ {}y^{\prime } = \frac {2 y-x -4}{2 x -y+5} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13868

\[ {}y^{\prime }-\frac {y}{x +1}+y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

13872

\[ {}2 x +2 y-1+\left (x +y-2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13876

\[ {}y^{\prime } = \left (x -5 y\right )^{{1}/{3}}+2 \]

[[_homogeneous, ‘class C‘], _dAlembert]

13877

\[ {}\left (x -y\right ) y-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13882

\[ {}y^{\prime } = \frac {3 x -4 y-2}{3 x -4 y-3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13885

\[ {}y^{\prime }-\frac {3 y}{x}+x^{3} y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

13888

\[ {}3 y^{2}-x +2 y \left (y^{2}-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

13889

\[ {}\left (x -y\right ) y-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13890

\[ {}y^{\prime } = \frac {x +y-3}{-x +y+1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13891

\[ {}y^{\prime } x -y^{2} \ln \left (x \right )+y = 0 \]

[_Bernoulli]

13893

\[ {}\left (4 y+2 x +3\right ) y^{\prime }-2 y-x -1 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13895

\[ {}\left (y^{2}-x^{2}\right ) y^{\prime }+2 x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

13896

\[ {}3 x y^{2} y^{\prime }+y^{3}-2 x = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

13949

\[ {}x^{2} y^{\prime } = 1+y^{2} \]

[_separable]

13952

\[ {}y^{\prime } = \cos \left (x +y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

13953

\[ {}y^{\prime } x +y = x y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

13966

\[ {}y y^{\prime } = 1 \]

[_quadrature]

13968

\[ {}5 y^{\prime }-x y = 0 \]

[_separable]

14157

\[ {}x y \left (1-{y^{\prime }}^{2}\right ) = \left (x^{2}-y^{2}-a^{2}\right ) y^{\prime } \]

[_rational]

14162

\[ {}y-y^{\prime } x = 0 \]

[_separable]

14164

\[ {}1+y-\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

14166

\[ {}y-a +x^{2} y^{\prime } = 0 \]

[_separable]

14167

\[ {}z-\left (-a^{2}+t^{2}\right ) z^{\prime } = 0 \]

[_separable]

14168

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

14169

\[ {}1+s^{2}-\sqrt {t}\, s^{\prime } = 0 \]

[_separable]

14170

\[ {}r^{\prime }+r \tan \left (t \right ) = 0 \]

[_separable]

14171

\[ {}\left (x^{2}+1\right ) y^{\prime }-\sqrt {1-y^{2}} = 0 \]

[_separable]

14172

\[ {}\sqrt {-x^{2}+1}\, y^{\prime }-\sqrt {1-y^{2}} = 0 \]

[_separable]

14175

\[ {}y-x +\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14176

\[ {}y^{\prime } x +x +y = 0 \]

[_linear]

14177

\[ {}x +y+\left (y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14178

\[ {}-y+y^{\prime } x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

14179

\[ {}8 y+10 x +\left (5 y+7 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14180

\[ {}2 \sqrt {s t}-s+t s^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

14181

\[ {}t -s+t s^{\prime } = 0 \]

[_linear]

14182

\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14183

\[ {}x \cos \left (\frac {y}{x}\right ) \left (y^{\prime } x +y\right ) = y \sin \left (\frac {y}{x}\right ) \left (-y+y^{\prime } x \right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

14184

\[ {}3 y-7 x +7-\left (3 x -7 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14185

\[ {}x +2 y+1-\left (4 y+2 x +3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14186

\[ {}x +2 y+1-\left (2 x -3\right ) y^{\prime } = 0 \]

[_linear]

14187

\[ {}\frac {y-y^{\prime } x}{\sqrt {x^{2}+y^{2}}} = m \]

[[_homogeneous, ‘class A‘], _dAlembert]

14188

\[ {}\frac {x +y y^{\prime }}{\sqrt {x^{2}+y^{2}}} = m \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

14189

\[ {}y+\frac {x}{y^{\prime }} = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

14190

\[ {}y y^{\prime } = -x +\sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

14191

\[ {}y^{\prime }-\frac {2 y}{x +1} = \left (x +1\right )^{3} \]

[_linear]

14192

\[ {}y^{\prime }-\frac {a y}{x} = \frac {x +1}{x} \]

[_linear]

14197

\[ {}y^{\prime }+\frac {n y}{x} = a \,x^{-n} \]

[_linear]

14198

\[ {}y^{\prime }+y = {\mathrm e}^{-x} \]

[[_linear, ‘class A‘]]

14199

\[ {}y^{\prime }+\frac {\left (1-2 x \right ) y}{x^{2}}-1 = 0 \]

[_linear]

14201

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x y+a y^{2} x = 0 \]

[_separable]

14204

\[ {}y^{\prime } x = \left (y \ln \left (x \right )-2\right ) y \]

[_Bernoulli]

14208

\[ {}\left (y^{3}-x \right ) y^{\prime } = y \]

[[_homogeneous, ‘class G‘], _exact, _rational]

14211

\[ {}\frac {x}{\left (x +y\right )^{2}}+\frac {\left (2 x +y\right ) y^{\prime }}{\left (x +y\right )^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

14212

\[ {}\frac {1}{x^{2}}+\frac {3 y^{2}}{x^{4}} = \frac {2 y y^{\prime }}{x^{3}} \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

14213

\[ {}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0 \]

[_separable]

14214

\[ {}x +y y^{\prime } = \frac {y}{x^{2}+y^{2}}-\frac {x y^{\prime }}{x^{2}+y^{2}} \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

14219

\[ {}y = y y^{\prime }+y^{\prime }-{y^{\prime }}^{2} \]

[_quadrature]

14221

\[ {}y = y^{\prime } x +y^{\prime } \]

[_separable]

14224

\[ {}y^{\prime } = \frac {2 y}{x}-\sqrt {3} \]

[_linear]

14276

\[ {}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0 \]

[_separable]

14279

\[ {}\left (x^{2}+1\right ) y^{\prime }-x y-\alpha = 0 \]

[_linear]

14280

\[ {}x \cos \left (\frac {y}{x}\right ) y^{\prime } = y \cos \left (\frac {y}{x}\right )-x \]

[[_homogeneous, ‘class A‘], _dAlembert]

14282

\[ {}y^{\prime } x -y^{2} \ln \left (x \right )+y = 0 \]

[_Bernoulli]

14283

\[ {}2 x +2 y-1+\left (x +y-2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14311

\[ {}-y+y^{\prime } x = 0 \]

[_separable]

14315

\[ {}y^{\prime }+\frac {1}{2 y} = 0 \]

[_quadrature]

14316

\[ {}y^{\prime }-\frac {y}{x} = 1 \]

[_linear]

14318

\[ {}x^{2} y^{\prime }+2 x y = 0 \]

[_separable]

14319

\[ {}y^{\prime }-y^{2} = 1 \]

[_quadrature]

14322

\[ {}y^{\prime }+3 y = 0 \]

[_quadrature]

14326

\[ {}2 y^{\prime } x -y = 0 \]

[_separable]

14333

\[ {}y^{\prime }-2 x y = 0 \]

[_separable]

14334

\[ {}y^{\prime }+y = x^{2}+2 x -1 \]

[[_linear, ‘class A‘]]

14336

\[ {}y^{\prime } = x \sqrt {y} \]

[_separable]

14339

\[ {}x y^{\prime } \ln \left (x \right )-\left (1+\ln \left (x \right )\right ) y = 0 \]

[_separable]

14353

\[ {}y^{\prime } = 1-y \]

[_quadrature]

14354

\[ {}y^{\prime } = 1+y \]

[_quadrature]

14355

\[ {}y^{\prime } = y^{2}-4 \]

[_quadrature]

14356

\[ {}y^{\prime } = 4-y^{2} \]

[_quadrature]

14357

\[ {}y^{\prime } = x y \]

[_separable]

14358

\[ {}y^{\prime } = -x y \]

[_separable]

14361

\[ {}y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

14362

\[ {}y^{\prime } = x y \]

[_separable]

14363

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

14364

\[ {}y^{\prime } = \frac {y}{x} \]

[_separable]

14365

\[ {}y^{\prime } = 1+y^{2} \]

[_quadrature]

14366

\[ {}y^{\prime } = y^{2}-3 y \]

[_quadrature]

14369

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

14370

\[ {}y^{\prime } = \ln \left (x +y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

14371

\[ {}y^{\prime } = \frac {2 x -y}{x +3 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14374

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

14375

\[ {}y^{\prime } = \frac {1}{x y} \]

[_separable]

14376

\[ {}y^{\prime } = \ln \left (-1+y\right ) \]

[_quadrature]

14377

\[ {}y^{\prime } = \sqrt {\left (y+2\right ) \left (-1+y\right )} \]

[_quadrature]

14378

\[ {}y^{\prime } = \frac {y}{y-x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14379

\[ {}y^{\prime } = \frac {x}{y^{2}} \]

[_separable]

14380

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]

[_separable]

14382

\[ {}y^{\prime } = \left (x y\right )^{{1}/{3}} \]

[[_homogeneous, ‘class G‘]]

14383

\[ {}y^{\prime } = \sqrt {\frac {y-4}{x}} \]

[[_homogeneous, ‘class C‘], _dAlembert]

14384

\[ {}y^{\prime } = -\frac {y}{x}+y^{{1}/{4}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

14385

\[ {}y^{\prime } = 4 y-5 \]
i.c.

[_quadrature]

14386

\[ {}y^{\prime }+3 y = 1 \]
i.c.

[_quadrature]

14387

\[ {}y^{\prime } = a y+b \]
i.c.

[_quadrature]

14390

\[ {}y^{\prime } = \frac {y}{x}+\cos \left (x \right ) \]
i.c.

[_linear]

14396

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

14407

\[ {}y^{\prime } = 3 y \]
i.c.

[_quadrature]

14409

\[ {}y^{\prime } = 1-y \]
i.c.

[_quadrature]

14411

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

14412

\[ {}y^{\prime } = \frac {2 x}{y} \]
i.c.

[_separable]

14413

\[ {}y^{\prime } = -2 y+y^{2} \]
i.c.

[_quadrature]

14414

\[ {}y^{\prime } = x y+x \]
i.c.

[_separable]

14415

\[ {}x \,{\mathrm e}^{y}+y^{\prime } = 0 \]
i.c.

[_separable]

14416

\[ {}y-x^{2} y^{\prime } = 0 \]
i.c.

[_separable]

14417

\[ {}2 y y^{\prime } = 1 \]

[_quadrature]

14418

\[ {}2 x y y^{\prime }+y^{2} = -1 \]

[_separable]

14419

\[ {}y^{\prime } = \frac {1-x y}{x^{2}} \]

[_linear]

14420

\[ {}y^{\prime } = -\frac {y \left (2 x +y\right )}{x \left (2 y+x \right )} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

14421

\[ {}y^{\prime } = \frac {y^{2}}{1-x y} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

14422

\[ {}y^{\prime } = 4 y+1 \]
i.c.

[_quadrature]

14424

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

14425

\[ {}y^{\prime } = \frac {y}{x -1}+x^{2} \]
i.c.

[_linear]

14426

\[ {}y^{\prime } = \frac {y}{x}+\sin \left (x^{2}\right ) \]
i.c.

[_linear]

14427

\[ {}y^{\prime } = \frac {2 y}{x}+{\mathrm e}^{x} \]
i.c.

[_linear]

14429

\[ {}x -y y^{\prime } = 0 \]

[_separable]

14430

\[ {}y-y^{\prime } x = 0 \]

[_separable]

14431

\[ {}x^{2}-y+y^{\prime } x = 0 \]

[_linear]

14432

\[ {}x y \left (1-y\right )-2 y^{\prime } = 0 \]

[_separable]

14434

\[ {}y \left (2 x -1\right )+x \left (x +1\right ) y^{\prime } = 0 \]

[_separable]

14436

\[ {}y^{\prime } = x +y \]
i.c.

[[_linear, ‘class A‘]]

14437

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

14438

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

14442

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

14443

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

14444

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

14445

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

14446

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

14447

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

14449

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

14450

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

14452

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

14453

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

14454

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

14455

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

14456

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

14458

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

14459

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

14460

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

14462

\[ {}y^{\prime } = \sqrt {\left (y+2\right ) \left (-1+y\right )} \]
i.c.

[_quadrature]

14463

\[ {}y^{\prime } = \sqrt {\left (y+2\right ) \left (-1+y\right )} \]
i.c.

[_quadrature]

14465

\[ {}y^{\prime } = \frac {y}{y-x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14467

\[ {}y^{\prime } = \frac {y}{y-x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14468

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

14470

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

14475

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

14476

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

14477

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

14478

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

14479

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

14509

\[ {}y^{\prime }-i y = 0 \]
i.c.

[_quadrature]

14601

\[ {}y^{\prime } = \frac {y+1}{1+t} \]

[_separable]

14602

\[ {}y^{\prime } = t^{2} y^{2} \]

[_separable]

14603

\[ {}y^{\prime } = t^{4} y \]

[_separable]

14604

\[ {}y^{\prime } = 2 y+1 \]

[_quadrature]

14605

\[ {}y^{\prime } = 2-y \]

[_quadrature]

14606

\[ {}y^{\prime } = {\mathrm e}^{-y} \]

[_quadrature]

14607

\[ {}x^{\prime } = 1+x^{2} \]

[_quadrature]

14608

\[ {}y^{\prime } = 2 t y^{2}+3 y^{2} \]

[_separable]

14609

\[ {}y^{\prime } = \frac {t}{y} \]

[_separable]

14611

\[ {}y^{\prime } = t y^{{1}/{3}} \]

[_separable]

14612

\[ {}y^{\prime } = \frac {1}{2 y+1} \]

[_quadrature]

14613

\[ {}y^{\prime } = \frac {2 y+1}{t} \]

[_separable]

14614

\[ {}y^{\prime } = y \left (1-y\right ) \]

[_quadrature]

14616

\[ {}v^{\prime } = t^{2} v-2-2 v+t^{2} \]

[_separable]

14617

\[ {}y^{\prime } = \frac {1}{t y+t +y+1} \]

[_separable]

14619

\[ {}y^{\prime } = y^{2}-4 \]

[_quadrature]

14620

\[ {}w^{\prime } = \frac {w}{t} \]

[_separable]

14621

\[ {}y^{\prime } = \sec \left (y\right ) \]

[_quadrature]

14622

\[ {}x^{\prime } = -t x \]
i.c.

[_separable]

14623

\[ {}y^{\prime } = t y \]
i.c.

[_separable]

14624

\[ {}y^{\prime } = -y^{2} \]
i.c.

[_quadrature]

14625

\[ {}y^{\prime } = t^{2} y^{3} \]
i.c.

[_separable]

14626

\[ {}y^{\prime } = -y^{2} \]
i.c.

[_quadrature]

14628

\[ {}y^{\prime } = 2 y+1 \]
i.c.

[_quadrature]

14629

\[ {}y^{\prime } = t y^{2}+2 y^{2} \]
i.c.

[_separable]

14631

\[ {}y^{\prime } = \frac {1-y^{2}}{y} \]
i.c.

[_quadrature]

14632

\[ {}y^{\prime } = \left (1+y^{2}\right ) t \]
i.c.

[_separable]

14633

\[ {}y^{\prime } = \frac {1}{2 y+3} \]
i.c.

[_quadrature]

14634

\[ {}y^{\prime } = 2 t y^{2}+3 t^{2} y^{2} \]
i.c.

[_separable]

14635

\[ {}y^{\prime } = \frac {y^{2}+5}{y} \]
i.c.

[_quadrature]

14638

\[ {}y^{\prime } = 1-2 y \]

[_quadrature]

14639

\[ {}y^{\prime } = 4 y^{2} \]

[_quadrature]

14640

\[ {}y^{\prime } = 2 y \left (1-y\right ) \]

[_quadrature]

14641

\[ {}y^{\prime } = y+t +1 \]

[[_linear, ‘class A‘]]

14642

\[ {}y^{\prime } = 3 y \left (1-y\right ) \]
i.c.

[_quadrature]

14643

\[ {}y^{\prime } = 2 y-t \]
i.c.

[[_linear, ‘class A‘]]

14645

\[ {}y^{\prime } = \left (1+t \right ) y \]
i.c.

[_separable]

14646

\[ {}S^{\prime } = S^{3}-2 S^{2}+S \]
i.c.

[_quadrature]

14647

\[ {}S^{\prime } = S^{3}-2 S^{2}+S \]
i.c.

[_quadrature]

14649

\[ {}S^{\prime } = S^{3}-2 S^{2}+S \]
i.c.

[_quadrature]

14650

\[ {}S^{\prime } = S^{3}-2 S^{2}+S \]
i.c.

[_quadrature]

14651

\[ {}y^{\prime } = y^{2}+y \]

[_quadrature]

14652

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

14653

\[ {}y^{\prime } = y^{3}+y^{2} \]

[_quadrature]

14655

\[ {}y^{\prime } = t y+t y^{2} \]

[_separable]

14656

\[ {}y^{\prime } = t^{2}+t^{2} y \]

[_separable]

14657

\[ {}y^{\prime } = t +t y \]

[_separable]

14659

\[ {}\theta ^{\prime } = \frac {9}{10}-\frac {11 \cos \left (\theta \right )}{10} \]

[_quadrature]

14661

\[ {}\theta ^{\prime } = \frac {11}{10}-\frac {9 \cos \left (\theta \right )}{10} \]

[_quadrature]

14662

\[ {}v^{\prime } = -\frac {v}{R C} \]

[_quadrature]

14663

\[ {}v^{\prime } = \frac {K -v}{R C} \]

[_quadrature]

14665

\[ {}y^{\prime } = 2 y+1 \]
i.c.

[_quadrature]

14669

\[ {}w^{\prime } = \left (3-w\right ) \left (w+1\right ) \]
i.c.

[_quadrature]

14670

\[ {}w^{\prime } = \left (3-w\right ) \left (w+1\right ) \]
i.c.

[_quadrature]

14671

\[ {}y^{\prime } = {\mathrm e}^{\frac {2}{y}} \]
i.c.

[_quadrature]

14672

\[ {}y^{\prime } = {\mathrm e}^{\frac {2}{y}} \]
i.c.

[_quadrature]

14673

\[ {}y^{\prime } = y^{2}-y^{3} \]
i.c.

[_quadrature]

14675

\[ {}y^{\prime } = \sqrt {y} \]
i.c.

[_quadrature]

14676

\[ {}y^{\prime } = 2-y \]
i.c.

[_quadrature]

14677

\[ {}\theta ^{\prime } = \frac {9}{10}-\frac {11 \cos \left (\theta \right )}{10} \]
i.c.

[_quadrature]

14678

\[ {}y^{\prime } = y \left (y-1\right ) \left (y-3\right ) \]
i.c.

[_quadrature]

14680

\[ {}y^{\prime } = y \left (y-1\right ) \left (y-3\right ) \]
i.c.

[_quadrature]

14681

\[ {}y^{\prime } = y \left (y-1\right ) \left (y-3\right ) \]
i.c.

[_quadrature]

14682

\[ {}y^{\prime } = -y^{2} \]

[_quadrature]

14683

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

14684

\[ {}y^{\prime } = \frac {1}{\left (y+1\right ) \left (t -2\right )} \]
i.c.

[_separable]

14685

\[ {}y^{\prime } = \frac {1}{\left (2+y\right )^{2}} \]
i.c.

[_quadrature]

14686

\[ {}y^{\prime } = \frac {t}{y-2} \]
i.c.

[_separable]

14687

\[ {}y^{\prime } = 3 y \left (y-2\right ) \]
i.c.

[_quadrature]

14688

\[ {}y^{\prime } = 3 y \left (y-2\right ) \]
i.c.

[_quadrature]

14689

\[ {}y^{\prime } = 3 y \left (y-2\right ) \]
i.c.

[_quadrature]

14691

\[ {}y^{\prime } = y^{2}-4 y-12 \]
i.c.

[_quadrature]

14692

\[ {}y^{\prime } = y^{2}-4 y-12 \]
i.c.

[_quadrature]

14694

\[ {}y^{\prime } = y^{2}-4 y-12 \]
i.c.

[_quadrature]

14699

\[ {}w^{\prime } = w \cos \left (w\right ) \]

[_quadrature]

14700

\[ {}w^{\prime } = w \cos \left (w\right ) \]
i.c.

[_quadrature]

14701

\[ {}w^{\prime } = w \cos \left (w\right ) \]
i.c.

[_quadrature]

14702

\[ {}w^{\prime } = w \cos \left (w\right ) \]
i.c.

[_quadrature]

14703

\[ {}w^{\prime } = w \cos \left (w\right ) \]
i.c.

[_quadrature]

14704

\[ {}w^{\prime } = \left (1-w\right ) \sin \left (w\right ) \]

[_quadrature]

14705

\[ {}y^{\prime } = \frac {1}{y-2} \]

[_quadrature]

14706

\[ {}v^{\prime } = -v^{2}-2 v-2 \]

[_quadrature]

14707

\[ {}w^{\prime } = 3 w^{3}-12 w^{2} \]

[_quadrature]

14708

\[ {}y^{\prime } = 1+\cos \left (y\right ) \]

[_quadrature]

14709

\[ {}y^{\prime } = \tan \left (y\right ) \]

[_quadrature]

14711

\[ {}w^{\prime } = \left (w^{2}-2\right ) \arctan \left (w\right ) \]

[_quadrature]

14712

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

14713

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

14714

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

14715

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

14716

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

14717

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

14718

\[ {}y^{\prime } = y \cos \left (\frac {\pi y}{2}\right ) \]

[_quadrature]

14719

\[ {}y^{\prime } = y-y^{2} \]

[_quadrature]

14720

\[ {}y^{\prime } = y \sin \left (\frac {\pi y}{2}\right ) \]

[_quadrature]

14721

\[ {}y^{\prime } = y^{3}-y^{2} \]

[_quadrature]

14722

\[ {}y^{\prime } = \cos \left (\frac {\pi y}{2}\right ) \]

[_quadrature]

14723

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

14724

\[ {}y^{\prime } = y \sin \left (\frac {\pi y}{2}\right ) \]

[_quadrature]

14725

\[ {}y^{\prime } = y^{2}-y^{3} \]

[_quadrature]

14726

\[ {}y^{\prime } = -4 y+9 \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

14727

\[ {}y^{\prime } = -4 y+3 \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

14730

\[ {}y^{\prime } = 3 y-4 \,{\mathrm e}^{3 t} \]

[[_linear, ‘class A‘]]

14731

\[ {}y^{\prime } = \frac {y}{2}+4 \,{\mathrm e}^{\frac {t}{2}} \]

[[_linear, ‘class A‘]]

14732

\[ {}y^{\prime }+2 y = {\mathrm e}^{\frac {t}{3}} \]
i.c.

[[_linear, ‘class A‘]]

14733

\[ {}y^{\prime }-2 y = 3 \,{\mathrm e}^{-2 t} \]
i.c.

[[_linear, ‘class A‘]]

14736

\[ {}y^{\prime }-2 y = 7 \,{\mathrm e}^{2 t} \]
i.c.

[[_linear, ‘class A‘]]

14737

\[ {}y^{\prime }+2 y = 3 t^{2}+2 t -1 \]

[[_linear, ‘class A‘]]

14738

\[ {}y^{\prime }+2 y = t^{2}+2 t +1+{\mathrm e}^{4 t} \]

[[_linear, ‘class A‘]]

14740

\[ {}y^{\prime }-3 y = 2 t -{\mathrm e}^{4 t} \]

[[_linear, ‘class A‘]]

14742

\[ {}y^{\prime } = -\frac {y}{t}+2 \]

[_linear]

14743

\[ {}y^{\prime } = \frac {3 y}{t}+t^{5} \]

[_linear]

14744

\[ {}y^{\prime } = -\frac {y}{1+t}+t^{2} \]

[_linear]

14745

\[ {}y^{\prime } = -2 t y+4 \,{\mathrm e}^{-t^{2}} \]

[_linear]

14746

\[ {}y^{\prime }-\frac {2 t y}{t^{2}+1} = 3 \]

[_linear]

14747

\[ {}y^{\prime }-\frac {2 y}{t} = t^{3} {\mathrm e}^{t} \]

[_linear]

14748

\[ {}y^{\prime } = -\frac {y}{1+t}+2 \]
i.c.

[_linear]

14749

\[ {}y^{\prime } = \frac {y}{1+t}+4 t^{2}+4 t \]
i.c.

[_linear]

14750

\[ {}y^{\prime } = -\frac {y}{t}+2 \]
i.c.

[_linear]

14751

\[ {}y^{\prime } = -2 t y+4 \,{\mathrm e}^{-t^{2}} \]
i.c.

[_linear]

14752

\[ {}y^{\prime }-\frac {2 y}{t} = 2 t^{2} \]
i.c.

[_linear]

14753

\[ {}y^{\prime }-\frac {3 y}{t} = 2 t^{3} {\mathrm e}^{2 t} \]
i.c.

[_linear]

14763

\[ {}y^{\prime } = -2 t y+4 \,{\mathrm e}^{-t^{2}} \]

[_linear]

14764

\[ {}y^{\prime }+2 y = 3 \,{\mathrm e}^{-2 t} \]

[[_linear, ‘class A‘]]

14765

\[ {}y^{\prime } = 3 y \]

[_quadrature]

14767

\[ {}y^{\prime } = -\sin \left (y\right )^{5} \]

[_quadrature]

14769

\[ {}y^{\prime } = \sin \left (y\right )^{2} \]

[_quadrature]

14771

\[ {}y^{\prime } = y+{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

14772

\[ {}y^{\prime } = 3-2 y \]

[_quadrature]

14773

\[ {}y^{\prime } = t y \]

[_separable]

14774

\[ {}y^{\prime } = 3 y+{\mathrm e}^{7 t} \]

[[_linear, ‘class A‘]]

14775

\[ {}y^{\prime } = \frac {t y}{t^{2}+1} \]

[_separable]

14777

\[ {}y^{\prime } = t +\frac {2 y}{1+t} \]

[_linear]

14778

\[ {}y^{\prime } = 3+y^{2} \]

[_quadrature]

14779

\[ {}y^{\prime } = 2 y-y^{2} \]

[_quadrature]

14780

\[ {}y^{\prime } = -3 y+{\mathrm e}^{-2 t}+t^{2} \]

[[_linear, ‘class A‘]]

14781

\[ {}x^{\prime } = -t x \]
i.c.

[_separable]

14783

\[ {}y^{\prime } = 3 y+2 \,{\mathrm e}^{3 t} \]
i.c.

[[_linear, ‘class A‘]]

14784

\[ {}y^{\prime } = t^{2} y^{3}+y^{3} \]
i.c.

[_separable]

14785

\[ {}y^{\prime }+5 y = 3 \,{\mathrm e}^{-5 t} \]
i.c.

[[_linear, ‘class A‘]]

14786

\[ {}y^{\prime } = 2 t y+3 t \,{\mathrm e}^{t^{2}} \]
i.c.

[_linear]

14788

\[ {}y^{\prime } = 2 t y^{2}+3 t^{2} y^{2} \]
i.c.

[_separable]

14791

\[ {}y^{\prime } = y^{2}-2 y+1 \]
i.c.

[_quadrature]

14794

\[ {}y^{\prime } = t^{2} y+1+y+t^{2} \]

[_separable]

14795

\[ {}y^{\prime } = \frac {2 y+1}{t} \]

[_separable]

14796

\[ {}y^{\prime } = 3-y^{2} \]
i.c.

[_quadrature]

14980

\[ {}y^{\prime } = 3-\sin \left (y\right ) \]

[_quadrature]

14981

\[ {}y^{\prime }+4 y = {\mathrm e}^{2 x} \]

[[_linear, ‘class A‘]]

14983

\[ {}y y^{\prime } = 2 x \]

[_separable]

15024

\[ {}y^{\prime }+3 x y = 6 x \]

[_separable]

15026

\[ {}y^{\prime }-y^{3} = 8 \]

[_quadrature]

15027

\[ {}x^{2} y^{\prime }+x y^{2} = x \]

[_separable]

15029

\[ {}y^{3}-25 y+y^{\prime } = 0 \]

[_quadrature]

15030

\[ {}\left (x -2\right ) y^{\prime } = 3+y \]

[_separable]

15031

\[ {}\left (y-2\right ) y^{\prime } = x -3 \]

[_separable]

15032

\[ {}y^{\prime }+2 y-y^{2} = -2 \]

[_quadrature]

15034

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

15035

\[ {}y^{\prime } = 3 y^{2}-y^{2} \sin \left (x \right ) \]

[_separable]

15039

\[ {}y^{\prime }+4 y = 8 \]

[_quadrature]

15040

\[ {}y^{\prime }+x y = 4 x \]

[_separable]

15041

\[ {}y^{\prime }+4 y = x^{2} \]

[[_linear, ‘class A‘]]

15042

\[ {}y^{\prime } = x y-3 x -2 y+6 \]

[_separable]

15043

\[ {}y^{\prime } = \sin \left (x +y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

15045

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

15046

\[ {}y^{\prime } = y^{2}+9 \]

[_quadrature]

15047

\[ {}x y y^{\prime } = y^{2}+9 \]

[_separable]

15048

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

15050

\[ {}y^{\prime } = {\mathrm e}^{2 x -3 y} \]

[_separable]

15051

\[ {}y^{\prime } = \frac {x}{y} \]
i.c.

[_separable]

15052

\[ {}y^{\prime } = 2 x -1+2 x y-y \]
i.c.

[_separable]

15055

\[ {}y^{\prime } = x y-4 x \]

[_separable]

15056

\[ {}y^{\prime }-4 y = 2 \]

[_quadrature]

15058

\[ {}y^{\prime } = \sin \left (y\right ) \]

[_quadrature]

15060

\[ {}y^{\prime } = 200 y-2 y^{2} \]

[_quadrature]

15061

\[ {}y^{\prime } = x y-4 x \]

[_separable]

15062

\[ {}y^{\prime } = x y-3 x -2 y+6 \]

[_separable]

15063

\[ {}y^{\prime } = 3 y^{2}-y^{2} \sin \left (x \right ) \]

[_separable]

15064

\[ {}y^{\prime } = \tan \left (y\right ) \]

[_quadrature]

15065

\[ {}y^{\prime } = \frac {y}{x} \]

[_separable]

15067

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

15068

\[ {}\left (y^{2}-1\right ) y^{\prime } = 4 x y^{2} \]

[_separable]

15069

\[ {}y^{\prime } = {\mathrm e}^{-y} \]

[_quadrature]

15070

\[ {}y^{\prime } = {\mathrm e}^{-y}+1 \]

[_quadrature]

15071

\[ {}y^{\prime } = 3 x y^{3} \]

[_separable]

15073

\[ {}y^{\prime }-3 x^{2} y^{2} = -3 x^{2} \]

[_separable]

15074

\[ {}y^{\prime }-3 x^{2} y^{2} = 3 x^{2} \]

[_separable]

15075

\[ {}y^{\prime } = 200 y-2 y^{2} \]

[_quadrature]

15076

\[ {}y^{\prime }-2 y = -10 \]
i.c.

[_quadrature]

15080

\[ {}y^{\prime } x = y^{2}-y \]
i.c.

[_separable]

15081

\[ {}y^{\prime } = \frac {y^{2}-1}{x y} \]
i.c.

[_separable]

15088

\[ {}y^{\prime } = 4 y+8 \]

[_quadrature]

15090

\[ {}y^{\prime } = \sin \left (x \right ) y \]

[_separable]

15091

\[ {}y^{\prime }+4 y = y^{3} \]

[_quadrature]

15093

\[ {}y^{\prime }+2 y = 6 \]

[_quadrature]

15094

\[ {}y^{\prime }+2 y = 20 \,{\mathrm e}^{3 x} \]

[[_linear, ‘class A‘]]

15095

\[ {}y^{\prime } = 4 y+16 x \]

[[_linear, ‘class A‘]]

15096

\[ {}y^{\prime }-2 x y = x \]

[_separable]

15097

\[ {}y^{\prime } x +3 y-10 x^{2} = 0 \]

[_linear]

15099

\[ {}y^{\prime } x = \sqrt {x}+3 y \]

[_linear]

15101

\[ {}y^{\prime } x +\left (5 x +2\right ) y = \frac {20}{x} \]

[_linear]

15103

\[ {}y^{\prime }-3 y = 6 \]
i.c.

[_quadrature]

15105

\[ {}y^{\prime }+5 y = {\mathrm e}^{-3 x} \]
i.c.

[[_linear, ‘class A‘]]

15106

\[ {}3 y+y^{\prime } x = 20 x^{2} \]
i.c.

[_linear]

15107

\[ {}y^{\prime } x = y+x^{2} \cos \left (x \right ) \]
i.c.

[_linear]

15108

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \left (3+3 x^{2}-y\right ) \]
i.c.

[_linear]

15111

\[ {}-y+y^{\prime } x = x^{2} {\mathrm e}^{-x^{2}} \]
i.c.

[_linear]

15112

\[ {}y^{\prime } = \frac {1}{\left (3 x +3 y+2\right )^{2}} \]

[[_homogeneous, ‘class C‘], _dAlembert]

15113

\[ {}y^{\prime } = \frac {\left (3 x -2 y\right )^{2}+1}{3 x -2 y}+\frac {3}{2} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15114

\[ {}\cos \left (-4 y+8 x -3\right ) y^{\prime } = 2+2 \cos \left (-4 y+8 x -3\right ) \]

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

15115

\[ {}y^{\prime } = 1+\left (y-x \right )^{2} \]
i.c.

[[_homogeneous, ‘class C‘], _Riccati]

15116

\[ {}x^{2} y^{\prime }-x y = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15117

\[ {}y^{\prime } = \frac {y}{x}+\frac {x}{y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15118

\[ {}\cos \left (\frac {y}{x}\right ) \left (y^{\prime }-\frac {y}{x}\right ) = 1+\sin \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

15119

\[ {}y^{\prime } = \frac {x -y}{x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15120

\[ {}y^{\prime }+3 y = 3 y^{3} \]

[_quadrature]

15121

\[ {}y^{\prime }-\frac {3 y}{x} = \frac {y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15123

\[ {}y^{\prime }-\frac {y}{x} = \frac {1}{y} \]
i.c.

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

15124

\[ {}y^{\prime } = \frac {y}{x}+\frac {x^{2}}{y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15125

\[ {}3 y^{\prime } = -2+\sqrt {2 x +3 y+4} \]

[[_homogeneous, ‘class C‘], _dAlembert]

15126

\[ {}3 y^{\prime }+\frac {2 y}{x} = 4 \sqrt {y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

15127

\[ {}y^{\prime } = 4+\frac {1}{\sin \left (4 x -y\right )} \]

[[_homogeneous, ‘class C‘], _dAlembert]

15128

\[ {}\left (y-x \right ) y^{\prime } = 1 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

15129

\[ {}\left (x +y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15130

\[ {}\left (2 x y+2 x^{2}\right ) y^{\prime } = x^{2}+2 x y+2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15131

\[ {}y^{\prime }+\frac {y}{x} = y^{3} x^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

15132

\[ {}y^{\prime } = 2 \sqrt {2 x +y-3}-2 \]

[[_homogeneous, ‘class C‘], _dAlembert]

15133

\[ {}y^{\prime } = 2 \sqrt {2 x +y-3} \]

[[_homogeneous, ‘class C‘], _dAlembert]

15134

\[ {}-y+y^{\prime } x = \sqrt {x y+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

15135

\[ {}y^{\prime }+3 y = \frac {28 \,{\mathrm e}^{2 x}}{y^{3}} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

15136

\[ {}y^{\prime } = \left (x -y+3\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

15137

\[ {}y^{\prime }+2 x = 2 \sqrt {y+x^{2}} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

15139

\[ {}y^{\prime } = x \left (1+\frac {2 y}{x^{2}}+\frac {y^{2}}{x^{4}}\right ) \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

15140

\[ {}y^{\prime } = \frac {1}{y}-\frac {y}{2 x} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

15141

\[ {}{\mathrm e}^{x y^{2}-x^{2}} \left (y^{2}-2 x \right )+2 \,{\mathrm e}^{x y^{2}-x^{2}} x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

15142

\[ {}2 x y+y^{2}+\left (2 x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15143

\[ {}2 x y^{3}+4 x^{3}+3 x^{2} y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

15144

\[ {}2-2 x +3 y^{2} y^{\prime } = 0 \]

[_separable]

15146

\[ {}4 x^{3} y+\left (x^{4}-y^{4}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

15147

\[ {}1+\ln \left (x y\right )+\frac {x y^{\prime }}{y} = 0 \]

[[_homogeneous, ‘class G‘], _exact]

15148

\[ {}1+{\mathrm e}^{y}+x \,{\mathrm e}^{y} y^{\prime } = 0 \]

[_separable]

15149

\[ {}{\mathrm e}^{y}+\left (x \,{\mathrm e}^{y}+1\right ) y^{\prime } = 0 \]

[[_1st_order, _with_exponential_symmetries], _exact]

15150

\[ {}1+y^{4}+x y^{3} y^{\prime } = 0 \]

[_separable]

15151

\[ {}y+\left (y^{4}-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

15152

\[ {}\frac {2 y}{x}+\left (4 x^{2} y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15154

\[ {}3 y+3 y^{2}+\left (2 x +4 x y\right ) y^{\prime } = 0 \]

[_separable]

15155

\[ {}2 x \left (1+y\right )-y^{\prime } = 0 \]

[_separable]

15156

\[ {}2 y^{3}+\left (4 x^{3} y^{3}-3 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15157

\[ {}4 x y+\left (3 x^{2}+5 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15158

\[ {}6+12 x^{2} y^{2}+\left (7 x^{3} y+\frac {x}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

15159

\[ {}y^{\prime } x = 2 y-6 x^{3} \]

[_linear]

15160

\[ {}y^{\prime } x = 2 y^{2}-6 y \]

[_separable]

15161

\[ {}4 y^{2}-x^{2} y^{2}+y^{\prime } = 0 \]

[_separable]

15162

\[ {}y^{\prime } = \sqrt {x +y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

15164

\[ {}x y y^{\prime }-y^{2} = \sqrt {x^{4}+x^{2} y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

15165

\[ {}y^{\prime } = y^{2}-2 x y+x^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

15166

\[ {}4 x y-6+x^{2} y^{\prime } = 0 \]

[_linear]

15167

\[ {}x y^{2}-6+x^{2} y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

15168

\[ {}x^{3}+y^{3}+x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15169

\[ {}3 y-x^{3}+y^{\prime } x = 0 \]

[_linear]

15171

\[ {}3 x y^{3}-y+y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

15172

\[ {}2+2 x^{2}-2 x y+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_linear]

15173

\[ {}\left (y^{2}-4\right ) y^{\prime } = y \]

[_quadrature]

15175

\[ {}y^{\prime } = \frac {1}{x y-3 x} \]

[_separable]

15176

\[ {}y^{\prime } = \frac {3 y}{x +1}-y^{2} \]

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

15178

\[ {}\sin \left (y\right )+\left (x +1\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

15180

\[ {}x y y^{\prime } = 2 x^{2}+2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15181

\[ {}y^{\prime } = \frac {2 y+x}{x +2 y+3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15182

\[ {}y^{\prime } = \frac {2 y+x}{2 x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15183

\[ {}y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

15184

\[ {}y^{\prime } = x y^{2}+3 y^{2}+x +3 \]

[_separable]

15185

\[ {}1-\left (2 y+x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

15187

\[ {}y^{2}+1-y^{\prime } = 0 \]

[_quadrature]

15188

\[ {}y^{\prime }-3 y = 12 \,{\mathrm e}^{2 x} \]

[[_linear, ‘class A‘]]

15189

\[ {}x y y^{\prime } = x^{2}+x y+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15191

\[ {}x y^{3} y^{\prime } = y^{4}-x^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

15192

\[ {}y^{\prime } = 4 y-\frac {16 \,{\mathrm e}^{4 x}}{y^{2}} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

15193

\[ {}2 y-6 x +\left (x +1\right ) y^{\prime } = 0 \]

[_linear]

15194

\[ {}x y^{2}+\left (x^{2} y+10 y^{4}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

15196

\[ {}\left (y-x +3\right )^{2} \left (y^{\prime }-1\right ) = 1 \]

[[_homogeneous, ‘class C‘], _exact, _rational, _dAlembert]

15198

\[ {}y^{2}-y^{2} \cos \left (x \right )+y^{\prime } = 0 \]

[_separable]

15201

\[ {}y^{\prime } = y^{3}-y^{3} \cos \left (x \right ) \]

[_separable]

15203

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]

[_separable]

15204

\[ {}y^{\prime } = \tan \left (6 x +3 y+1\right )-2 \]

[[_homogeneous, ‘class C‘], _dAlembert]

15205

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]

[_separable]

15789

\[ {}2 x -y-y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15790

\[ {}y^{\prime }+2 y = 0 \]

[_quadrature]

15791

\[ {}y^{\prime }+x y = 0 \]

[_separable]

15802

\[ {}y^{\prime } = -\frac {x}{y} \]

[_separable]

15803

\[ {}3 y \left (t^{2}+y\right )+t \left (t^{2}+6 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15804

\[ {}y^{\prime } = -\frac {2 y}{x}-3 \]

[_linear]

15820

\[ {}y^{\prime }+2 y = 0 \]
i.c.

[_quadrature]

15832

\[ {}y^{\prime } = \frac {\left (x -4\right ) y^{3}}{x^{3} \left (y-2\right )} \]

[_separable]

15833

\[ {}y^{\prime } = \frac {y^{2}+2 x y}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15842

\[ {}y^{\prime }+y \cos \left (x \right ) = 0 \]

[_separable]

15850

\[ {}2 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15856

\[ {}y^{\prime }+2 y = x^{2} \]
i.c.

[[_linear, ‘class A‘]]

15864

\[ {}y^{\prime } = y^{{1}/{5}} \]
i.c.

[_quadrature]

15867

\[ {}y^{\prime } = y \sqrt {t} \]
i.c.

[_separable]

15869

\[ {}t y^{\prime } = y \]

[_separable]

15870

\[ {}y^{\prime } = y \tan \left (t \right ) \]
i.c.

[_separable]

15872

\[ {}y^{\prime } = \sqrt {y^{2}-1} \]
i.c.

[_quadrature]

15880

\[ {}t y^{\prime }+y = t^{3} \]
i.c.

[_linear]

15890

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

15891

\[ {}y^{\prime } = t y^{2} \]
i.c.

[_separable]

15892

\[ {}y^{\prime } = -\frac {t}{y} \]
i.c.

[_separable]

15893

\[ {}y^{\prime } = -y^{3} \]
i.c.

[_quadrature]

15894

\[ {}y^{\prime } = \frac {x}{y^{2}} \]

[_separable]

15895

\[ {}\frac {1}{2 \sqrt {t}}+y^{2} y^{\prime } = 0 \]

[_separable]

15896

\[ {}y^{\prime } = \frac {\sqrt {y}}{x^{2}} \]

[_separable]

15897

\[ {}y^{\prime } = \frac {1+y^{2}}{y} \]

[_quadrature]

15901

\[ {}y^{\prime } = \frac {y+1}{1+t} \]

[_separable]

15902

\[ {}y^{\prime } = \frac {2+y}{2 t +1} \]

[_separable]

15903

\[ {}\frac {3}{t^{2}} = \left (\frac {1}{\sqrt {y}}+\sqrt {y}\right ) y^{\prime } \]

[_separable]

15906

\[ {}y^{\prime }+k y = 0 \]

[_quadrature]

15909

\[ {}y^{\prime } = {\mathrm e}^{2 y+10 t} \]

[_separable]

15910

\[ {}y^{\prime } = {\mathrm e}^{3 y+2 t} \]

[_separable]

15923

\[ {}y^{\prime } = \frac {5^{-t}}{y^{2}} \]

[_separable]

15924

\[ {}y^{\prime } = t^{2} y^{2}+y^{2}-t^{2}-1 \]

[_separable]

15925

\[ {}y^{\prime } = y^{2}-3 y+2 \]

[_quadrature]

15926

\[ {}4 \left (x -1\right )^{2} y^{\prime }-3 \left (3+y\right )^{2} = 0 \]

[_separable]

15928

\[ {}y^{\prime } = y^{3}+1 \]

[_quadrature]

15929

\[ {}y^{\prime } = y^{3}-1 \]

[_quadrature]

15930

\[ {}y^{\prime } = y^{3}+y \]

[_quadrature]

15931

\[ {}y^{\prime } = y^{3}-y^{2} \]

[_quadrature]

15932

\[ {}y^{\prime } = y^{3}-y \]

[_quadrature]

15933

\[ {}y^{\prime } = y^{3}+y \]

[_quadrature]

15938

\[ {}y^{\prime } = \frac {\sqrt {t}}{y} \]
i.c.

[_separable]

15939

\[ {}y^{\prime } = \sqrt {\frac {y}{t}} \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

15940

\[ {}y^{\prime } = \frac {{\mathrm e}^{t}}{y+1} \]
i.c.

[_separable]

15942

\[ {}y^{\prime } = \frac {y}{\ln \left (y\right )} \]
i.c.

[_quadrature]

15946

\[ {}y^{\prime } = \frac {3+y}{3 x +1} \]
i.c.

[_separable]

15947

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]
i.c.

[_separable]

15948

\[ {}y^{\prime } = {\mathrm e}^{2 x -y} \]
i.c.

[_separable]

15949

\[ {}y^{\prime } = \frac {3 y+1}{x +3} \]
i.c.

[_separable]

15950

\[ {}y^{\prime } = y \cos \left (t \right ) \]
i.c.

[_separable]

15951

\[ {}y^{\prime } = y^{2} \cos \left (t \right ) \]
i.c.

[_separable]

15954

\[ {}y^{\prime } = -\frac {y-2}{x -2} \]
i.c.

[_separable]

15955

\[ {}y^{\prime } = \frac {x +y+3}{3 x +3 y+1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15956

\[ {}y^{\prime } = \frac {x -y+2}{2 x -2 y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15957

\[ {}y^{\prime } = \left (x +y-4\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

15958

\[ {}y^{\prime } = \left (3 y+1\right )^{4} \]

[_quadrature]

15959

\[ {}y^{\prime } = 3 y \]

[_quadrature]

15960

\[ {}y^{\prime } = -y \]

[_quadrature]

15961

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

15962

\[ {}y^{\prime } = 16 y-8 y^{2} \]

[_quadrature]

15963

\[ {}y^{\prime } = 12+4 y-y^{2} \]

[_quadrature]

15964

\[ {}y^{\prime } = y f \left (t \right ) \]
i.c.

[_separable]

15965

\[ {}y^{\prime }-y = 10 \]

[_quadrature]

15966

\[ {}y^{\prime }-y = 2 \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

15968

\[ {}y^{\prime }-y = t^{2}-2 t \]

[[_linear, ‘class A‘]]

15970

\[ {}t y^{\prime }+y = t^{2} \]

[_linear]

15971

\[ {}t y^{\prime }+y = t \]

[_linear]

15974

\[ {}y^{\prime }-\frac {2 t y}{t^{2}+1} = 2 \]

[_linear]

15975

\[ {}y^{\prime }-\frac {4 t y}{4 t^{2}+1} = 4 t \]

[_linear]

15976

\[ {}y^{\prime } = 2 x +\frac {x y}{x^{2}-1} \]

[_linear]

15978

\[ {}y^{\prime }-\frac {3 t y}{t^{2}-4} = t \]

[_linear]

15979

\[ {}y^{\prime }-\frac {4 t y}{4 t^{2}-9} = t \]

[_linear]

15980

\[ {}y^{\prime }-\frac {9 x y}{9 x^{2}+49} = x \]

[_linear]

15982

\[ {}y^{\prime }+x y = x^{3} \]

[_linear]

15983

\[ {}y^{\prime }-x y = x \]

[_separable]

15984

\[ {}y^{\prime } = \frac {1}{x +y^{2}} \]

[[_1st_order, _with_exponential_symmetries]]

15985

\[ {}y^{\prime }-x = y \]

[[_linear, ‘class A‘]]

15986

\[ {}y-\left (x +3 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

15987

\[ {}x^{\prime } = \frac {3 x t^{2}}{-t^{3}+1} \]

[_separable]

15988

\[ {}p^{\prime } = t^{3}+\frac {p}{t} \]

[_linear]

15989

\[ {}v^{\prime }+v = {\mathrm e}^{-s} \]

[[_linear, ‘class A‘]]

15990

\[ {}y^{\prime }-y = 4 \,{\mathrm e}^{t} \]
i.c.

[[_linear, ‘class A‘]]

15991

\[ {}y^{\prime }+y = {\mathrm e}^{-t} \]
i.c.

[[_linear, ‘class A‘]]

15992

\[ {}y^{\prime }+3 t^{2} y = {\mathrm e}^{-t^{3}} \]
i.c.

[_linear]

15993

\[ {}y^{\prime }+2 t y = 2 t \]
i.c.

[_separable]

15997

\[ {}\left (t^{2}+4\right ) y^{\prime }+2 t y = 2 t \]
i.c.

[_separable]

15998

\[ {}x^{\prime } = x+t +1 \]
i.c.

[[_linear, ‘class A‘]]

15999

\[ {}y^{\prime } = {\mathrm e}^{2 t}+2 y \]
i.c.

[[_linear, ‘class A‘]]

16000

\[ {}y^{\prime }-\frac {y}{t} = \ln \left (t \right ) \]

[_linear]

16005

\[ {}y^{\prime }+y = 5 \,{\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

16006

\[ {}y^{\prime }+y = {\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

16007

\[ {}y^{\prime }+y = 2-{\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

16008

\[ {}y^{\prime }-5 y = t \]

[[_linear, ‘class A‘]]

16009

\[ {}y^{\prime }+3 y = 27 t^{2}+9 \]

[[_linear, ‘class A‘]]

16012

\[ {}y^{\prime }+10 y = 2 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

16013

\[ {}y^{\prime }-3 y = 27 t^{2} \]

[[_linear, ‘class A‘]]

16014

\[ {}y^{\prime }-y = 2 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

16015

\[ {}y^{\prime }+y = 4+3 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

16020

\[ {}y^{\prime }+y = t \]
i.c.

[[_linear, ‘class A‘]]

16023

\[ {}y^{\prime }+y = {\mathrm e}^{t} \]
i.c.

[[_linear, ‘class A‘]]

16024

\[ {}y^{2}-\frac {y}{2 \sqrt {t}}+\left (2 t y-\sqrt {t}+1\right ) y^{\prime } = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

16025

\[ {}\frac {t}{\sqrt {t^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {t^{2}+y^{2}}} = 0 \]

[_separable]

16026

\[ {}y \cos \left (t y\right )+t \cos \left (t y\right ) y^{\prime } = 0 \]

[_separable]

16028

\[ {}3 t y^{2}+y^{3} y^{\prime } = 0 \]

[_separable]

16031

\[ {}\ln \left (t y\right )+\frac {t y^{\prime }}{y} = 0 \]

[[_homogeneous, ‘class G‘], _exact]

16032

\[ {}{\mathrm e}^{t y}+\frac {t \,{\mathrm e}^{t y} y^{\prime }}{y} = 0 \]

[_separable]

16034

\[ {}-1+3 y^{2} y^{\prime } = 0 \]

[_quadrature]

16035

\[ {}y^{2}+2 t y y^{\prime } = 0 \]

[_separable]

16036

\[ {}\frac {3 t^{2}}{y}-\frac {t^{3} y^{\prime }}{y^{2}} = 0 \]

[_separable]

16038

\[ {}-\frac {1}{y}+\left (\frac {t}{y^{2}}+3 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

16039

\[ {}2 t y+\left (t^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16040

\[ {}2 t y^{3}+\left (1+3 t^{2} y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

16041

\[ {}\sin \left (y\right )^{2}+t \sin \left (2 y\right ) y^{\prime } = 0 \]

[_separable]

16042

\[ {}3 t^{2}+3 y^{2}+6 t y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

16045

\[ {}-2 t y^{2} \sin \left (t^{2}\right )+2 y \cos \left (t^{2}\right ) y^{\prime } = 0 \]

[_separable]

16049

\[ {}\left (3+t \right ) \cos \left (y+t \right )+\sin \left (y+t \right )+\left (3+t \right ) \cos \left (y+t \right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _exact]

16051

\[ {}-\frac {y^{2} {\mathrm e}^{\frac {y}{t}}}{t^{2}}+1+{\mathrm e}^{\frac {y}{t}} \left (1+\frac {y}{t}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

16052

\[ {}2 t \sin \left (\frac {y}{t}\right )-y \cos \left (\frac {y}{t}\right )+t \cos \left (\frac {y}{t}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

16053

\[ {}2 t y^{2}+2 t^{2} y y^{\prime } = 0 \]
i.c.

[_separable]

16054

\[ {}1+\frac {y}{t^{2}}-\frac {y^{\prime }}{t} = 0 \]
i.c.

[_linear]

16056

\[ {}1+5 t -y-\left (t +2 y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16065

\[ {}t^{2} y+t^{3} y^{\prime } = 0 \]

[_separable]

16066

\[ {}y \left (2 \,{\mathrm e}^{t}+4 t \right )+3 \left ({\mathrm e}^{t}+t^{2}\right ) y^{\prime } = 0 \]

[_separable]

16068

\[ {}2 t y+y^{2}-t^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

16071

\[ {}5 t y^{2}+y+\left (2 t^{3}-t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

16076

\[ {}\frac {9 t}{5}+2 y+\left (2 t +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16077

\[ {}2 t +\frac {19 y}{10}+\left (\frac {19 t}{10}+2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16079

\[ {}y^{\prime }+y = t y^{2} \]

[_Bernoulli]

16084

\[ {}y^{\prime }-\frac {y}{t} = t y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

16085

\[ {}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

16086

\[ {}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t} \]

[_separable]

16087

\[ {}y^{\prime }-\frac {y}{t} = t^{2} y^{{3}/{2}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

16088

\[ {}\cos \left (\frac {t}{y+t}\right )+{\mathrm e}^{\frac {2 y}{t}} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

16091

\[ {}\frac {2}{t}+\frac {1}{y}+\frac {t y^{\prime }}{y^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

16094

\[ {}2 t +\left (y-3 t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

16095

\[ {}2 y-3 t +t y^{\prime } = 0 \]

[_linear]

16096

\[ {}t y-y^{2}+t \left (t -3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

16097

\[ {}t^{2}+t y+y^{2}-t y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

16098

\[ {}t^{3}+y^{3}-t y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

16099

\[ {}y^{\prime } = \frac {t +4 y}{4 t +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16100

\[ {}t -y+t y^{\prime } = 0 \]

[_linear]

16101

\[ {}y+\left (y+t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16102

\[ {}2 t^{2}-7 t y+5 y^{2}+t y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

16103

\[ {}y+2 \sqrt {t^{2}+y^{2}}-t y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

16104

\[ {}y^{2} = \left (t y-4 t^{2}\right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

16105

\[ {}y-\left (3 \sqrt {t y}+t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

16106

\[ {}\left (t^{2}-y^{2}\right ) y^{\prime }+y^{2}+t y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16107

\[ {}t y y^{\prime }-t^{2} {\mathrm e}^{-\frac {y}{t}}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

16108

\[ {}y^{\prime } = \frac {1}{\frac {2 y \,{\mathrm e}^{-\frac {t}{y}}}{t}+\frac {t}{y}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

16109

\[ {}t \left (\ln \left (t \right )-\ln \left (y\right )\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _dAlembert]

16112

\[ {}y^{\prime } = \frac {4 y^{2}-t^{2}}{2 t y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

16113

\[ {}t +y-t y^{\prime } = 0 \]
i.c.

[_linear]

16114

\[ {}t y^{\prime }-y-\sqrt {t^{2}+y^{2}} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

16115

\[ {}t^{3}+y^{2} \sqrt {t^{2}+y^{2}}-t y \sqrt {t^{2}+y^{2}}\, y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

16116

\[ {}y^{3}-t^{3}-t y^{2} y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

16117

\[ {}t y^{3}-\left (t^{4}+y^{4}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

16119

\[ {}t -2 y+1+\left (4 t -3 y-6\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16120

\[ {}5 t +2 y+1+\left (2 t +y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16121

\[ {}3 t -y+1-\left (6 t -2 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16122

\[ {}2 t +3 y+1+\left (4 t +6 y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16123

\[ {}y^{\prime }-\frac {2 y}{x} = -x^{2} y \]

[_separable]

16128

\[ {}1+y-t y^{\prime } = \ln \left (y^{\prime }\right ) \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

16132

\[ {}y = t \left (y^{\prime }+1\right )+2 y^{\prime }+1 \]

[_linear]

16134

\[ {}t^{{1}/{3}} y^{{2}/{3}}+t +\left (t^{{2}/{3}} y^{{1}/{3}}+y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

16135

\[ {}y^{\prime } = \frac {y^{2}-t^{2}}{t y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

16136

\[ {}y \sin \left (\frac {t}{y}\right )-\left (t +t \sin \left (\frac {t}{y}\right )\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

16137

\[ {}y^{\prime } = \frac {2 t^{5}}{5 y^{2}} \]

[_separable]

16139

\[ {}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t} \]

[_separable]

16140

\[ {}y^{\prime } = \frac {{\mathrm e}^{8 y}}{t} \]

[_separable]

16141

\[ {}y^{\prime } = \frac {{\mathrm e}^{5 t}}{y^{4}} \]

[_separable]

16144

\[ {}y^{\prime } = \frac {\left (4-7 x \right ) \left (2 y-3\right )}{\left (x -1\right ) \left (2 x -5\right )} \]

[_separable]

16146

\[ {}3 t +\left (t -4 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

16147

\[ {}y-t +\left (y+t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16148

\[ {}y-x +y^{\prime } = 0 \]

[[_linear, ‘class A‘]]

16149

\[ {}y^{2}+\left (t y+t^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

16150

\[ {}r^{\prime } = \frac {r^{2}+t^{2}}{r t} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

16151

\[ {}x^{\prime } = \frac {5 t x}{t^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

16156

\[ {}y^{\prime }+y = 5 \]

[_quadrature]

16157

\[ {}y^{\prime }+t y = t \]

[_separable]

16158

\[ {}x^{\prime }+\frac {x}{y} = y^{2} \]

[_linear]

16160

\[ {}y^{\prime }-y = t y^{3} \]

[_Bernoulli]

16161

\[ {}y^{\prime }+y = \frac {{\mathrm e}^{t}}{y^{2}} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

16163

\[ {}y-t y^{\prime } = 2 y^{2} \ln \left (t \right ) \]

[[_homogeneous, ‘class D‘], _Bernoulli]

16166

\[ {}2 x -y-2+\left (2 y-x \right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16167

\[ {}\cos \left (t -y\right )+\left (1-\cos \left (t -y\right )\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

16173

\[ {}y^{\prime } = \sqrt {x -y} \]
i.c.

[[_homogeneous, ‘class C‘], _dAlembert]

16300

\[ {}y^{\prime }-4 y = t^{2} \]

[[_linear, ‘class A‘]]

16302

\[ {}y^{\prime }-y = {\mathrm e}^{4 t} \]
i.c.

[[_linear, ‘class A‘]]

16303

\[ {}y^{\prime }+4 y = {\mathrm e}^{-4 t} \]
i.c.

[[_linear, ‘class A‘]]

16304

\[ {}y^{\prime }+4 y = t \,{\mathrm e}^{-4 t} \]

[[_linear, ‘class A‘]]

16665

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

16666

\[ {}y^{\prime } = y+3 y^{{1}/{3}} \]

[_quadrature]

16667

\[ {}y^{\prime } = \sqrt {x -y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

16668

\[ {}y^{\prime } = \sqrt {x^{2}-y}-x \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

16669

\[ {}y^{\prime } = \sqrt {1-y^{2}} \]

[_quadrature]

16670

\[ {}y^{\prime } = \frac {1+y}{x -y} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16672

\[ {}y^{\prime } = 1-\cot \left (y\right ) \]

[_quadrature]

16673

\[ {}y^{\prime } = \left (3 x -y\right )^{{1}/{3}}-1 \]

[[_homogeneous, ‘class C‘], _dAlembert]

16676

\[ {}y^{\prime }+2 y = {\mathrm e}^{x} \]

[[_linear, ‘class A‘]]

16677

\[ {}\left (-x^{2}+1\right ) y^{\prime }+x y = 2 x \]

[_separable]

16679

\[ {}y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

16680

\[ {}y^{\prime } = y-x \]

[[_linear, ‘class A‘]]

16681

\[ {}y^{\prime } = \frac {x}{2}-y+\frac {3}{2} \]

[[_linear, ‘class A‘]]

16682

\[ {}y^{\prime } = \left (-1+y\right )^{2} \]

[_quadrature]

16683

\[ {}y^{\prime } = \left (-1+y\right ) x \]

[_separable]

16685

\[ {}y^{\prime } = \cos \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

16686

\[ {}y^{\prime } = y-x^{2} \]

[[_linear, ‘class A‘]]

16687

\[ {}y^{\prime } = x^{2}+2 x -y \]

[[_linear, ‘class A‘]]

16688

\[ {}y^{\prime } = \frac {1+y}{x -1} \]

[_separable]

16689

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16691

\[ {}y^{\prime } = 2 x -y \]

[[_linear, ‘class A‘]]

16692

\[ {}y^{\prime } = y+x^{2} \]

[[_linear, ‘class A‘]]

16693

\[ {}y^{\prime } = -\frac {y}{x} \]

[_separable]

16696

\[ {}y^{\prime } = y \]

[_quadrature]

16697

\[ {}y^{\prime } = y^{2} \]

[_quadrature]

16700

\[ {}y^{\prime } = x +y \]
i.c.

[[_linear, ‘class A‘]]

16702

\[ {}y^{\prime } x = 2 x -y \]
i.c.

[_linear]

16703

\[ {}1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

16704

\[ {}1+y^{2}+x y y^{\prime } = 0 \]

[_separable]

16705

\[ {}y^{\prime } \sin \left (x \right )-y \cos \left (x \right ) = 0 \]
i.c.

[_separable]

16706

\[ {}1+y^{2} = y^{\prime } x \]

[_separable]

16709

\[ {}{\mathrm e}^{-y} y^{\prime } = 1 \]

[_quadrature]

16710

\[ {}y \ln \left (y\right )+y^{\prime } x = 1 \]
i.c.

[_separable]

16711

\[ {}y^{\prime } = a^{x +y} \]

[_separable]

16712

\[ {}{\mathrm e}^{y} \left (x^{2}+1\right ) y^{\prime }-2 x \left (1+{\mathrm e}^{y}\right ) = 0 \]

[_separable]

16716

\[ {}y^{\prime } = \sin \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

16717

\[ {}y^{\prime } = a x +b y+c \]

[[_linear, ‘class A‘]]

16718

\[ {}\left (x +y\right )^{2} y^{\prime } = a^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

16720

\[ {}a^{2}+y^{2}+2 x \sqrt {a x -x^{2}}\, y^{\prime } = 0 \]
i.c.

[_separable]

16721

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

16733

\[ {}{\mathrm e}^{y} = {\mathrm e}^{4 y} y^{\prime }+1 \]

[_quadrature]

16734

\[ {}\left (x +1\right ) y^{\prime } = -1+y \]

[_separable]

16735

\[ {}y^{\prime } = 2 x \left (\pi +y\right ) \]

[_separable]

16737

\[ {}y^{\prime } x = y+x \cos \left (\frac {y}{x}\right )^{2} \]

[[_homogeneous, ‘class A‘], _dAlembert]

16738

\[ {}x -y+y^{\prime } x = 0 \]

[_linear]

16739

\[ {}y^{\prime } x = y \left (\ln \left (y\right )-\ln \left (x \right )\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

16740

\[ {}x^{2} y^{\prime } = y^{2}-x y+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

16741

\[ {}y^{\prime } x = y+\sqrt {y^{2}-x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

16742

\[ {}2 x^{2} y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

16743

\[ {}4 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16744

\[ {}y-x +\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16745

\[ {}x +y-2+\left (1-x \right ) y^{\prime } = 0 \]

[_linear]

16746

\[ {}3 y-7 x +7-\left (3 x -7 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16747

\[ {}x +y-2+\left (x -y+4\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16748

\[ {}x +y+\left (x -y-2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16749

\[ {}2 x +3 y-5+\left (3 x +2 y-5\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16750

\[ {}8 x +4 y+1+\left (4 x +2 y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16751

\[ {}x -2 y-1+\left (3 x -6 y+2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16752

\[ {}x +y+\left (x +y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16753

\[ {}2 x y^{\prime } \left (x -y^{2}\right )+y^{3} = 0 \]

[[_homogeneous, ‘class G‘], _rational]

16754

\[ {}4 y^{6}+x^{3} = 6 x y^{5} y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

16755

\[ {}y \left (1+\sqrt {x^{2} y^{4}+1}\right )+2 y^{\prime } x = 0 \]

[[_homogeneous, ‘class G‘]]

16756

\[ {}x +y^{3}+3 \left (y^{3}-x \right ) y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

16757

\[ {}y^{\prime }+2 y = {\mathrm e}^{-x} \]

[[_linear, ‘class A‘]]

16758

\[ {}x^{2}-y^{\prime } x = y \]
i.c.

[_linear]

16759

\[ {}y^{\prime }-2 x y = 2 x \,{\mathrm e}^{x^{2}} \]

[_linear]

16760

\[ {}y^{\prime }+2 x y = {\mathrm e}^{-x^{2}} \]

[_linear]

16762

\[ {}y^{\prime } x -2 y = x^{3} \cos \left (x \right ) \]

[_linear]

16765

\[ {}\left (2 x -y^{2}\right ) y^{\prime } = 2 y \]

[[_homogeneous, ‘class G‘], _rational]

16767

\[ {}y^{\prime } = \frac {y}{2 y \ln \left (y\right )+y-x} \]

[[_1st_order, _with_linear_symmetries]]

16777

\[ {}y^{\prime } x +y = 2 x \]

[_linear]

16780

\[ {}y^{\prime }+2 x y = 2 x y^{2} \]

[_separable]

16781

\[ {}3 x y^{2} y^{\prime }-2 y^{3} = x^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

16782

\[ {}\left (x^{3}+{\mathrm e}^{y}\right ) y^{\prime } = 3 x^{2} \]

[[_1st_order, _with_linear_symmetries]]

16783

\[ {}y^{\prime }+3 x y = y \,{\mathrm e}^{x^{2}} \]

[_separable]

16788

\[ {}y^{\prime }-y \cos \left (x \right ) = y^{2} \cos \left (x \right ) \]

[_separable]

16794

\[ {}x \left (2 x^{2}+y^{2}\right )+y \left (x^{2}+2 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16801

\[ {}\frac {x y}{\sqrt {x^{2}+1}}+2 x y-\frac {y}{x}+\left (\sqrt {x^{2}+1}+x^{2}-\ln \left (x \right )\right ) y^{\prime } = 0 \]

[_separable]

16806

\[ {}3 x^{2} y+y^{3}+\left (x^{3}+3 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16808

\[ {}x^{2}+y-y^{\prime } x = 0 \]

[_linear]

16809

\[ {}x +y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

16814

\[ {}3 y^{2}-x +\left (2 y^{3}-6 x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

16815

\[ {}x^{2}+y^{2}+1-2 x y y^{\prime } = 0 \]

[_rational, _Bernoulli]

16816

\[ {}x -x y+\left (y+x^{2}\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

16820

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

16821

\[ {}{y^{\prime }}^{2}-\left (2 x +y\right ) y^{\prime }+x^{2}+x y = 0 \]

[_quadrature]

16823

\[ {}{y^{\prime }}^{3} = y {y^{\prime }}^{2}-x^{2} y^{\prime }+x^{2} y \]

[_quadrature]

16824

\[ {}{y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0 \]

[[_1st_order, _with_linear_symmetries]]

16827

\[ {}y^{\prime } = {\mathrm e}^{\frac {y^{\prime }}{y}} \]

[_quadrature]

16831

\[ {}y = \left (y^{\prime }-1\right ) {\mathrm e}^{y^{\prime }} \]

[_quadrature]

16836

\[ {}y = y^{\prime } \left (1+y^{\prime } \cos \left (y^{\prime }\right )\right ) \]

[_quadrature]

16838

\[ {}y = 2 y^{\prime } x +\ln \left (y^{\prime }\right ) \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

16850

\[ {}y^{\prime } x -y^{2}+\left (2 x +1\right ) y = x^{2}+2 x \]

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

16851

\[ {}x^{2} y^{\prime } = x^{2} y^{2}+x y+1 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

16854

\[ {}{y^{\prime }}^{3}-4 x y y^{\prime }+8 y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries]]

16855

\[ {}{y^{\prime }}^{2}-y^{2} = 0 \]

[_quadrature]

16856

\[ {}y^{\prime } = y^{{2}/{3}}+a \]

[_quadrature]

16860

\[ {}\left (y^{\prime }-1\right )^{2} = y^{2} \]

[_quadrature]

16864

\[ {}{y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0 \]

[[_1st_order, _with_linear_symmetries]]

16867

\[ {}y^{\prime } = \left (x -y\right )^{2}+1 \]

[[_homogeneous, ‘class C‘], _Riccati]

16870

\[ {}x^{3}-3 x y^{2}+\left (y^{3}-3 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16871

\[ {}5 x y-4 y^{2}-6 x^{2}+\left (y^{2}-8 x y+\frac {5 x^{2}}{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16873

\[ {}y-x y^{2} \ln \left (x \right )+y^{\prime } x = 0 \]

[_Bernoulli]

16875

\[ {}y^{\prime } = \frac {1}{2 x -y^{2}} \]

[[_1st_order, _with_exponential_symmetries]]

16877

\[ {}x y y^{\prime }-y^{2} = x^{4} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

16878

\[ {}\frac {1}{y^{2}-x y+x^{2}} = \frac {y^{\prime }}{2 y^{2}-x y} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

16879

\[ {}\left (2 x -1\right ) y^{\prime }-2 y = \frac {1-4 x}{x^{2}} \]

[_linear]

16880

\[ {}x -y+3+\left (3 x +y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16882

\[ {}y^{\prime } \left (3 x^{2}-2 x \right )-y \left (6 x -2\right ) = 0 \]

[_separable]

16883

\[ {}x y^{2} y^{\prime }-y^{3} = \frac {x^{4}}{3} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

16884

\[ {}1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

16885

\[ {}x^{2}+y^{2}-x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

16886

\[ {}x -y+2+\left (x -y+3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16887

\[ {}x y^{2}+y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

16890

\[ {}\left (x -2 x y-y^{2}\right ) y^{\prime }+y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

16892

\[ {}y^{\prime }-1 = {\mathrm e}^{2 y+x} \]

[[_homogeneous, ‘class C‘], _dAlembert]

16893

\[ {}2 x^{5}+4 x^{3} y-2 x y^{2}+\left (y^{2}+2 x^{2} y-x^{4}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

16894

\[ {}x^{2} y^{n} y^{\prime } = 2 y^{\prime } x -y \]

[[_homogeneous, ‘class G‘], _rational]

16895

\[ {}\left (3 x +3 y+a^{2}\right ) y^{\prime } = 4 x +4 y+b^{2} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16896

\[ {}x -y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

16897

\[ {}y^{\prime } x +y = y^{2} \ln \left (x \right ) \]
i.c.

[_Bernoulli]

16900

\[ {}\left (5 x -7 y+1\right ) y^{\prime }+x +y-1 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16901

\[ {}x +y+1+\left (2 x +2 y-1\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16902

\[ {}y^{3}+2 \left (x^{2}-x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

16903

\[ {}y^{\prime } = \frac {2 \left (y+2\right )^{2}}{\left (x +y-1\right )^{2}} \]

[[_homogeneous, ‘class C‘], _rational]

17300

\[ {}y^{\prime } = \frac {x^{4}}{y} \]

[_separable]

17302

\[ {}y^{\prime }+y^{3} \sin \left (x \right ) = 0 \]

[_separable]

17305

\[ {}y^{\prime } x = \sqrt {1-y^{2}} \]

[_separable]

17310

\[ {}y^{\prime } = 4 \sqrt {x y} \]

[[_homogeneous, ‘class G‘]]

17311

\[ {}y^{\prime } = x \left (y-y^{2}\right ) \]

[_separable]

17312

\[ {}y^{\prime } = \left (1-12 x \right ) y^{2} \]
i.c.

[_separable]

17313

\[ {}y^{\prime } = \frac {3-2 x}{y} \]
i.c.

[_separable]

17315

\[ {}r^{\prime } = \frac {r^{2}}{\theta } \]
i.c.

[_separable]

17317

\[ {}y^{\prime } = \frac {2 x}{1+2 y} \]
i.c.

[_separable]

17318

\[ {}y^{\prime } = 2 x y^{2}+4 x^{3} y^{2} \]
i.c.

[_separable]

17319

\[ {}y^{\prime } = x^{2} {\mathrm e}^{-3 y} \]
i.c.

[_separable]

17320

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (2 x \right ) \]
i.c.

[_separable]

17323

\[ {}x^{2} y^{\prime } = y-x y \]
i.c.

[_separable]

17330

\[ {}y^{\prime } = 2 y^{2}+x y^{2} \]
i.c.

[_separable]

17333

\[ {}y^{\prime } = 2 \left (x +1\right ) \left (1+y^{2}\right ) \]
i.c.

[_separable]

17334

\[ {}y^{\prime } = \frac {t y \left (4-y\right )}{3} \]
i.c.

[_separable]

17335

\[ {}y^{\prime } = \frac {t y \left (4-y\right )}{1+t} \]
i.c.

[_separable]

17336

\[ {}y^{\prime } = \frac {a y+b}{c y+d} \]

[_quadrature]

17337

\[ {}y^{\prime }+4 y = t +{\mathrm e}^{-2 t} \]

[[_linear, ‘class A‘]]

17338

\[ {}y^{\prime }-2 y = t^{2} {\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

17339

\[ {}y^{\prime }+y = t \,{\mathrm e}^{-t}+1 \]

[[_linear, ‘class A‘]]

17341

\[ {}y^{\prime }-2 y = 3 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

17343

\[ {}y^{\prime }+2 t y = 16 t \,{\mathrm e}^{-t^{2}} \]

[_linear]

17344

\[ {}\left (t^{2}+1\right ) y^{\prime }+4 t y = \frac {1}{\left (t^{2}+1\right )^{2}} \]

[_linear]

17345

\[ {}2 y^{\prime }+y = 3 t \]

[[_linear, ‘class A‘]]

17346

\[ {}t y^{\prime }-y = t^{3} {\mathrm e}^{-t} \]

[_linear]

17348

\[ {}2 y^{\prime }+y = 3 t^{2} \]

[[_linear, ‘class A‘]]

17350

\[ {}y^{\prime }+2 y = t \,{\mathrm e}^{-2 t} \]
i.c.

[[_linear, ‘class A‘]]

17351

\[ {}t y^{\prime }+4 y = t^{2}-t +1 \]
i.c.

[_linear]

17353

\[ {}y^{\prime }-2 y = {\mathrm e}^{2 t} \]
i.c.

[[_linear, ‘class A‘]]

17358

\[ {}2 y^{\prime }-y = {\mathrm e}^{\frac {t}{3}} \]
i.c.

[[_linear, ‘class A‘]]

17359

\[ {}3 y^{\prime }-2 y = {\mathrm e}^{-\frac {\pi t}{2}} \]
i.c.

[[_linear, ‘class A‘]]

17360

\[ {}t y^{\prime }+\left (1+t \right ) y = 2 t \,{\mathrm e}^{-t} \]
i.c.

[_linear]

17364

\[ {}y^{\prime }+\frac {4 y}{3} = 1-\frac {t}{4} \]
i.c.

[[_linear, ‘class A‘]]

17367

\[ {}y^{\prime }-\frac {3 y}{2} = 3 t +3 \,{\mathrm e}^{t} \]
i.c.

[[_linear, ‘class A‘]]

17368

\[ {}y^{\prime }-6 y = t^{6} {\mathrm e}^{6 t} \]

[[_linear, ‘class A‘]]

17371

\[ {}2 y^{\prime }+y = 3 t^{2} \]

[[_linear, ‘class A‘]]

17373

\[ {}t \left (t -4\right ) y^{\prime }+y = 0 \]
i.c.

[_separable]

17375

\[ {}\left (-t^{2}+4\right ) y^{\prime }+2 t y = 3 t^{2} \]
i.c.

[_linear]

17376

\[ {}\left (-t^{2}+4\right ) y^{\prime }+2 t y = 3 t^{2} \]
i.c.

[_linear]

17378

\[ {}y^{\prime } = \frac {t -y}{2 t +5 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17384

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

17385

\[ {}y^{\prime } = -\frac {t}{2}+\frac {\sqrt {t^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

17386

\[ {}y^{\prime } = -\frac {4 t}{y} \]
i.c.

[_separable]

17387

\[ {}y^{\prime } = 2 t y^{2} \]
i.c.

[_separable]

17388

\[ {}y^{\prime }+y^{3} = 0 \]
i.c.

[_quadrature]

17390

\[ {}y^{\prime } = t y \left (3-y\right ) \]

[_separable]

17391

\[ {}y^{\prime } = y \left (3-t y\right ) \]

[_Bernoulli]

17392

\[ {}y^{\prime } = -y \left (3-t y\right ) \]

[_Bernoulli]

17395

\[ {}2 x +3+\left (2 y-2\right ) y^{\prime } = 0 \]

[_separable]

17396

\[ {}2 x +4 y+\left (2 x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17398

\[ {}2 x y^{2}+2 y+\left (2 x^{2} y+2 x \right ) y^{\prime } = 0 \]

[_separable]

17399

\[ {}y^{\prime } = -\frac {4 x +2 y}{2 x +3 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17400

\[ {}y^{\prime } = -\frac {4 x -2 y}{2 x -3 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17406

\[ {}\frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

17407

\[ {}2 x -y+\left (2 y-x \right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17414

\[ {}y^{\prime } = {\mathrm e}^{2 x}+y-1 \]

[[_linear, ‘class A‘]]

17416

\[ {}y+\left (2 x y-{\mathrm e}^{-2 y}\right ) y^{\prime } = 0 \]

[[_1st_order, _with_exponential_symmetries]]

17420

\[ {}3 x y+y^{2}+\left (x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

17421

\[ {}y y^{\prime } = x +1 \]

[_separable]

17423

\[ {}\frac {\left (3 x^{3}-x y^{2}\right ) y^{\prime }}{3 x^{2} y+y^{3}} = 1 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

17424

\[ {}x \left (x -1\right ) y^{\prime } = y \left (1+y\right ) \]

[_separable]

17425

\[ {}\sqrt {x^{2}-y^{2}}+y = y^{\prime } x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

17426

\[ {}x y y^{\prime } = \left (x +y\right )^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

17427

\[ {}y^{\prime } = \frac {4 y-7 x}{5 x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17428

\[ {}y^{\prime } x -4 \sqrt {y^{2}-x^{2}} = y \]

[[_homogeneous, ‘class A‘], _dAlembert]

17429

\[ {}y^{\prime } = \frac {y^{4}+2 x y^{3}-3 x^{2} y^{2}-2 x^{3} y}{2 x^{2} y^{2}-2 x^{3} y-2 x^{4}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

17430

\[ {}\left (y+x \,{\mathrm e}^{\frac {x}{y}}\right ) y^{\prime } = y \,{\mathrm e}^{\frac {x}{y}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

17431

\[ {}x y y^{\prime } = x^{2}+y^{2} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

17432

\[ {}y^{\prime } = \frac {x +y}{x -y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17433

\[ {}t y^{\prime }+y = t^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

17435

\[ {}y^{\prime }+\frac {3 y}{t} = t^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

17436

\[ {}t^{2} y^{\prime }+2 t y-y^{3} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

17438

\[ {}3 t y^{\prime }+9 y = 2 t y^{{5}/{3}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

17439

\[ {}y^{\prime } = y+\sqrt {y} \]

[_quadrature]

17440

\[ {}y^{\prime } = r y-k^{2} y^{2} \]

[_quadrature]

17441

\[ {}y^{\prime } = a y+b y^{3} \]

[_quadrature]

17443

\[ {}\left (3 x-y \right ) x^{\prime }+9 y -2 x = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17444

\[ {}1 = \left (3 \,{\mathrm e}^{y}-2 x \right ) y^{\prime } \]

[[_1st_order, _with_exponential_symmetries]]

17445

\[ {}y^{\prime }-4 \,{\mathrm e}^{x} y^{2} = y \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

17448

\[ {}\frac {\sqrt {x}\, y^{\prime }}{y} = 1 \]

[_separable]

17449

\[ {}5 x y^{2}+5 y+\left (5 x^{2} y+5 x \right ) y^{\prime } = 0 \]

[_separable]

17451

\[ {}\left (2-x \right ) y^{\prime } = y+2 \left (2-x \right )^{5} \]

[_linear]

17453

\[ {}x^{\prime } = \frac {2 x y +x^{2}}{3 y^{2}+2 x y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

17454

\[ {}4 x y y^{\prime } = 8 x^{2}+5 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

17455

\[ {}y^{\prime }+y-y^{{1}/{4}} = 0 \]

[_quadrature]

17896

\[ {}\sqrt {-x^{2}+1}\, y^{\prime }+\sqrt {1-y^{2}} = 0 \]

[_separable]

17897

\[ {}y^{\prime } = \frac {2 x y}{x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

17898

\[ {}y^{\prime } = \frac {y \left (1+\ln \left (y\right )-\ln \left (x \right )\right )}{x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

17899

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

17900

\[ {}\left (x +y\right ) y^{\prime } = y-x \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17901

\[ {}x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

17902

\[ {}3 y-7 x +7 = \left (3 x -7 y-3\right ) y^{\prime } \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17903

\[ {}\left (x +2 y+1\right ) y^{\prime } = 4 y+2 x +3 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17904

\[ {}y^{\prime } = \frac {2 \left (y+2\right )^{2}}{\left (x +y-1\right )^{2}} \]

[[_homogeneous, ‘class C‘], _rational]

17905

\[ {}\left (x +y\right )^{2} y^{\prime } = a^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

17906

\[ {}y^{\prime } x -4 y = x^{2} \sqrt {y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

17908

\[ {}y^{\prime } = 2 x y-x^{3}+x \]

[_linear]

17910

\[ {}\left (x -2 x y-y^{2}\right ) y^{\prime }+y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

17911

\[ {}y^{\prime } x +y = x y^{2} \ln \left (x \right ) \]

[_Bernoulli]

17914

\[ {}x -y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

17915

\[ {}y^{\prime } = \frac {y^{2}}{3}+\frac {2}{3 x^{2}} \]

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

17916

\[ {}y^{\prime }+y^{2}+\frac {y}{x}-\frac {4}{x^{2}} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

17918

\[ {}y^{\prime } = y^{2}+\frac {1}{x^{4}} \]

[_rational, [_Riccati, _special]]

17919

\[ {}\left (y-x \right ) \sqrt {x^{2}+1}\, y^{\prime } = \left (1+y^{2}\right )^{{3}/{2}} \]

[‘y=_G(x,y’)‘]

17921

\[ {}y^{\prime } = \frac {x -y^{2}}{2 y \left (x +y^{2}\right )} \]

[[_homogeneous, ‘class G‘], _rational]

17922

\[ {}\left (\left (x +y\right ) x +a^{2}\right ) y^{\prime } = y \left (x +y\right )+b^{2} \]

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

17925

\[ {}\frac {x +y y^{\prime }}{\sqrt {1+x^{2}+y^{2}}}+\frac {y-y^{\prime } x}{x^{2}+y^{2}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact]

17926

\[ {}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

17929

\[ {}y^{3}+2 \left (x^{2}-x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

17930

\[ {}\left (x^{2} y^{2}-1\right ) y^{\prime }+2 x y^{3} = 0 \]

[[_homogeneous, ‘class G‘], _rational]

17931

\[ {}a x y^{\prime }+b y+x^{m} y^{n} \left (\alpha x y^{\prime }+\beta y\right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational]

17933

\[ {}y^{\prime } = 2 x y-x^{3}+x \]

[_linear]

17934

\[ {}y-x y^{2} \ln \left (x \right )+y^{\prime } x = 0 \]

[_Bernoulli]

17936

\[ {}y {y^{\prime }}^{2}+y^{\prime } \left (x -y\right )-x = 0 \]

[_quadrature]

17938

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y+y^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

17952

\[ {}y = 2 y^{\prime } x +y^{2} {y^{\prime }}^{3} \]

[[_1st_order, _with_linear_symmetries]]

17955

\[ {}y^{\prime } = \sqrt {y-x} \]

[[_homogeneous, ‘class C‘], _dAlembert]

17956

\[ {}y^{\prime } = \sqrt {y-x}+1 \]

[[_homogeneous, ‘class C‘], _dAlembert]

17957

\[ {}y^{\prime } = \sqrt {y} \]

[_quadrature]

17958

\[ {}y^{\prime } = y \ln \left (y\right ) \]

[_quadrature]

17959

\[ {}y^{\prime } = y \ln \left (y\right )^{2} \]

[_quadrature]

17960

\[ {}y^{\prime } = -x +\sqrt {x^{2}+2 y} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

17961

\[ {}y^{\prime } = -x -\sqrt {x^{2}+2 y} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

17969

\[ {}{y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0 \]

[[_1st_order, _with_linear_symmetries]]

18057

\[ {}y^{\prime } x = 2 y \]

[_separable]

18058

\[ {}y y^{\prime } = {\mathrm e}^{2 x} \]

[_separable]

18059

\[ {}y^{\prime } = k y \]

[_quadrature]

18064

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18065

\[ {}2 x y y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18067

\[ {}y^{\prime } = \frac {y^{2}}{x y-x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18068

\[ {}\left (y \cos \left (y\right )-\sin \left (y\right )+x \right ) y^{\prime } = y \]

[[_1st_order, _with_linear_symmetries]]

18069

\[ {}1+y^{2}+y^{2} y^{\prime } = 0 \]

[_quadrature]

18078

\[ {}x y y^{\prime } = -1+y \]

[_separable]

18079

\[ {}x^{5} y^{\prime }+y^{5} = 0 \]

[_separable]

18081

\[ {}y^{\prime } = 2 x y \]

[_separable]

18084

\[ {}y^{\prime }+y \tan \left (x \right ) = 0 \]

[_separable]

18085

\[ {}y^{\prime }-y \tan \left (x \right ) = 0 \]

[_separable]

18086

\[ {}\left (x^{2}+1\right ) y^{\prime }+1+y^{2} = 0 \]

[_separable]

18087

\[ {}y \ln \left (y\right )-y^{\prime } x = 0 \]

[_separable]

18094

\[ {}y^{\prime } = {\mathrm e}^{3 x -2 y} \]
i.c.

[_separable]

18096

\[ {}{\mathrm e}^{-y}+\left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

18103

\[ {}v^{\prime } = g -\frac {k v^{2}}{m} \]

[_quadrature]

18104

\[ {}x^{2}-2 y^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18105

\[ {}x^{2} y^{\prime }-3 x y-2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18107

\[ {}x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )+x \]

[[_homogeneous, ‘class A‘], _dAlembert]

18108

\[ {}y^{\prime } x = y+2 x \,{\mathrm e}^{-\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

18109

\[ {}x -y-\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18110

\[ {}y^{\prime } x = 2 x +3 y \]

[_linear]

18111

\[ {}y^{\prime } x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18112

\[ {}x^{2} y^{\prime } = y^{2}+2 x y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18113

\[ {}x^{3}+y^{3}-x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18114

\[ {}y^{\prime } = \left (x +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

18115

\[ {}y^{\prime } = \sin \left (x -y+1\right )^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

18116

\[ {}y^{\prime } = \frac {x +y+4}{x -y-6} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18117

\[ {}y^{\prime } = \frac {x +y+4}{x +y-6} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18118

\[ {}2 x -2 y+\left (-1+y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18119

\[ {}y^{\prime } = \frac {x +y-1}{x +4 y+2} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18120

\[ {}2 x +3 y-1-4 \left (x +1\right ) y^{\prime } = 0 \]

[_linear]

18121

\[ {}y^{\prime } = \frac {1-x y^{2}}{2 x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

18122

\[ {}y^{\prime } = \frac {2+3 x y^{2}}{4 x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

18123

\[ {}y^{\prime } = \frac {y-x y^{2}}{x +x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18124

\[ {}\left (x +\frac {2}{y}\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18127

\[ {}y+y \cos \left (x y\right )+\left (x +x \cos \left (x y\right )\right ) y^{\prime } = 0 \]

[_separable]

18130

\[ {}-\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0 \]

[_separable]

18131

\[ {}1+y+\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

18136

\[ {}2 x \left (1+\sqrt {x^{2}-y}\right ) = \sqrt {x^{2}-y}\, y^{\prime } \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

18140

\[ {}\frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

18142

\[ {}\frac {y-y^{\prime } x}{\left (x +y\right )^{2}}+y^{\prime } = 1 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

18143

\[ {}\frac {4 y^{2}-2 x^{2}}{4 x y^{2}-x^{3}}+\frac {\left (8 y^{2}-x^{2}\right ) y^{\prime }}{4 y^{3}-x^{2} y} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

18144

\[ {}\left (3 x^{2}-y^{2}\right ) y^{\prime }-2 x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18146

\[ {}y^{\prime } x +y+3 x^{3} y^{4} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

18149

\[ {}y+\left (x -2 y^{3} x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

18150

\[ {}x +3 y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

18155

\[ {}-y+y^{\prime } x = \left (1+y^{2}\right ) y^{\prime } \]

[[_1st_order, _with_linear_symmetries], _rational]

18156

\[ {}y-y^{\prime } x = x y^{3} y^{\prime } \]

[_separable]

18158

\[ {}\left (x +y\right ) y^{\prime } = y-x \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18160

\[ {}y^{2}-y+y^{\prime } x = 0 \]

[_separable]

18161

\[ {}-y+y^{\prime } x = 2 x^{2}-3 \]

[_linear]

18162

\[ {}y^{\prime } x +y = \sqrt {x y}\, y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18164

\[ {}-y+y^{\prime } x = x^{2} y^{4} \left (y^{\prime } x +y\right ) \]

[[_homogeneous, ‘class G‘], _rational]

18165

\[ {}y^{\prime } x +y+x^{2} y^{5} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

18166

\[ {}2 x y^{2}-y+y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

18168

\[ {}y^{\prime } = \frac {2 y}{x}+\frac {x^{3}}{y}+x \tan \left (\frac {y}{x^{2}}\right ) \]

[[_homogeneous, ‘class G‘]]

18169

\[ {}y^{\prime } x -3 y = x^{4} \]

[_linear]

18172

\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x}+x^{2} \]

[[_linear, ‘class A‘]]

18174

\[ {}2 y-x^{3} = y^{\prime } x \]

[_linear]

18176

\[ {}y^{\prime }-2 x y = 6 x \,{\mathrm e}^{x^{2}} \]

[_linear]

18178

\[ {}y-2 x y-x^{2}+x^{2} y^{\prime } = 0 \]

[_linear]

18179

\[ {}y^{\prime } x +y = x^{4} y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

18181

\[ {}y^{\prime } x +y = x y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

18183

\[ {}y-y^{\prime } x = y^{\prime } y^{2} {\mathrm e}^{y} \]

[[_1st_order, _with_linear_symmetries]]

18184

\[ {}y^{\prime } x +2 = x^{3} \left (-1+y\right ) y^{\prime } \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

18185

\[ {}y^{\prime } x = 2 x^{2} y+y \ln \left (y\right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

18200

\[ {}\left (1-x y\right ) y^{\prime } = y^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18201

\[ {}2 x +3 y+1+\left (2 y-3 x +5\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18202

\[ {}y^{\prime } x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18203

\[ {}y^{2} = \left (x^{3}-x y\right ) y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18204

\[ {}y^{3} x^{2}+y = \left (x^{3} y^{2}-x \right ) y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational]

18206

\[ {}y^{\prime } x +y = y^{2}+x^{2} y^{\prime } \]

[_separable]

18207

\[ {}x y y^{\prime } = y^{2}+x^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18210

\[ {}y+x^{2} = y^{\prime } x \]

[_linear]

18212

\[ {}6 x +4 y+3+\left (3 x +2 y+2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18213

\[ {}\cos \left (x +y\right ) = x \sin \left (x +y\right )+x \sin \left (x +y\right ) y^{\prime } \]

[[_1st_order, _with_linear_symmetries], _exact]

18216

\[ {}y^{\prime } \ln \left (x -y\right ) = 1+\ln \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

18217

\[ {}y^{\prime }+2 x y = {\mathrm e}^{-x^{2}} \]

[_linear]

18218

\[ {}y^{2}-3 x y-2 x^{2} = \left (x^{2}-x y\right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18219

\[ {}\left (x^{2}+1\right ) y^{\prime }+2 x y = 4 x^{3} \]

[_linear]

18224

\[ {}x^{2} y^{4}+x^{6}-x^{3} y^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18226

\[ {}y^{\prime } = 1+\frac {y}{x}-\frac {y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

18227

\[ {}y^{\prime } = \frac {2 x y \,{\mathrm e}^{\frac {x^{2}}{y^{2}}}}{y^{2}+y^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}+2 x^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

18228

\[ {}y^{\prime } = \frac {x +2 y+2}{-2 x +y} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18229

\[ {}3 x^{2} \ln \left (y\right )+\frac {x^{3} y^{\prime }}{y} = 0 \]

[_separable]

18231

\[ {}\frac {y-x}{\left (x +y\right )^{3}}-\frac {2 x y^{\prime }}{\left (x +y\right )^{3}} = 0 \]

[_linear]

18232

\[ {}x y^{2}+y+y^{\prime } x = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

18234

\[ {}3 x^{2} y-y^{3}-\left (3 x y^{2}-x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

18236

\[ {}y^{\prime } = \frac {-3 x -2 y-1}{2 x +3 y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18237

\[ {}{\mathrm e}^{x^{2} y} \left (1+2 x^{2} y\right )+x^{3} {\mathrm e}^{x^{2} y} y^{\prime } = 0 \]

[_linear]

18240

\[ {}3 x y+y^{2}+\left (3 x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18241

\[ {}x^{2} y^{\prime } = x^{2}+x y+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

18242

\[ {}y^{\prime } x +y = y^{2} \ln \left (x \right ) \]

[_Bernoulli]

18246

\[ {}x^{2} y^{\prime }-y^{2} = 2 x y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18495

\[ {}x^{\prime } = b \,{\mathrm e}^{x} \]
i.c.

[_quadrature]

18496

\[ {}x^{\prime } = \left (x-1\right )^{2} \]
i.c.

[_quadrature]

18497

\[ {}x^{\prime } = \sqrt {x^{2}-1} \]
i.c.

[_quadrature]

18498

\[ {}x^{\prime } = 2 \sqrt {x} \]
i.c.

[_quadrature]

18499

\[ {}x^{\prime } = \tan \left (x\right ) \]
i.c.

[_quadrature]

18501

\[ {}1+2 x+\left (-t^{2}+4\right ) x^{\prime } = 0 \]

[_separable]

18502

\[ {}x^{\prime } = \cos \left (\frac {x}{t}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

18503

\[ {}\left (t^{2}-x^{2}\right ) x^{\prime } = t x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18504

\[ {}x^{\prime } {\mathrm e}^{3 t}+3 x \,{\mathrm e}^{3 t} = 2 t \]

[[_linear, ‘class A‘]]

18506

\[ {}x^{\prime }+2 x = {\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

18507

\[ {}x^{\prime }+x \tan \left (t \right ) = 0 \]

[_separable]

18509

\[ {}t^{3} x^{\prime }+\left (-3 t^{2}+2\right ) x = t^{3} \]

[_linear]

18514

\[ {}x^{\prime } = -\lambda x \]

[_quadrature]

18532

\[ {}y^{\prime }+c y = a \]

[_quadrature]

18539

\[ {}v^{\prime }+\frac {2 v}{u} = 3 \]

[_linear]

18542

\[ {}y-y^{\prime } x = b \left (1+x^{2} y^{\prime }\right ) \]

[_separable]

18543

\[ {}x^{\prime } = k \left (A -n x\right ) \left (M -m x\right ) \]

[_quadrature]

18545

\[ {}y^{2} = x \left (y-x \right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18546

\[ {}2 x^{2} y+y^{3}-x^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18547

\[ {}2 a x +b y+\left (2 c y+b x +e \right ) y^{\prime } = g \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18549

\[ {}x +y y^{\prime } = m y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18550

\[ {}\frac {2 x}{y^{3}}+\left (\frac {1}{y^{2}}-\frac {3 x^{2}}{y^{4}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

18552

\[ {}y^{\prime }+x y = x \]

[_separable]

18555

\[ {}p^{\prime } = \frac {p+a \,t^{3}-2 p t^{2}}{t \left (-t^{2}+1\right )} \]

[_linear]

18556

\[ {}\left (T \ln \left (t \right )-1\right ) T = t T^{\prime } \]

[_Bernoulli]

18562

\[ {}\sqrt {t^{2}+T} = T^{\prime } \]

[[_homogeneous, ‘class G‘]]

18564

\[ {}y^{\prime } = \left (x +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

18569

\[ {}y^{\prime } = x \left (a y^{2}+b \right ) \]

[_separable]

18570

\[ {}n^{\prime } = \left (n^{2}+1\right ) x \]

[_separable]

18571

\[ {}v^{\prime }+\frac {2 v}{u} = 3 v \]

[_separable]

18574

\[ {}\frac {y^{\prime }}{x} = y \sin \left (x^{2}-1\right )-\frac {2 y}{\sqrt {x}} \]

[_separable]

18575

\[ {}y^{\prime } = 1+\frac {2 y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18576

\[ {}v^{\prime }+2 v u = 2 u \]

[_separable]

18577

\[ {}1+v^{2}+\left (u^{2}+1\right ) v v^{\prime } = 0 \]

[_separable]

18579

\[ {}4 y {y^{\prime }}^{3}-2 x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }+x^{3} = 16 y^{2} \]

[[_1st_order, _with_linear_symmetries]]

18619

\[ {}y^{\prime }+\frac {y}{x} = -x^{2}+1 \]

[_linear]

18621

\[ {}y^{\prime } = x -y \]

[[_linear, ‘class A‘]]

18624

\[ {}x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}-1\right ) y = x^{3} \]

[_linear]

18626

\[ {}x \left (-x^{2}+1\right ) y^{\prime }+\left (2 x^{2}-1\right ) y = a \,x^{3} \]

[_linear]

18627

\[ {}y^{\prime }+\sin \left (x \right ) y = y^{2} \sin \left (x \right ) \]

[_separable]

18628

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x y = a x y^{2} \]

[_separable]

18639

\[ {}x^{2}+\ln \left (y\right )+\frac {x y^{\prime }}{y} = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

18640

\[ {}x \left (x -2 y\right ) y^{\prime }+x^{2}+2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18641

\[ {}5 x y y^{\prime }-x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18642

\[ {}\left (x^{2}+3 x y-y^{2}\right ) y^{\prime }-3 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18643

\[ {}\left (x^{2}+2 x y\right ) y^{\prime }-3 x^{2}+2 x y-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18644

\[ {}5 x y y^{\prime }-4 x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18645

\[ {}\left (x^{2}-2 x y\right ) y^{\prime }+x^{2}-3 x y+2 y^{2} = 0 \]

[_linear]

18646

\[ {}3 x^{2} y^{\prime }+2 x^{2}-3 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

18647

\[ {}\left (3 x +2 y-7\right ) y^{\prime } = 2 x -3 y+6 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18648

\[ {}\left (6 x -5 y+4\right ) y^{\prime } = 2 x -y+1 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18649

\[ {}\left (5 x -2 y+7\right ) y^{\prime } = x -3 y+2 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18650

\[ {}\left (x -3 y+4\right ) y^{\prime } = 5 x -7 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18651

\[ {}\left (x -3 y+4\right ) y^{\prime } = 2 x -6 y+7 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18652

\[ {}\left (5 x -2 y+7\right ) y^{\prime } = 10 x -4 y+6 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18653

\[ {}\left (2 x -2 y+5\right ) y^{\prime } = x -y+3 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18654

\[ {}\left (6 x -4 y+1\right ) y^{\prime } = 3 x -2 y+1 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18727

\[ {}\left (1-x \right ) y^{\prime }-1-y = 0 \]

[_separable]

18729

\[ {}y-y^{\prime } x = a \left (y^{\prime }+y^{2}\right ) \]

[_separable]

18731

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18732

\[ {}y^{2}+\left (x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18733

\[ {}x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18734

\[ {}\left (4 y+3 x \right ) y^{\prime }+y-2 x = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18735

\[ {}3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18736

\[ {}\left (y-3 x +3\right ) y^{\prime } = 2 y-x -4 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18737

\[ {}x^{2}-4 x y-2 y^{2}+\left (y^{2}-4 x y-2 x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

18738

\[ {}x +y y^{\prime }+\frac {-y+y^{\prime } x}{x^{2}+y^{2}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

18740

\[ {}2 a x +b y+g +\left (2 c y+b x +e \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18742

\[ {}y-y^{\prime } x +\ln \left (x \right ) = 0 \]

[_linear]

18743

\[ {}\left (1+x y\right ) y-\left (1-x y\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18744

\[ {}a \left (y^{\prime } x +2 y\right ) = x y y^{\prime } \]

[_separable]

18746

\[ {}y \left (2 x y+{\mathrm e}^{x}\right )-{\mathrm e}^{x} y^{\prime } = 0 \]

[_Bernoulli]

18747

\[ {}x^{2} y-2 x y^{2}-\left (x^{3}-3 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18748

\[ {}y \left (x y+2 x^{2} y^{2}\right )+x \left (x y-x^{2} y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18751

\[ {}3 x^{2} y^{4}+2 x y+\left (2 x^{3} y^{3}-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

18753

\[ {}y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18754

\[ {}2 x^{2} y-3 y^{4}+\left (3 x^{3}+2 x y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

18755

\[ {}y^{2}+2 x^{2} y+\left (2 x^{3}-x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18756

\[ {}y^{\prime } x -a y = x +1 \]

[_linear]

18757

\[ {}y^{\prime }+y = {\mathrm e}^{-x} \]

[[_linear, ‘class A‘]]

18761

\[ {}y^{\prime }+\frac {y}{x} = x^{2} y^{6} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

18763

\[ {}y^{\prime }+\frac {2 y}{x} = 3 x^{2} y^{{1}/{3}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

18766

\[ {}\left (x +y\right )^{2} y^{\prime } = a^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

18767

\[ {}-y+y^{\prime } x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18771

\[ {}y^{\prime }+\frac {\left (1-2 x \right ) y}{x^{2}} = 1 \]

[_linear]

18773

\[ {}2 x -y+1+\left (2 y-x -1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18775

\[ {}y^{\prime } x +\frac {y^{2}}{x} = y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18777

\[ {}y^{\prime }+\frac {4 x y}{x^{2}+1} = \frac {1}{\left (x^{2}+1\right )^{3}} \]

[_linear]

18778

\[ {}x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18779

\[ {}x \left (-x^{2}+1\right ) y^{\prime }+\left (2 x^{2}-1\right ) y = a \,x^{3} \]

[_linear]

18780

\[ {}x^{2}+y^{2}+1-2 x y y^{\prime } = 0 \]

[_rational, _Bernoulli]

18781

\[ {}x +y y^{\prime } = m \left (-y+y^{\prime } x \right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18783

\[ {}\left (x +1\right ) y^{\prime }+1 = 2 \,{\mathrm e}^{y} \]

[_separable]

18785

\[ {}y+\left (a \,x^{2} y^{n}-2 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

18789

\[ {}y y^{\prime } = a x \]

[_separable]

18791

\[ {}\left (x +y\right ) y^{\prime }+x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18793

\[ {}2 x y+\left (y^{2}-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18794

\[ {}y-y^{\prime } x = b \left (1+x^{2} y^{\prime }\right ) \]

[_separable]

18795

\[ {}3 y+2 x +4-\left (4 x +6 y+5\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18796

\[ {}\left (x^{3} y^{3}+x^{2} y^{2}+x y+1\right ) y+\left (x^{3} y^{3}-x^{2} y^{2}-x y+1\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

18797

\[ {}2 x^{2} y^{2}+y-\left (x^{3} y-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18798

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18799

\[ {}y^{\prime }+\frac {n y}{x} = a \,x^{-n} \]

[_linear]

18800

\[ {}\left (x -y\right )^{2} y^{\prime } = a^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

18801

\[ {}{y^{\prime }}^{3}+2 x {y^{\prime }}^{2}-y^{2} {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0 \]

[_quadrature]

18803

\[ {}{y^{\prime }}^{3} \left (2 y+x \right )+3 {y^{\prime }}^{2} \left (x +y\right )+\left (y+2 x \right ) y^{\prime } = 0 \]

[_quadrature]

18805

\[ {}4 y^{2} {y^{\prime }}^{2}+2 y^{\prime } x y \left (3 x +1\right )+3 x^{3} = 0 \]

[_separable]

18821

\[ {}x y \left (y-y^{\prime } x \right ) = x +y y^{\prime } \]

[_separable]

18822

\[ {}y^{\prime }+2 x y = x^{2}+y^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

18825

\[ {}x y^{2} \left ({y^{\prime }}^{2}+2\right ) = 2 y^{\prime } y^{3}+x^{3} \]

[_separable]

18835

\[ {}\left (-y+y^{\prime } x \right ) \left (x +y y^{\prime }\right ) = h^{2} y^{\prime } \]

[_rational]

18837

\[ {}\left ({y^{\prime }}^{2}-\frac {1}{a^{2}-x^{2}}\right ) \left (y^{\prime }-\sqrt {\frac {y}{x}}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

18839

\[ {}x y {y^{\prime }}^{2}+y^{\prime } \left (3 x^{2}-2 y^{2}\right )-6 x y = 0 \]

[_separable]

18840

\[ {}{y^{\prime }}^{3}-4 x y y^{\prime }+8 y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries]]

18841

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y+y^{2}\right ) {y^{\prime }}^{2}+\left (x^{3} y+x^{2} y^{2}+x y^{3}\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

18847

\[ {}y = 2 y^{\prime } x +y^{2} {y^{\prime }}^{3} \]

[[_1st_order, _with_linear_symmetries]]

18850

\[ {}y^{\prime } \sqrt {x} = \sqrt {y} \]

[_separable]

19047

\[ {}y+x +y^{\prime } x = 0 \]

[_linear]

19048

\[ {}\left (1+x y\right ) y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

19050

\[ {}\left (x +y\right ) y^{\prime }+y-x = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19051

\[ {}x +y y^{\prime }+\frac {-y+y^{\prime } x}{x^{2}+y^{2}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

19052

\[ {}x^{3}+3 x y^{2}+\left (3 x^{2} y+y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

19053

\[ {}y^{\prime } x +y = y^{2} \ln \left (x \right ) \]

[_Bernoulli]

19054

\[ {}\left (-x^{2}+1\right ) y^{\prime }-2 x y = -x^{3}+x \]

[_linear]

19055

\[ {}y^{\prime } x -y-\cos \left (\frac {1}{x}\right ) = 0 \]

[_linear]

19056

\[ {}x +y y^{\prime } = m \left (-y+y^{\prime } x \right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19059

\[ {}x^{2} y^{\prime }+y = 1 \]

[_separable]

19060

\[ {}2 y+\left (x^{2}+1\right ) \arctan \left (x \right ) y^{\prime } = 0 \]

[_separable]

19072

\[ {}y-y^{\prime } x = a \left (y^{\prime }+y^{2}\right ) \]

[_separable]

19073

\[ {}\left (x +y-1\right ) y^{\prime } = x +y+1 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19074

\[ {}\left (2 x +2 y+1\right ) y^{\prime } = x +y+1 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19075

\[ {}\left (2 x +3 y-5\right ) y^{\prime }+2 x +3 y-1 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19076

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime } = x y+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19077

\[ {}\left (x \cos \left (\frac {y}{x}\right )+y \sin \left (\frac {y}{x}\right )\right ) y-\left (y \sin \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right )\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

19078

\[ {}x^{2}-y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

19079

\[ {}y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

19080

\[ {}\left (2 x -2 y+5\right ) y^{\prime }-x +y-3 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19081

\[ {}x +y+1-\left (2 x +2 y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19082

\[ {}y^{2} = \left (x y-x^{2}\right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

19083

\[ {}x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )-x \]

[[_homogeneous, ‘class A‘], _dAlembert]

19084

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime } = x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19085

\[ {}x^{2} y^{\prime }+y \left (x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

19086

\[ {}2 y^{\prime } = \frac {y}{x}+\frac {y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

19087

\[ {}\left (6 x -5 y+4\right ) y^{\prime }+y-2 x -1 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19088

\[ {}\left (x -3 y+4\right ) y^{\prime }+7 y-5 x = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19089

\[ {}\left (2 x +4 y+3\right ) y^{\prime } = x +2 y+1 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19090

\[ {}-y+y^{\prime } x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19091

\[ {}x \left (x^{2}+3 y^{2}\right )+y \left (y^{2}+3 x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

19092

\[ {}x^{2}+3 y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

19093

\[ {}y^{\prime } = \frac {2 x -y+1}{x +2 y-3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19094

\[ {}\left (x -y\right ) y^{\prime } = x +y+1 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19095

\[ {}x -y-2-\left (2 x -2 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19103

\[ {}y^{2}+\left (x -\frac {1}{y}\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

19106

\[ {}y^{\prime }+\frac {\left (1-2 x \right ) y}{x^{2}} = 1 \]

[_linear]

19114

\[ {}y \left (2 x y+{\mathrm e}^{x}\right )-{\mathrm e}^{x} y^{\prime } = 0 \]

[_Bernoulli]

19117

\[ {}x +y y^{\prime } = \frac {a^{2} \left (-y+y^{\prime } x \right )}{x^{2}+y^{2}} \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

19119

\[ {}x^{2} y-2 x y^{2}-\left (x^{3}-3 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

19120

\[ {}\left (x^{4} y^{4}+x^{2} y^{2}+x y\right ) y+\left (x^{4} y^{4}-x^{2} y^{2}+x y\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

19121

\[ {}y \left (x y+2 x^{2} y^{2}\right )+x \left (x y-x^{2} y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

19123

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

19125

\[ {}y^{2}+2 x^{2} y+\left (2 x^{3}-x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

19126

\[ {}2 y+3 y^{\prime } x +2 x y \left (3 y+4 y^{\prime } x \right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

19128

\[ {}\frac {\left (x +y-a \right ) y^{\prime }}{y+x -b} = \frac {x +y+a}{x +y+b} \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

19129

\[ {}\left (x -y\right )^{2} y^{\prime } = a^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

19130

\[ {}\left (x +y\right )^{2} y^{\prime } = a^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

19131

\[ {}y^{\prime } = \left (4 x +y+1\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

19134

\[ {}-y+y^{\prime } x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19136

\[ {}y^{\prime } = \frac {1+x^{2}+y^{2}}{2 x y} \]

[_rational, _Bernoulli]

19137

\[ {}x +y y^{\prime } = m \left (-y+y^{\prime } x \right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19138

\[ {}y+\left (a \,x^{2} y^{n}-2 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

19144

\[ {}2 y+3 y^{\prime } x +2 x y \left (3 y+4 y^{\prime } x \right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

19146

\[ {}\left (2 x +2 y+3\right ) y^{\prime } = x +y+1 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19150

\[ {}y^{\prime } = \sin \left (x +y\right )+\cos \left (x +y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

19153

\[ {}y \left (2 x y+{\mathrm e}^{x}\right )-{\mathrm e}^{x} y^{\prime } = 0 \]

[_Bernoulli]

19154

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

19158

\[ {}y^{\prime }+\frac {a x +b y+c}{b x +f y+e} = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19217

\[ {}y^{\prime } \left (y^{\prime }-y\right ) = \left (x +y\right ) x \]

[_quadrature]

19218

\[ {}y {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-x = 0 \]

[_quadrature]

19219

\[ {}x +y {y^{\prime }}^{2} = y^{\prime } \left (1+x y\right ) \]

[_quadrature]

19220

\[ {}x {y^{\prime }}^{2}+\left (y-x \right ) y^{\prime }-y = 0 \]

[_quadrature]

19222

\[ {}{y^{\prime }}^{2}+y^{\prime } x +y y^{\prime }+x y = 0 \]

[_quadrature]

19223

\[ {}{y^{\prime }}^{3}-y^{\prime } \left (x^{2}+x y+y^{2}\right )+x y \left (x +y\right ) = 0 \]

[_quadrature]

19224

\[ {}\left (y^{\prime }+y+x \right ) \left (y+x +y^{\prime } x \right ) \left (y^{\prime }+2 x \right ) = 0 \]

[_quadrature]

19226

\[ {}x^{2} {y^{\prime }}^{2}+x y y^{\prime }-6 y^{2} = 0 \]

[_separable]

19227

\[ {}{y^{\prime }}^{3}+2 x {y^{\prime }}^{2}-y^{2} {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0 \]

[_quadrature]

19229

\[ {}y = 3 x +a \ln \left (y^{\prime }\right ) \]

[_separable]

19236

\[ {}y = \sin \left (y^{\prime }\right )-y^{\prime } \cos \left (y^{\prime }\right ) \]

[_quadrature]

19258

\[ {}y = y^{\prime } x +x \sqrt {{y^{\prime }}^{2}+1} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

19259

\[ {}x +y^{\prime } y \left (2 {y^{\prime }}^{2}+3\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

19265

\[ {}y-y^{\prime } x = x +y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19268

\[ {}\left ({y^{\prime }}^{2}-\frac {1}{a^{2}-x^{2}}\right ) \left (y^{\prime }-\sqrt {\frac {y}{x}}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

19271

\[ {}x y {y^{\prime }}^{2}+y^{\prime } \left (3 x^{2}-2 y^{2}\right )-6 x y = 0 \]

[_separable]

19276

\[ {}{y^{\prime }}^{3}-\left (y+2 x -{\mathrm e}^{x -y}\right ) {y^{\prime }}^{2}+\left (2 x y-2 x \,{\mathrm e}^{x -y}-y \,{\mathrm e}^{x -y}\right ) y^{\prime }+2 x y \,{\mathrm e}^{x -y} = 0 \]

[_quadrature]

19279

\[ {}\left (x^{3} y^{3}+x^{2} y^{2}+x y+1\right ) y+\left (x^{3} y^{3}-x^{2} y^{2}-x y+1\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

19280

\[ {}\left (x \cos \left (\frac {y}{x}\right )+y \sin \left (\frac {y}{x}\right )\right ) y = \left (y \sin \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right )\right ) x y^{\prime } \]

[[_homogeneous, ‘class A‘], _dAlembert]

19281

\[ {}\left (-y+y^{\prime } x \right ) \left (x +y y^{\prime }\right ) = h^{2} y^{\prime } \]

[_rational]

19302

\[ {}{y^{\prime }}^{3} = y^{4} \left (y^{\prime } x +y\right ) \]

[[_1st_order, _with_linear_symmetries]]

19304

\[ {}a x y {y^{\prime }}^{2}+\left (x^{2}-a y^{2}-b \right ) y^{\prime }-x y = 0 \]

[_rational]

19312

\[ {}y-y^{\prime } x = a \left (y^{\prime }+y^{2}\right ) \]

[_separable]

19313

\[ {}y-y^{\prime } x = b \left (1+x^{2} y^{\prime }\right ) \]

[_separable]

19509

\[ {}y-y^{\prime } x = 0 \]

[_separable]

19511

\[ {}x^{3}+x y^{2}+a^{2} y+\left (y^{3}+x^{2} y-a^{2} x \right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

19512

\[ {}\left (x +2 y^{3}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class G‘], _rational]

19514

\[ {}1+y^{2}-x y y^{\prime } = 0 \]

[_separable]

19515

\[ {}y^{2}+\left (x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

19516

\[ {}y^{\prime } = \frac {6 x -2 y-7}{2 x +3 y-6} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19517

\[ {}2 x +y+1+\left (4 x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19519

\[ {}y^{\prime }+2 x y = {\mathrm e}^{-x^{2}} \]

[_linear]

19520

\[ {}\left (x +2 y^{3}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class G‘], _rational]

19524

\[ {}x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19528

\[ {}y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19544

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y+y^{2}\right ) {y^{\prime }}^{2}+\left (x^{3} y+x^{2} y^{2}+x y^{3}\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

19547

\[ {}{y^{\prime }}^{3} \left (2 y+x \right )+3 {y^{\prime }}^{2} \left (x +y\right )+\left (y+2 x \right ) y^{\prime } = 0 \]

[_quadrature]

19556

\[ {}y = 2 y^{\prime } x +y^{2} {y^{\prime }}^{3} \]

[[_1st_order, _with_linear_symmetries]]

19560

\[ {}x y \left (y-y^{\prime } x \right ) = x +y y^{\prime } \]

[_separable]

19561

\[ {}x y^{2} \left ({y^{\prime }}^{2}+2\right ) = 2 y^{\prime } y^{3}+x^{3} \]

[_separable]

19571

\[ {}{y^{\prime }}^{3}-4 x y y^{\prime }+8 y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries]]