| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime }&=\frac {\sqrt {x +y}+\sqrt {x -y}}{-\sqrt {x -y}+\sqrt {x +y}} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
14.840 |
|
| \begin{align*}
y^{\prime }&=\frac {1+\sqrt {x -y}}{1-\sqrt {x -y}} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
2.383 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y}{x}+\frac {x^{3}}{y}+x \tan \left (\frac {y}{x^{2}}\right ) \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
8.835 |
|
| \begin{align*}
y^{\prime }&=\frac {3 x^{5}+3 y^{2} x^{2}}{2 x^{3} y-2 y^{3}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
3.674 |
|
| \begin{align*}
2+3 x y^{2}-4 x^{2} y y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.583 |
|
| \begin{align*}
y^{\prime }&=\frac {\left (x -3 y-5\right )^{2}}{\left (x +y-1\right )^{2}} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational] |
✓ |
✓ |
✓ |
✗ |
7.709 |
|
| \begin{align*}
\sqrt {x +y+1}\, y^{\prime }&=\sqrt {x +y-1} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
29.793 |
|
| \begin{align*}
y^{\prime }&=\frac {y \left (y x +1\right )}{x \left (-y x +1\right )} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
6.503 |
|
| \begin{align*}
-y+y^{\prime } x&=\arctan \left (\frac {y}{x}\right ) \\
\end{align*} |
[[_homogeneous, ‘class D‘]] |
✓ |
✓ |
✓ |
✗ |
4.023 |
|
| \begin{align*}
3 x +4 y y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.974 |
|
| \begin{align*}
y^{\prime }&=\frac {x -y}{x +y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.912 |
|
| \begin{align*}
2 y y^{\prime } x&=x^{2}-y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.085 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{x +y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
12.128 |
|
| \begin{align*}
y^{\prime }&=\frac {x -\cos \left (x \right ) y}{y+\sin \left (x \right )} \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
3.451 |
|
| \begin{align*}
r^{\prime }&=\frac {r \sin \left (t \right )}{2 r \cos \left (t \right )-1} \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
42.040 |
|
| \begin{align*}
{\mathrm e}^{-x} y-\sin \left (x \right )-\left ({\mathrm e}^{-x}+2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
38.684 |
|
| \begin{align*}
x^{2}+\frac {y}{x}+\left (\ln \left (x \right )+2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
2.530 |
|
| \begin{align*}
y^{\prime }&=\frac {y \left (y-{\mathrm e}^{x}\right )}{{\mathrm e}^{x}-2 y x} \\
\end{align*} |
[[_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
3.155 |
|
| \begin{align*}
\left (x^{2}+x \right ) y^{\prime }+2 x +1+2 \cos \left (x \right )&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.459 |
|
| \begin{align*}
y^{\prime }&=\frac {y-2 x}{-x +2 y} \\
y \left (1\right ) &= 2 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
7.525 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime }+2 y x&=0 \\
y \left (1\right ) &= -3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.042 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x -\sin \left (y\right )}{x \cos \left (y\right )} \\
y \left (2\right ) &= 0 \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✓ |
✓ |
✓ |
✓ |
2.802 |
|
| \begin{align*}
y^{\prime }&=\frac {2 \sin \left (2 x \right )-\tan \left (y\right )}{x \sec \left (y\right )^{2}} \\
y \left (\pi \right ) &= \frac {\pi }{4} \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✓ |
✗ |
✓ |
✗ |
26.843 |
|
| \begin{align*}
\left (x^{2}+2 y \,{\mathrm e}^{2 x}\right ) y^{\prime }+2 y x +2 y^{2} {\mathrm e}^{2 x}&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_exact, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
4.883 |
|
| \begin{align*}
y^{2}+2 x^{2}+y y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
9.519 |
|
| \begin{align*}
y+\left (4 x -y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
5.155 |
|
| \begin{align*}
\cos \left (x \right ) y^{\prime }-2 \sin \left (x \right ) y+3&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.350 |
|
| \begin{align*}
\left (x +y\right ) y^{\prime }+x -y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.691 |
|
| \begin{align*}
\frac {y}{\left (x +y\right )^{2}}-1+\left (1-\frac {x}{\left (x +y\right )^{2}}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _exact, _rational] |
✓ |
✓ |
✓ |
✗ |
4.918 |
|
| \begin{align*}
x y^{2}+2 y+\left (3 x^{2} y-4 x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
9.735 |
|
| \begin{align*}
3 x +2 y^{2}+2 y y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.053 |
|
| \begin{align*}
2 x^{3}-y+y^{\prime } x&=0 \\
y \left (1\right ) &= 2 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.833 |
|
| \begin{align*}
y^{2} \cos \left (x \right )-y+\left (x +y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✓ |
✓ |
✓ |
✗ |
25.551 |
|
| \begin{align*}
\left (x +x^{3} \sin \left (2 y\right )\right ) y^{\prime }-2 y&=0 \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
✓ |
✓ |
✓ |
2.510 |
|
| \begin{align*}
y^{\prime }&=\frac {\sin \left (y\right )}{x \cos \left (y\right )-\sin \left (y\right )^{2}} \\
y \left (0\right ) &= \frac {\pi }{2} \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
✓ |
✓ |
✓ |
8.206 |
|
| \begin{align*}
2 \sin \left (x \right ) y-\cos \left (x \right )^{3}+\cos \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.063 |
|
| \begin{align*}
y^{\prime }+\frac {4 y}{x}&=x \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.931 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{y^{3}-3 x} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
5.578 |
|
| \begin{align*}
i^{\prime }&=\frac {t -i t}{t^{2}+1} \\
i \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.539 |
|
| \begin{align*}
y^{3}+2 \,{\mathrm e}^{x} y+\left ({\mathrm e}^{x}+3 y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
2.326 |
|
| \begin{align*}
y^{\prime }&=\frac {x +y}{x} \\
y \left (3\right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.066 |
|
| \begin{align*}
y^{\prime }&=\frac {3 y^{2} \cot \left (x \right )+\cos \left (x \right ) \sin \left (x \right )}{2 y} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
33.995 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{x^{2} y+y^{3}} \\
\end{align*} |
[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
✓ |
✓ |
✓ |
2.248 |
|
| \begin{align*}
3 x^{2}+y+3 x^{3} y+y^{\prime } x&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.670 |
|
| \begin{align*}
2 x +2 x y^{2}+\left (x^{2} y+2 y+3 y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
✓ |
✓ |
✗ |
2.661 |
|
| \begin{align*}
y^{2}+y x +1+\left (x^{2}+y x +1\right ) y^{\prime }&=0 \\
\end{align*} |
[_rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
4.390 |
|
| \begin{align*}
2 y^{2}+4 x^{2} y+\left (4 y x +3 x^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
15.592 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&=1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.662 |
|
| \begin{align*}
y^{\prime } x +3 y&=x^{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.954 |
|
| \begin{align*}
y^{2}+y y^{\prime } x&=\left (2 y^{2}+1\right ) y^{\prime } \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational] |
✓ |
✓ |
✓ |
✓ |
2.282 |
|
| \begin{align*}
y^{\prime }-\frac {2 y}{x}&=x^{2} \sin \left (3 x \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.293 |
|
| \begin{align*}
i^{\prime }+3 i&={\mathrm e}^{-2 t} \\
i \left (0\right ) &= 5 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.840 |
|
| \begin{align*}
y^{\prime }+\cot \left (x \right ) y&=\cos \left (x \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.025 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{x -3 y} \\
\end{align*} |
[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
2.489 |
|
| \begin{align*}
r^{\prime }&=t -\frac {r}{3 t} \\
r \left (1\right ) &= 1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.242 |
|
| \begin{align*}
i^{\prime }+2 i&=10 \,{\mathrm e}^{-2 t} \\
i \left (0\right ) &= 0 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.462 |
|
| \begin{align*}
y^{\prime }-y&=x y^{2} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.566 |
|
| \begin{align*}
y^{2}+\left (-x^{3}+y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
5.991 |
|
| \begin{align*}
y^{\prime \prime } x -3 y^{\prime }&=4 x^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
3.097 |
|
| \begin{align*}
y^{\prime } x&=2 x^{2} y+y \ln \left (y\right ) \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
3.673 |
|
| \begin{align*}
y^{\prime } x +3&=4 x \,{\mathrm e}^{-y} \\
y \left (2\right ) &= 0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
6.126 |
|
| \begin{align*}
y+\left (2 x^{2} y-x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
10.481 |
|
| \begin{align*}
y+\left (y^{3}-x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
3.593 |
|
| \begin{align*}
y+x^{3}+x y^{2}-y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
3.539 |
|
| \begin{align*}
x^{3}+y+\left (x^{2} y-x \right ) y^{\prime }&=0 \\
\end{align*} |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
5.420 |
|
| \begin{align*}
x -\sqrt {x^{2}+y^{2}}+\left (y-\sqrt {x^{2}+y^{2}}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
73.265 |
|
| \begin{align*}
x^{2}+y^{2}+y+\left (x^{2}+y^{2}-x \right ) y^{\prime }&=0 \\
\end{align*} |
[_rational] |
✓ |
✓ |
✓ |
✗ |
1.954 |
|
| \begin{align*}
x -x^{2}-y^{2}+\left (y+x^{2}+y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[_rational] |
✓ |
✓ |
✓ |
✗ |
1.943 |
|
| \begin{align*}
x^{2} y+y^{3}-x +\left (x^{3}-y+x y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[_rational] |
✓ |
✓ |
✓ |
✗ |
2.575 |
|
| \begin{align*}
y-x \sqrt {x^{2}+y^{2}}+\left (x -y \sqrt {x^{2}+y^{2}}\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact] |
✓ |
✓ |
✓ |
✗ |
3.563 |
|
| \begin{align*}
y-x^{5} y^{4}+\left (x -x^{4} y^{5}\right ) y^{\prime }&=0 \\
\end{align*} |
[_rational] |
✓ |
✓ |
✓ |
✗ |
2.213 |
|
| \begin{align*}
x^{3}-x y^{2}+y+\left (y^{3}-x^{2} y-x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational] |
✓ |
✓ |
✓ |
✗ |
4.286 |
|
| \begin{align*}
x^{3}+2 x y^{2}-x +\left (x^{2} y+2 y^{3}-2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[_rational] |
✗ |
✓ |
✓ |
✗ |
4.480 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{3}+2 y}{x^{3}+x} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.598 |
|
| \begin{align*}
x y^{2}+x \sin \left (x \right )^{2}-\sin \left (2 x \right )-2 y y^{\prime }&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✗ |
0.854 |
|
| \begin{align*}
x^{2}+y \left (x -y\right )^{2} \tan \left (\frac {y}{x}\right )-\left (x^{2}+x \left (x -y\right )^{2} \tan \left (\frac {y}{x}\right )\right ) y^{\prime }&=0 \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✗ |
✓ |
✓ |
✗ |
25.151 |
|
| \begin{align*}
y^{\prime \prime }&=2 x \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 10 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
2.049 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }&=\frac {x}{3} \\
\end{align*} |
[[_high_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.110 |
|
| \begin{align*}
y^{\prime \prime \prime }&=3 \sin \left (x \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= -2 \\
\end{align*} |
[[_3rd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.135 |
|
| \begin{align*}
2 y^{\prime \prime \prime \prime }&=-{\mathrm e}^{-x}+{\mathrm e}^{x} \\
y \left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= 0 \\
y^{\prime \prime \prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_high_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.289 |
|
| \begin{align*}
i^{\prime \prime }&=t^{2}+1 \\
i \left (0\right ) &= 2 \\
i^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
2.127 |
|
| \begin{align*}
x^{2} y^{\prime \prime }&=x^{2}+1 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.816 |
|
| \begin{align*}
x^{3} y^{\prime \prime \prime }&=1+\sqrt {x} \\
\end{align*} |
[[_3rd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.270 |
|
| \begin{align*}
y^{\prime } y^{\prime \prime }&=1 \\
y \left (0\right ) &= 5 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]] |
✓ |
✓ |
✓ |
✓ |
5.997 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.776 |
|
| \begin{align*}
y^{\prime \prime } x +2 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.040 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.924 |
|
| \begin{align*}
y y^{\prime \prime }&=y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.977 |
|
| \begin{align*}
y^{\prime \prime }+{y^{\prime }}^{2}&=1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
7.380 |
|
| \begin{align*}
y^{\prime \prime }&=\left (1+y\right ) y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
1.584 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime } x&=x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
5.597 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }&=\ln \left (x \right ) \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 0 \\
y^{\prime \prime }\left (1\right ) &= 0 \\
y^{\prime \prime \prime }\left (1\right ) &= 0 \\
\end{align*} |
[[_high_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.304 |
|
| \begin{align*}
y^{\left (5\right )}+2 y^{\prime \prime \prime \prime }&=x \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= 0 \\
y^{\prime \prime \prime }\left (0\right ) &= 0 \\
y^{\prime \prime \prime \prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_high_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.200 |
|
| \begin{align*}
x y^{\prime \prime \prime }+y^{\prime \prime }&=1 \\
\end{align*} |
[[_3rd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.082 |
|
| \begin{align*}
{y^{\prime \prime \prime }}^{2}&={y^{\prime \prime }}^{3} \\
\end{align*} |
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]] |
✓ |
✓ |
✓ |
✓ |
0.875 |
|
| \begin{align*}
y^{\prime \prime \prime }-y^{\prime }&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.047 |
|
| \begin{align*}
1+{y^{\prime }}^{2}+y y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
2.065 |
|
| \begin{align*}
2 y^{\prime \prime } x +x^{2} y^{\prime \prime \prime }&=1 \\
\end{align*} |
[[_3rd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.068 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {4}{y^{3}} \\
y \left (2\right ) &= 4 \\
y^{\prime }\left (2\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✗ |
✓ |
✗ |
1.599 |
|
| \begin{align*}
y^{\prime \prime }&=\left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✗ |
61.002 |
|