2.2.225 Problems 22401 to 22500

Table 2.463: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

22401

\begin{align*} y^{\prime }&=\frac {\sqrt {x +y}+\sqrt {x -y}}{-\sqrt {x -y}+\sqrt {x +y}} \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

14.840

22402

\begin{align*} y^{\prime }&=\frac {1+\sqrt {x -y}}{1-\sqrt {x -y}} \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

2.383

22403

\begin{align*} y^{\prime }&=\frac {2 y}{x}+\frac {x^{3}}{y}+x \tan \left (\frac {y}{x^{2}}\right ) \\ \end{align*}

[[_homogeneous, ‘class G‘]]

8.835

22404

\begin{align*} y^{\prime }&=\frac {3 x^{5}+3 y^{2} x^{2}}{2 x^{3} y-2 y^{3}} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

3.674

22405

\begin{align*} 2+3 x y^{2}-4 x^{2} y y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4.583

22406

\begin{align*} y^{\prime }&=\frac {\left (x -3 y-5\right )^{2}}{\left (x +y-1\right )^{2}} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational]

7.709

22407

\begin{align*} \sqrt {x +y+1}\, y^{\prime }&=\sqrt {x +y-1} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

29.793

22408

\begin{align*} y^{\prime }&=\frac {y \left (y x +1\right )}{x \left (-y x +1\right )} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6.503

22409

\begin{align*} -y+y^{\prime } x&=\arctan \left (\frac {y}{x}\right ) \\ \end{align*}

[[_homogeneous, ‘class D‘]]

4.023

22410

\begin{align*} 3 x +4 y y^{\prime }&=0 \\ \end{align*}

[_separable]

4.974

22411

\begin{align*} y^{\prime }&=\frac {x -y}{x +y} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.912

22412

\begin{align*} 2 y y^{\prime } x&=x^{2}-y^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

6.085

22413

\begin{align*} y^{\prime }&=\frac {x}{x +y} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

12.128

22414

\begin{align*} y^{\prime }&=\frac {x -\cos \left (x \right ) y}{y+\sin \left (x \right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

3.451

22415

\begin{align*} r^{\prime }&=\frac {r \sin \left (t \right )}{2 r \cos \left (t \right )-1} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

42.040

22416

\begin{align*} {\mathrm e}^{-x} y-\sin \left (x \right )-\left ({\mathrm e}^{-x}+2 y\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

38.684

22417

\begin{align*} x^{2}+\frac {y}{x}+\left (\ln \left (x \right )+2 y\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

2.530

22418

\begin{align*} y^{\prime }&=\frac {y \left (y-{\mathrm e}^{x}\right )}{{\mathrm e}^{x}-2 y x} \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class B‘]]

3.155

22419

\begin{align*} \left (x^{2}+x \right ) y^{\prime }+2 x +1+2 \cos \left (x \right )&=0 \\ \end{align*}

[_quadrature]

0.459

22420

\begin{align*} y^{\prime }&=\frac {y-2 x}{-x +2 y} \\ y \left (1\right ) &= 2 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7.525

22421

\begin{align*} \left (x^{2}+1\right ) y^{\prime }+2 y x&=0 \\ y \left (1\right ) &= -3 \\ \end{align*}

[_separable]

2.042

22422

\begin{align*} y^{\prime }&=\frac {2 x -\sin \left (y\right )}{x \cos \left (y\right )} \\ y \left (2\right ) &= 0 \\ \end{align*}

[‘y=_G(x,y’)‘]

2.802

22423

\begin{align*} y^{\prime }&=\frac {2 \sin \left (2 x \right )-\tan \left (y\right )}{x \sec \left (y\right )^{2}} \\ y \left (\pi \right ) &= \frac {\pi }{4} \\ \end{align*}

[‘y=_G(x,y’)‘]

26.843

22424

\begin{align*} \left (x^{2}+2 y \,{\mathrm e}^{2 x}\right ) y^{\prime }+2 y x +2 y^{2} {\mathrm e}^{2 x}&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

[_exact, [_Abel, ‘2nd type‘, ‘class B‘]]

4.883

22425

\begin{align*} y^{2}+2 x^{2}+y y^{\prime } x&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

9.519

22426

\begin{align*} y+\left (4 x -y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

5.155

22427

\begin{align*} \cos \left (x \right ) y^{\prime }-2 \sin \left (x \right ) y+3&=0 \\ \end{align*}

[_linear]

2.350

22428

\begin{align*} \left (x +y\right ) y^{\prime }+x -y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.691

22429

\begin{align*} \frac {y}{\left (x +y\right )^{2}}-1+\left (1-\frac {x}{\left (x +y\right )^{2}}\right ) y^{\prime }&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _exact, _rational]

4.918

22430

\begin{align*} x y^{2}+2 y+\left (3 x^{2} y-4 x \right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

9.735

22431

\begin{align*} 3 x +2 y^{2}+2 y y^{\prime } x&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4.053

22432

\begin{align*} 2 x^{3}-y+y^{\prime } x&=0 \\ y \left (1\right ) &= 2 \\ \end{align*}

[_linear]

2.833

22433

\begin{align*} y^{2} \cos \left (x \right )-y+\left (x +y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

25.551

22434

\begin{align*} \left (x +x^{3} \sin \left (2 y\right )\right ) y^{\prime }-2 y&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2.510

22435

\begin{align*} y^{\prime }&=\frac {\sin \left (y\right )}{x \cos \left (y\right )-\sin \left (y\right )^{2}} \\ y \left (0\right ) &= \frac {\pi }{2} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

8.206

22436

\begin{align*} 2 \sin \left (x \right ) y-\cos \left (x \right )^{3}+\cos \left (x \right ) y^{\prime }&=0 \\ \end{align*}

[_linear]

3.063

22437

\begin{align*} y^{\prime }+\frac {4 y}{x}&=x \\ \end{align*}

[_linear]

2.931

22438

\begin{align*} y^{\prime }&=\frac {y}{y^{3}-3 x} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

5.578

22439

\begin{align*} i^{\prime }&=\frac {t -i t}{t^{2}+1} \\ i \left (0\right ) &= 0 \\ \end{align*}

[_separable]

2.539

22440

\begin{align*} y^{3}+2 \,{\mathrm e}^{x} y+\left ({\mathrm e}^{x}+3 y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

2.326

22441

\begin{align*} y^{\prime }&=\frac {x +y}{x} \\ y \left (3\right ) &= 0 \\ \end{align*}

[_linear]

3.066

22442

\begin{align*} y^{\prime }&=\frac {3 y^{2} \cot \left (x \right )+\cos \left (x \right ) \sin \left (x \right )}{2 y} \\ \end{align*}

[_Bernoulli]

33.995

22443

\begin{align*} y^{\prime }&=\frac {x}{x^{2} y+y^{3}} \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2.248

22444

\begin{align*} 3 x^{2}+y+3 x^{3} y+y^{\prime } x&=0 \\ \end{align*}

[_linear]

1.670

22445

\begin{align*} 2 x +2 x y^{2}+\left (x^{2} y+2 y+3 y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2.661

22446

\begin{align*} y^{2}+y x +1+\left (x^{2}+y x +1\right ) y^{\prime }&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.390

22447

\begin{align*} 2 y^{2}+4 x^{2} y+\left (4 y x +3 x^{3}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15.592

22448

\begin{align*} y^{\prime }+\frac {y}{x}&=1 \\ \end{align*}

[_linear]

3.662

22449

\begin{align*} y^{\prime } x +3 y&=x^{2} \\ \end{align*}

[_linear]

2.954

22450

\begin{align*} y^{2}+y y^{\prime } x&=\left (2 y^{2}+1\right ) y^{\prime } \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational]

2.282

22451

\begin{align*} y^{\prime }-\frac {2 y}{x}&=x^{2} \sin \left (3 x \right ) \\ \end{align*}

[_linear]

3.293

22452

\begin{align*} i^{\prime }+3 i&={\mathrm e}^{-2 t} \\ i \left (0\right ) &= 5 \\ \end{align*}

[[_linear, ‘class A‘]]

1.840

22453

\begin{align*} y^{\prime }+\cot \left (x \right ) y&=\cos \left (x \right ) \\ \end{align*}

[_linear]

2.025

22454

\begin{align*} y^{\prime }&=\frac {1}{x -3 y} \\ \end{align*}

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

2.489

22455

\begin{align*} r^{\prime }&=t -\frac {r}{3 t} \\ r \left (1\right ) &= 1 \\ \end{align*}

[_linear]

3.242

22456

\begin{align*} i^{\prime }+2 i&=10 \,{\mathrm e}^{-2 t} \\ i \left (0\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

1.462

22457

\begin{align*} y^{\prime }-y&=x y^{2} \\ \end{align*}

[_Bernoulli]

2.566

22458

\begin{align*} y^{2}+\left (-x^{3}+y x \right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5.991

22459

\begin{align*} y^{\prime \prime } x -3 y^{\prime }&=4 x^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

3.097

22460

\begin{align*} y^{\prime } x&=2 x^{2} y+y \ln \left (y\right ) \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

3.673

22461

\begin{align*} y^{\prime } x +3&=4 x \,{\mathrm e}^{-y} \\ y \left (2\right ) &= 0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

6.126

22462

\begin{align*} y+\left (2 x^{2} y-x \right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

10.481

22463

\begin{align*} y+\left (y^{3}-x \right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

3.593

22464

\begin{align*} y+x^{3}+x y^{2}-y^{\prime } x&=0 \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Riccati]

3.539

22465

\begin{align*} x^{3}+y+\left (x^{2} y-x \right ) y^{\prime }&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

5.420

22466

\begin{align*} x -\sqrt {x^{2}+y^{2}}+\left (y-\sqrt {x^{2}+y^{2}}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _dAlembert]

73.265

22467

\begin{align*} x^{2}+y^{2}+y+\left (x^{2}+y^{2}-x \right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

1.954

22468

\begin{align*} x -x^{2}-y^{2}+\left (y+x^{2}+y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

1.943

22469

\begin{align*} x^{2} y+y^{3}-x +\left (x^{3}-y+x y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

2.575

22470

\begin{align*} y-x \sqrt {x^{2}+y^{2}}+\left (x -y \sqrt {x^{2}+y^{2}}\right ) y^{\prime }&=0 \\ \end{align*}

[_exact]

3.563

22471

\begin{align*} y-x^{5} y^{4}+\left (x -x^{4} y^{5}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

2.213

22472

\begin{align*} x^{3}-x y^{2}+y+\left (y^{3}-x^{2} y-x \right ) y^{\prime }&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational]

4.286

22473

\begin{align*} x^{3}+2 x y^{2}-x +\left (x^{2} y+2 y^{3}-2 y\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

4.480

22474

\begin{align*} y^{\prime }&=\frac {x^{3}+2 y}{x^{3}+x} \\ \end{align*}

[_linear]

1.598

22475

\begin{align*} x y^{2}+x \sin \left (x \right )^{2}-\sin \left (2 x \right )-2 y y^{\prime }&=0 \\ \end{align*}

[_Bernoulli]

0.854

22476

\begin{align*} x^{2}+y \left (x -y\right )^{2} \tan \left (\frac {y}{x}\right )-\left (x^{2}+x \left (x -y\right )^{2} \tan \left (\frac {y}{x}\right )\right ) y^{\prime }&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

25.151

22477

\begin{align*} y^{\prime \prime }&=2 x \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 10 \\ \end{align*}

[[_2nd_order, _quadrature]]

2.049

22478

\begin{align*} y^{\prime \prime \prime \prime }&=\frac {x}{3} \\ \end{align*}

[[_high_order, _quadrature]]

0.110

22479

\begin{align*} y^{\prime \prime \prime }&=3 \sin \left (x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= -2 \\ \end{align*}

[[_3rd_order, _quadrature]]

0.135

22480

\begin{align*} 2 y^{\prime \prime \prime \prime }&=-{\mathrm e}^{-x}+{\mathrm e}^{x} \\ y \left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}

[[_high_order, _quadrature]]

0.289

22481

\begin{align*} i^{\prime \prime }&=t^{2}+1 \\ i \left (0\right ) &= 2 \\ i^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _quadrature]]

2.127

22482

\begin{align*} x^{2} y^{\prime \prime }&=x^{2}+1 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _quadrature]]

1.816

22483

\begin{align*} x^{3} y^{\prime \prime \prime }&=1+\sqrt {x} \\ \end{align*}

[[_3rd_order, _quadrature]]

0.270

22484

\begin{align*} y^{\prime } y^{\prime \prime }&=1 \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

5.997

22485

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.776

22486

\begin{align*} y^{\prime \prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.040

22487

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.924

22488

\begin{align*} y y^{\prime \prime }&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.977

22489

\begin{align*} y^{\prime \prime }+{y^{\prime }}^{2}&=1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

7.380

22490

\begin{align*} y^{\prime \prime }&=\left (1+y\right ) y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.584

22491

\begin{align*} y^{\prime \prime }+y^{\prime } x&=x \\ \end{align*}

[[_2nd_order, _missing_y]]

5.597

22492

\begin{align*} y^{\prime \prime \prime \prime }&=\ln \left (x \right ) \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 0 \\ y^{\prime \prime }\left (1\right ) &= 0 \\ y^{\prime \prime \prime }\left (1\right ) &= 0 \\ \end{align*}

[[_high_order, _quadrature]]

0.304

22493

\begin{align*} y^{\left (5\right )}+2 y^{\prime \prime \prime \prime }&=x \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}

[[_high_order, _missing_y]]

0.200

22494

\begin{align*} x y^{\prime \prime \prime }+y^{\prime \prime }&=1 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.082

22495

\begin{align*} {y^{\prime \prime \prime }}^{2}&={y^{\prime \prime }}^{3} \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

0.875

22496

\begin{align*} y^{\prime \prime \prime }-y^{\prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.047

22497

\begin{align*} 1+{y^{\prime }}^{2}+y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

2.065

22498

\begin{align*} 2 y^{\prime \prime } x +x^{2} y^{\prime \prime \prime }&=1 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.068

22499

\begin{align*} y^{\prime \prime }&=-\frac {4}{y^{3}} \\ y \left (2\right ) &= 4 \\ y^{\prime }\left (2\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.599

22500

\begin{align*} y^{\prime \prime }&=\left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\ \end{align*}

[[_2nd_order, _missing_x]]

61.002