| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y&=y^{\prime } x -{y^{\prime }}^{2} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✓ |
0.234 |
|
| \begin{align*}
y&=y^{\prime } x +1+4 {y^{\prime }}^{2} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✓ |
0.226 |
|
| \begin{align*}
y&=y^{\prime } x -\tan \left (y^{\prime }\right ) \\
\end{align*} |
[_Clairaut] |
✓ |
✓ |
✓ |
✗ |
1.613 |
|
| \begin{align*}
y&=y^{\prime } x +\sqrt {1+{y^{\prime }}^{2}} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, _Clairaut] |
✓ |
✓ |
✓ |
✓ |
2.186 |
|
| \begin{align*}
y^{\prime }&=3 y^{{2}/{3}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.729 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.751 |
|
| \begin{align*}
y&=\tan \left (x \right ) y^{\prime }-{y^{\prime }}^{2} \sec \left (x \right )^{2} \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]] |
✓ |
✓ |
✓ |
✗ |
1.481 |
|
| \begin{align*}
\left (x^{2}+1\right ) \left (y^{3}-1\right )&=x^{2} y^{2} y^{\prime } \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.173 |
|
| \begin{align*}
\left (y^{2}+2 y x \right ) \left (x^{2}+2 y x \right ) y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.112 |
|
| \begin{align*}
\left (y^{2}+2 y x \right ) \left (x^{2}+2 y x \right ) y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.107 |
|
| \begin{align*}
y^{\prime }+\frac {2 y}{x}&=x^{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.841 |
|
| \begin{align*}
3-y+2 y^{\prime } x&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.499 |
|
| \begin{align*}
y^{\prime }+2 x&=2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.210 |
|
| \begin{align*}
s^{2} t s^{\prime }+t^{2}+4&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.276 |
|
| \begin{align*}
x^{2}+y^{2}+2 y y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
9.359 |
|
| \begin{align*}
y^{\prime }&=\left (2 x^{2}-{\mathrm e}^{x} y\right ) {\mathrm e}^{-x} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.678 |
|
| \begin{align*}
y x +x^{2} y^{\prime }&=x +1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.668 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x}+\arctan \left (\frac {y}{x}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.209 |
|
| \begin{align*}
y^{\prime }&=x +y \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.973 |
|
| \begin{align*}
y^{\prime }+y x&=x^{3} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.201 |
|
| \begin{align*}
\left (3-x^{2} y\right ) y^{\prime }&=x y^{2}+4 \\
\end{align*} |
[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
2.817 |
|
| \begin{align*}
r^{2} \sin \left (t \right )&=\left (2 r \cos \left (t \right )+10\right ) r^{\prime } \\
\end{align*} |
[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
3.771 |
|
| \begin{align*}
y^{\prime }&=x^{2}+2 y \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.785 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y x -y^{4}}{3 x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.842 |
|
| \begin{align*}
x^{2}+y^{2}+2 y y^{\prime }&=0 \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.123 |
|
| \begin{align*}
x^{2}+y^{2}+\left (2 y x -3\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
2.540 |
|
| \begin{align*}
y^{\prime } \left (2 x +y^{2}\right )&=y \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
3.655 |
|
| \begin{align*}
u^{2} v-\left (u^{3}+v^{3}\right ) v^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.298 |
|
| \begin{align*}
\tan \left (y\right )-\tan \left (y\right )^{2} \cos \left (x \right )-x \sec \left (y\right )^{2} y^{\prime }&=0 \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✓ |
✓ |
✓ |
✓ |
66.994 |
|
| \begin{align*}
y^{\prime }&=\frac {x +2 y}{y-2 x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
6.283 |
|
| \begin{align*}
\sin \left (x \right ) y^{\prime }&=\cos \left (x \right ) y+\sin \left (x \right )^{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.803 |
|
| \begin{align*}
x^{2}-y^{2}+2 y y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
11.060 |
|
| \begin{align*}
2 x^{2}-{\mathrm e}^{x} y-{\mathrm e}^{x} y^{\prime }&=0 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.724 |
|
| \begin{align*}
\left (x +y\right ) y^{\prime }&=1 \\
\end{align*} |
[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
2.277 |
|
| \begin{align*}
x +2 y+y^{\prime } x&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.591 |
|
| \begin{align*}
\sin \left (y\right )+\left (x \cos \left (y\right )-y\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
✓ |
✓ |
✓ |
8.081 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{\frac {y}{x}}+\frac {y}{x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
5.233 |
|
| \begin{align*}
\cos \left (y\right ) \sin \left (x \right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.712 |
|
| \begin{align*}
y^{\prime } x&=x^{3}+2 y \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.415 |
|
| \begin{align*}
3 x y^{2}+2+2 x^{2} y y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.438 |
|
| \begin{align*}
\left (2 y^{2}-x \right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
2.714 |
|
| \begin{align*}
y^{\prime \prime }&=y^{\prime }+2 x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
3.042 |
|
| \begin{align*}
\left (1+y\right ) y^{\prime }&=x \sqrt {y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
2.217 |
|
| \begin{align*}
\tan \left (x \right ) \sin \left (y\right )+3 y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
2.889 |
|
| \begin{align*}
-y+y^{\prime } x&=x \cos \left (\frac {y}{x}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.798 |
|
| \begin{align*}
s^{\prime }&=\sqrt {\frac {1-t}{1-s}} \\
s \left (1\right ) &= 0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✗ |
✓ |
✓ |
32.300 |
|
| \begin{align*}
2 y+3 x +y^{\prime } x&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.525 |
|
| \begin{align*}
x^{2} y+\left (x^{3}+1\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.378 |
|
| \begin{align*}
\left (\sin \left (y\right )-x \right ) y^{\prime }&=2 x +y \\
y \left (1\right ) &= \frac {\pi }{2} \\
\end{align*} |
[_exact] |
✓ |
✓ |
✓ |
✗ |
2.297 |
|
| \begin{align*}
n^{\prime }&=-a n \\
n \left (0\right ) &= n_{0} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.626 |
|
| \begin{align*}
y^{\prime }&=\frac {y \left (x +y\right )}{x \left (x -y\right )} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
10.691 |
|
| \begin{align*}
i^{\prime }+i&={\mathrm e}^{t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.429 |
|
| \begin{align*}
y^{\prime } x +y&=x^{2} \\
y \left (1\right ) &= 2 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.053 |
|
| \begin{align*}
-y+y^{\prime } x&=x^{2} y y^{\prime } \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
10.689 |
|
| \begin{align*}
q^{\prime }&=\frac {p \,{\mathrm e}^{p^{2}-q^{2}}}{q} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.167 |
|
| \begin{align*}
\left (3 \cos \left (x \right ) y+2\right ) y^{\prime }&=\sin \left (x \right ) y^{2} \\
y \left (0\right ) &= -4 \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
38.351 |
|
| \begin{align*}
\left (x +x \cos \left (y\right )\right ) y^{\prime }-\sin \left (y\right )-y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.812 |
|
| \begin{align*}
y^{\prime }&=3 x +2 y \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.105 |
|
| \begin{align*}
y^{2}&=\left (x^{2}+2 y x \right ) y^{\prime } \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
22.566 |
|
| \begin{align*}
r^{\prime }&=\frac {r \left (1+\ln \left (t \right )\right )}{t \left (1+\ln \left (r\right )\right )} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.498 |
|
| \begin{align*}
u^{\prime }&=-a \left (u-100 t \right ) \\
u \left (0\right ) &= 0 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.571 |
|
| \begin{align*}
u v-2 v+\left (-u^{2}+u \right ) v^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.775 |
|
| \begin{align*}
i^{\prime }+3 i&=10 \sin \left (t \right ) \\
i \left (0\right ) &= 0 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.964 |
|
| \begin{align*}
s^{\prime }&=\frac {1}{s+t +1} \\
\end{align*} |
[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
2.494 |
|
| \begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
1.688 |
|
| \begin{align*}
x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.698 |
|
| \begin{align*}
y^{\prime }+\cot \left (x \right ) y&=\cos \left (x \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.915 |
|
| \begin{align*}
y^{\prime }&=\frac {\left (3+y\right )^{2}}{4 x^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.936 |
|
| \begin{align*}
y^{\prime } x -3 y&=x^{4} {\mathrm e}^{-x} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.184 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y}+\frac {y}{x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.174 |
|
| \begin{align*}
-y+y^{\prime } x&=2 x^{2} y^{2} y^{\prime } \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
3.831 |
|
| \begin{align*}
y^{\prime } x +y \ln \left (x \right )&=y \ln \left (y\right )+y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
11.839 |
|
| \begin{align*}
y^{\prime }&=2-\frac {y}{x} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.587 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
3.973 |
|
| \begin{align*}
i^{\prime }&=\frac {i t^{2}}{t^{3}-i^{3}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.349 |
|
| \begin{align*}
\left ({\mathrm e}^{y}+x +3\right ) y^{\prime }&=1 \\
\end{align*} |
[[_1st_order, _with_exponential_symmetries]] |
✓ |
✓ |
✓ |
✓ |
2.194 |
|
| \begin{align*}
r^{\prime }&={\mathrm e}^{t}-3 r \\
r \left (0\right ) &= 1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
1.585 |
|
| \begin{align*}
y y^{\prime \prime }&={y^{\prime }}^{2} \\
\end{align*} |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
3.188 |
|
| \begin{align*}
x^{4} y^{\prime \prime \prime }+1&=0 \\
\end{align*} |
[[_3rd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.169 |
|
| \begin{align*}
y^{\prime }&=\frac {x +3 y}{x -3 y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
12.687 |
|
| \begin{align*}
\cos \left (x \right ) y^{\prime }&=y-\sin \left (2 x \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.152 |
|
| \begin{align*}
{\mathrm e}^{2 x -y}+{\mathrm e}^{y-2 x} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.178 |
|
| \begin{align*}
r^{3} r^{\prime }&=\sqrt {a^{8}-r^{8}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.579 |
|
| \begin{align*}
2 x^{2}-{\mathrm e}^{x} y-{\mathrm e}^{x} y^{\prime }&=0 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.771 |
|
| \begin{align*}
y^{\prime } x +2 y-\cos \left (x \right ) x&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.831 |
|
| \begin{align*}
y^{\prime } \sqrt {x^{3}+1}&=x^{2} y+x^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.908 |
|
| \begin{align*}
3 y^{2}+4 y x +\left (x^{2}+2 y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
10.838 |
|
| \begin{align*}
y^{\prime }&=y \left (x +y\right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✗ |
✓ |
1.714 |
|
| \begin{align*}
y^{\prime }&=x \left (x +y\right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.423 |
|
| \begin{align*}
u^{\prime \prime }+\frac {u^{\prime }}{r}&=4-4 r \\
u \left (1\right ) &= 15 \\
u^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✗ |
3.217 |
|
| \begin{align*}
y^{\prime }&=1-\left (x -y\right )^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
✓ |
✓ |
✓ |
2.391 |
|
| \begin{align*}
y^{\prime }&=\frac {{\mathrm e}^{x -y}}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.279 |
|
| \begin{align*}
y^{2}+y y^{\prime } x&=\sin \left (x \right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.694 |
|
| \begin{align*}
y^{\prime } \sqrt {-x^{2}+1}+\sqrt {1-y^{2}}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
22.934 |
|
| \begin{align*}
1+y^{2}+\left (x^{2}+1\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✗ |
✓ |
3.484 |
|
| \begin{align*}
y^{\prime }&=\frac {2}{x +2 y-3} \\
\end{align*} |
[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
2.344 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y+\sin \left (x \right )}-\cos \left (x \right ) \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]] |
✗ |
✓ |
✓ |
✓ |
8.108 |
|
| \begin{align*}
y^{\prime }&=\tan \left (x +y\right ) \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
2.087 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{x +3 y}+1 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.955 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }&=2 y^{\prime \prime \prime }+24 x \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= 0 \\
y^{\prime \prime \prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_high_order, _missing_y]] |
✓ |
✓ |
✓ |
✗ |
0.171 |
|