2.4.7 second order ode missing y

Table 2.463: second order ode missing y

#

ODE

CAS classification

Solved?

11

\[ {}x^{\prime \prime } = 50 \]
i.c.

[[_2nd_order, _quadrature]]

12

\[ {}x^{\prime \prime } = -20 \]
i.c.

[[_2nd_order, _quadrature]]

13

\[ {}x^{\prime \prime } = 3 t \]
i.c.

[[_2nd_order, _quadrature]]

14

\[ {}x^{\prime \prime } = 2 t +1 \]
i.c.

[[_2nd_order, _quadrature]]

15

\[ {}x^{\prime \prime } = 4 \left (t +3\right )^{2} \]
i.c.

[[_2nd_order, _quadrature]]

16

\[ {}x^{\prime \prime } = \frac {1}{\sqrt {t +4}} \]
i.c.

[[_2nd_order, _quadrature]]

17

\[ {}x^{\prime \prime } = \frac {1}{\left (1+t \right )^{3}} \]
i.c.

[[_2nd_order, _quadrature]]

18

\[ {}x^{\prime \prime } = 50 \sin \left (5 t \right ) \]
i.c.

[[_2nd_order, _quadrature]]

147

\[ {}x y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_y]]

150

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

[[_2nd_order, _missing_y]]

151

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

152

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x = 2 \]

[[_2nd_order, _missing_y]]

154

\[ {}y^{\prime \prime } = \left (x +y^{\prime }\right )^{2} \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]]

170

\[ {}r y^{\prime \prime } = \left ({y^{\prime }}^{2}+1\right )^{{3}/{2}} \]

[[_2nd_order, _missing_x]]

221

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

222

\[ {}y^{\prime \prime }-3 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

236

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

237

\[ {}2 y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

247

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

272

\[ {}2 y^{\prime \prime }-3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

813

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

814

\[ {}y^{\prime \prime }-3 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

825

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

826

\[ {}2 y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

836

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

846

\[ {}2 y^{\prime \prime }-3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

1253

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

1260

\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2607

\[ {}y^{\prime \prime }+2 y^{\prime } = 1+t^{2}+{\mathrm e}^{-2 t} \]

[[_2nd_order, _missing_y]]

3089

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

3141

\[ {}2 y^{\prime \prime }+y^{\prime } = 8 \sin \left (2 x \right )+{\mathrm e}^{-x} \]
i.c.

[[_2nd_order, _missing_y]]

3217

\[ {}y^{\prime \prime }+2 y^{\prime } = x^{3} \sin \left (2 x \right ) \]

[[_2nd_order, _missing_y]]

3218

\[ {}y^{\prime \prime }-y^{\prime } = x \,{\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

3220

\[ {}y^{\prime \prime }+2 y^{\prime } = x^{2} {\mathrm e}^{-x} \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

3244

\[ {}y^{\prime \prime } = \cos \left (t \right ) \]

[[_2nd_order, _quadrature]]

3249

\[ {}x y^{\prime \prime } = x^{2}+1 \]

[[_2nd_order, _quadrature]]

3250

\[ {}\left (1-x \right ) y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_y]]

3251

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (1+y^{\prime }\right ) = 0 \]

[[_2nd_order, _missing_y]]

3252

\[ {}y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \]

[[_2nd_order, _missing_x]]

3253

\[ {}x y^{\prime \prime }+x = y^{\prime } \]

[[_2nd_order, _missing_y]]

3254

\[ {}x^{\prime \prime }+t x^{\prime } = t^{3} \]

[[_2nd_order, _missing_y]]

3255

\[ {}x^{2} y^{\prime \prime } = y^{\prime } x +1 \]

[[_2nd_order, _missing_y]]

3256

\[ {}y^{\prime \prime } = {y^{\prime }}^{2}+1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

3257

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x = 1 \]

[[_2nd_order, _missing_y]]

3258

\[ {}y^{\prime \prime } = \sqrt {{y^{\prime }}^{2}+1} \]

[[_2nd_order, _missing_x]]

3259

\[ {}y^{\prime \prime } = {y^{\prime }}^{2}+y^{\prime } \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

3261

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

3263

\[ {}y^{\prime \prime }+2 {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

3269

\[ {}y^{\prime \prime }+2 {y^{\prime }}^{2} = 2 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

3270

\[ {}y^{\prime \prime }+y^{\prime } = {y^{\prime }}^{3} \]

[[_2nd_order, _missing_x]]

3272

\[ {}y^{\prime \prime } = \sec \left (x \right ) \tan \left (x \right ) \]
i.c.

[[_2nd_order, _quadrature]]

3275

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \cos \left (x \right ) \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

3277

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

3280

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \sin \left (x \right ) \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

3284

\[ {}\left (1-{\mathrm e}^{x}\right ) y^{\prime \prime } = {\mathrm e}^{x} y^{\prime } \]
i.c.

[[_2nd_order, _missing_y]]

3483

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

3584

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

[[_2nd_order, _quadrature]]

3585

\[ {}y^{\prime \prime } = x^{n} \]

[[_2nd_order, _quadrature]]

3587

\[ {}y^{\prime \prime } = \cos \left (x \right ) \]
i.c.

[[_2nd_order, _quadrature]]

3589

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]
i.c.

[[_2nd_order, _quadrature]]

3631

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x} = 9 x \]

[[_2nd_order, _missing_y]]

3699

\[ {}y^{\prime \prime }+4 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

4124

\[ {}2 y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

4127

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

4426

\[ {}x y^{\prime \prime } = x +y^{\prime } \]

[[_2nd_order, _missing_y]]

4484

\[ {}y^{\prime \prime }-y^{\prime } = {\mathrm e}^{x} \left (x^{2}+10\right ) \]

[[_2nd_order, _missing_y]]

4508

\[ {}y^{\prime \prime }+y^{\prime } = \frac {1}{{\mathrm e}^{x}+1} \]

[[_2nd_order, _missing_y]]

5916

\[ {}y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

5945

\[ {}y^{\prime \prime } = 0 \]
i.c.

[[_2nd_order, _quadrature]]

5958

\[ {}y^{\prime \prime }-3 y^{\prime } = 2 \,{\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

5959

\[ {}y^{\prime \prime }+y^{\prime } = x^{2}+2 x \]

[[_2nd_order, _missing_y]]

5960

\[ {}y^{\prime \prime }+y^{\prime } = x +\sin \left (2 x \right ) \]

[[_2nd_order, _missing_y]]

5998

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x = 1 \]

[[_2nd_order, _missing_y]]

5999

\[ {}x y^{\prime \prime }-y^{\prime } = x^{2} \]

[[_2nd_order, _missing_y]]

6008

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

6009

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (1+y^{\prime }\right ) = 0 \]

[[_2nd_order, _missing_y]]

6014

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x = 1 \]
i.c.

[[_2nd_order, _missing_y]]

6015

\[ {}x y^{\prime \prime }-y^{\prime } = x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

6030

\[ {}\left ({y^{\prime }}^{2}+1\right )^{3} = a^{2} {y^{\prime \prime }}^{2} \]

[[_2nd_order, _missing_x]]

6137

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

6142

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

6151

\[ {}y^{\prime \prime }-4 y^{\prime } = 10 \]

[[_2nd_order, _missing_x]]

6172

\[ {}2 y^{\prime \prime }+y^{\prime } = 2 x \]

[[_2nd_order, _missing_y]]

6182

\[ {}y^{\prime \prime }-2 y^{\prime } = 9 x \,{\mathrm e}^{-x}-6 x^{2}+4 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _missing_y]]

6187

\[ {}y^{\prime \prime }+2 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

6189

\[ {}x y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

6190

\[ {}{y^{\prime \prime }}^{2} = k^{2} \left ({y^{\prime }}^{2}+1\right ) \]

[[_2nd_order, _missing_x]]

6191

\[ {}k = \frac {y^{\prime \prime }}{\left (1+y^{\prime }\right )^{{3}/{2}}} \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear]]

6219

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

[[_2nd_order, _missing_y]]

6513

\[ {}y^{\prime \prime } = 9 x^{2}+2 x -1 \]

[[_2nd_order, _quadrature]]

6539

\[ {}y^{\prime \prime }-7 y^{\prime } = -3 \]

[[_2nd_order, _missing_x]]

6541

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x = x^{3} {\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

6698

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

6712

\[ {}y^{\prime \prime }-4 y^{\prime } = 5 \]

[[_2nd_order, _missing_x]]

6772

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

6773

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x = \frac {2}{x^{3}} \]

[[_2nd_order, _missing_y]]

6774

\[ {}x y^{\prime \prime }-y^{\prime } = -\frac {2}{x}-\ln \left (x \right ) \]

[[_2nd_order, _missing_y]]

6880

\[ {}y^{\prime \prime } = \sqrt {{y^{\prime }}^{2}+1} \]

[[_2nd_order, _missing_x]]

6910

\[ {}x y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

6927

\[ {}y^{\prime \prime } = f \left (x \right ) \]

[[_2nd_order, _quadrature]]

6987

\[ {}x y^{\prime \prime }-y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

6988

\[ {}y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_x]]

7551

\[ {}u^{\prime \prime }-\cot \left (\theta \right ) u^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

7581

\[ {}y^{\prime \prime } = x +2 \]

[[_2nd_order, _quadrature]]

7589

\[ {}y^{\prime \prime } = 3 x +1 \]

[[_2nd_order, _quadrature]]

7615

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

7759

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

[[_2nd_order, _missing_x]]

7760

\[ {}y^{\prime \prime }+{\mathrm e}^{x} y^{\prime } = {\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

7764

\[ {}x y^{\prime \prime }-2 y^{\prime } = x^{3} \]

[[_2nd_order, _missing_y]]

7765

\[ {}y^{\prime \prime } = {y^{\prime }}^{2}+1 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

7766

\[ {}y^{\prime \prime } = -\frac {1}{2 {y^{\prime }}^{2}} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn]]

7823

\[ {}\frac {y^{\prime \prime }}{y^{\prime }} = x^{2} \]

[[_2nd_order, _missing_y]]

7824

\[ {}y^{\prime \prime } y^{\prime } = \left (x +1\right ) x \]

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

7908

\[ {}x^{2} y^{\prime \prime } = 2 y^{\prime } x +{y^{\prime }}^{2} \]

[[_2nd_order, _missing_y]]

7911

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

[[_2nd_order, _missing_y]]

7912

\[ {}\left (x^{2}+2 y^{\prime }\right ) y^{\prime \prime }+2 y^{\prime } x = 0 \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

7915

\[ {}y^{\prime \prime } = {y^{\prime }}^{2}+1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

7916

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

7934

\[ {}x y^{\prime \prime } = y^{\prime }-2 {y^{\prime }}^{3} \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

7936

\[ {}x y^{\prime \prime }-3 y^{\prime } = 5 x \]

[[_2nd_order, _missing_y]]

7977

\[ {}y^{\prime \prime }-2 y^{\prime } = 12 x -10 \]

[[_2nd_order, _missing_y]]

7980

\[ {}y^{\prime \prime }+y^{\prime } = 10 x^{4}+2 \]

[[_2nd_order, _missing_y]]

8053

\[ {}y^{\prime \prime } = \tan \left (x \right ) \]
i.c.

[[_2nd_order, _quadrature]]

8054

\[ {}y^{\prime \prime }-2 y^{\prime } = \ln \left (x \right ) \]
i.c.

[[_2nd_order, _missing_y]]

8223

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

8225

\[ {}y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

8362

\[ {}t y^{\prime \prime }-y^{\prime } = 2 t^{2} \]
i.c.

[[_2nd_order, _missing_y]]

8489

\[ {}y^{\prime \prime } = x {y^{\prime }}^{3} \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

8490

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } x = 0 \]
i.c.

[[_2nd_order, _missing_y]]

8491

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } x = 0 \]
i.c.

[[_2nd_order, _missing_y]]

8495

\[ {}2 a y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

8496

\[ {}x y^{\prime \prime } = y^{\prime }+x^{5} \]
i.c.

[[_2nd_order, _missing_y]]

8497

\[ {}x y^{\prime \prime }+y^{\prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_y]]

8502

\[ {}y^{\prime \prime } \cos \left (x \right ) = y^{\prime } \]

[[_2nd_order, _missing_y]]

8503

\[ {}y^{\prime \prime } = x {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

8504

\[ {}y^{\prime \prime } = x {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

8509

\[ {}x^{3} y^{\prime \prime }-x^{2} y^{\prime } = -x^{2}+3 \]

[[_2nd_order, _missing_y]]

8510

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

8511

\[ {}y^{\prime \prime } = {\mathrm e}^{x} {y^{\prime }}^{2} \]

[[_2nd_order, _missing_y]]

8512

\[ {}2 y^{\prime \prime } = {y^{\prime }}^{3} \sin \left (2 x \right ) \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

8513

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

8514

\[ {}y^{\prime \prime } = {y^{\prime }}^{2}+1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

8515

\[ {}y^{\prime \prime } = \left ({y^{\prime }}^{2}+1\right )^{{3}/{2}} \]

[[_2nd_order, _missing_x]]

8519

\[ {}x^{2} y^{\prime \prime } = y^{\prime } \left (2 x -y^{\prime }\right ) \]
i.c.

[[_2nd_order, _missing_y]]

8520

\[ {}x^{2} y^{\prime \prime } = y^{\prime } \left (3 x -2 y^{\prime }\right ) \]

[[_2nd_order, _missing_y]]

8521

\[ {}x y^{\prime \prime } = y^{\prime } \left (2-3 y^{\prime } x \right ) \]

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

8522

\[ {}x^{4} y^{\prime \prime } = y^{\prime } \left (y^{\prime }+x^{3}\right ) \]
i.c.

[[_2nd_order, _missing_y]]

8523

\[ {}y^{\prime \prime } = 2 x +\left (x^{2}-y^{\prime }\right )^{2} \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]]

8524

\[ {}{y^{\prime \prime }}^{2}-2 y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } x +x^{2} = 0 \]
i.c.

[[_2nd_order, _missing_y]]

8525

\[ {}{y^{\prime \prime }}^{2}-x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

8526

\[ {}{y^{\prime \prime }}^{3} = 12 y^{\prime } \left (x y^{\prime \prime }-2 y^{\prime }\right ) \]

[[_2nd_order, _missing_y]]

8759

\[ {}t y^{\prime \prime }+4 y^{\prime } = t^{2} \]

[[_2nd_order, _missing_y]]

8760

\[ {}\left (t^{2}+9\right ) y^{\prime \prime }+2 t y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_y]]

8762

\[ {}t y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

8763

\[ {}t^{2} y^{\prime \prime }-2 y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

8766

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

8767

\[ {}y^{\prime \prime } = 1 \]

[[_2nd_order, _quadrature]]

8768

\[ {}y^{\prime \prime } = f \left (t \right ) \]

[[_2nd_order, _quadrature]]

8769

\[ {}y^{\prime \prime } = k \]

[[_2nd_order, _quadrature]]

8772

\[ {}y^{\prime \prime } = 4 \sin \left (x \right )-4 \]

[[_2nd_order, _quadrature]]

8773

\[ {}y y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

8777

\[ {}y^{2} y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

8782

\[ {}a y y^{\prime \prime }+b y = 0 \]

[[_2nd_order, _quadrature]]

8879

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

8881

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+x {y^{\prime }}^{2} = 1 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

8883

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

8885

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

9072

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

9073

\[ {}{y^{\prime \prime }}^{2} = 0 \]

[[_2nd_order, _quadrature]]

9074

\[ {}{y^{\prime \prime }}^{n} = 0 \]

[[_2nd_order, _quadrature]]

9075

\[ {}a y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

9076

\[ {}a {y^{\prime \prime }}^{2} = 0 \]

[[_2nd_order, _quadrature]]

9077

\[ {}a {y^{\prime \prime }}^{n} = 0 \]

[[_2nd_order, _quadrature]]

9078

\[ {}y^{\prime \prime } = 1 \]

[[_2nd_order, _quadrature]]

9079

\[ {}{y^{\prime \prime }}^{2} = 1 \]

[[_2nd_order, _quadrature]]

9080

\[ {}y^{\prime \prime } = x \]

[[_2nd_order, _quadrature]]

9081

\[ {}{y^{\prime \prime }}^{2} = x \]

[[_2nd_order, _quadrature]]

9082

\[ {}{y^{\prime \prime }}^{3} = 0 \]

[[_2nd_order, _quadrature]]

9083

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

9084

\[ {}{y^{\prime \prime }}^{2}+y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

9085

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

9086

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

[[_2nd_order, _missing_x]]

9087

\[ {}{y^{\prime \prime }}^{2}+y^{\prime } = 1 \]

[[_2nd_order, _missing_x]]

9088

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

9089

\[ {}y^{\prime \prime }+y^{\prime } = x \]

[[_2nd_order, _missing_y]]

9090

\[ {}{y^{\prime \prime }}^{2}+y^{\prime } = x \]

[[_2nd_order, _missing_y]]

9091

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = x \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]]

9102

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

[[_2nd_order, _missing_x]]

9103

\[ {}y^{\prime \prime }+y^{\prime } = x \]

[[_2nd_order, _missing_y]]

9104

\[ {}y^{\prime \prime }+y^{\prime } = x +1 \]

[[_2nd_order, _missing_y]]

9105

\[ {}y^{\prime \prime }+y^{\prime } = x^{2}+x +1 \]

[[_2nd_order, _missing_y]]

9106

\[ {}y^{\prime \prime }+y^{\prime } = x^{3}+x^{2}+x +1 \]

[[_2nd_order, _missing_y]]

9107

\[ {}y^{\prime \prime }+y^{\prime } = \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

9108

\[ {}y^{\prime \prime }+y^{\prime } = \cos \left (x \right ) \]

[[_2nd_order, _missing_y]]

9133

\[ {}y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

11011

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

11099

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

11174

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

11239

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x +2 = 0 \]

[[_2nd_order, _missing_y]]

11242

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

11243

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x -a = 0 \]

[[_2nd_order, _missing_y]]

11262

\[ {}x \left (x -1\right ) y^{\prime \prime }+\left (\left (a +1\right ) x +b \right ) y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

11265

\[ {}x \left (x -1\right ) y^{\prime \prime }+\left (\left (\operatorname {a1} +\operatorname {b1} +1\right ) x -\operatorname {d1} \right ) y^{\prime }+\operatorname {a1} \operatorname {b1} \operatorname {d1} = 0 \]

[[_2nd_order, _missing_y]]

11303

\[ {}\left (a^{2} x^{2}-1\right ) y^{\prime \prime }+2 a^{2} x y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

11326

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+2 x \left (3 x +2\right ) y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

11649

\[ {}y^{\prime \prime } = a \sqrt {{y^{\prime }}^{2}+1} \]

[[_2nd_order, _missing_x]]

11650

\[ {}y^{\prime \prime } = a \sqrt {{y^{\prime }}^{2}+1}+b \]

[[_2nd_order, _missing_x]]

11652

\[ {}y^{\prime \prime } = a \left ({y^{\prime }}^{2}+1\right )^{{3}/{2}} \]

[[_2nd_order, _missing_x]]

11653

\[ {}y^{\prime \prime }-2 a x \left ({y^{\prime }}^{2}+1\right )^{{3}/{2}} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

11660

\[ {}8 y^{\prime \prime }+9 {y^{\prime }}^{4} = 0 \]

[[_2nd_order, _missing_x]]

11670

\[ {}2 x y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

11678

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

11826

\[ {}a^{2} {y^{\prime \prime }}^{2}-2 a x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

12544

\[ {}y^{\prime \prime }+a \,x^{n} y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

12577

\[ {}x y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c x \left (-c \,x^{2}+a x +b +1\right ) = 0 \]

[[_2nd_order, _missing_y]]

12946

\[ {}y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{2 x}+1 \]

[[_2nd_order, _missing_y]]

12988

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

12990

\[ {}y^{\prime \prime }+y^{\prime } x = x \]

[[_2nd_order, _missing_y]]

12991

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

[[_2nd_order, _quadrature]]

12992

\[ {}\left (y^{\prime }-x y^{\prime \prime }\right )^{2} = 1+{y^{\prime \prime }}^{2} \]

[[_2nd_order, _missing_y]]

13007

\[ {}y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }+2 \tan \left (x \right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y]]

13012

\[ {}y^{\prime \prime } = {y^{\prime }}^{2}+1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

13013

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x = 2 \]

[[_2nd_order, _missing_y]]

13018

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x} = 0 \]

[[_2nd_order, _missing_y]]

13020

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

13021

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-\frac {y^{\prime }}{x}+x^{2} = 0 \]

[[_2nd_order, _missing_y]]

13038

\[ {}x^{\prime \prime } = -3 \sqrt {t} \]
i.c.

[[_2nd_order, _quadrature]]

13043

\[ {}x^{\prime }+t x^{\prime \prime } = 1 \]
i.c.

[[_2nd_order, _missing_y]]

13072

\[ {}\frac {x^{\prime }+t x^{\prime \prime }}{t} = -2 \]

[[_2nd_order, _missing_y]]

13096

\[ {}x^{\prime \prime }+x^{\prime } = 3 t \]

[[_2nd_order, _missing_y]]

13113

\[ {}x^{\prime \prime }-2 x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13117

\[ {}x^{\prime \prime }-2 x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13141

\[ {}x^{\prime \prime }-x^{\prime } = 6+{\mathrm e}^{2 t} \]

[[_2nd_order, _missing_y]]

13149

\[ {}x^{\prime \prime }-2 x^{\prime } = 4 \]
i.c.

[[_2nd_order, _missing_x]]

13160

\[ {}t^{2} x^{\prime \prime }+t x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_y]]

13162

\[ {}x^{\prime \prime }+t^{2} x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_y]]

13169

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{t} = a \]

[[_2nd_order, _missing_y]]

13754

\[ {}y^{\prime \prime }-4 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13766

\[ {}x^{\prime \prime }-4 x^{\prime } = t^{2} \]

[[_2nd_order, _missing_y]]

13794

\[ {}x^{\prime \prime }-4 x^{\prime } = \tan \left (t \right ) \]

[[_2nd_order, _missing_y]]

13908

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

13916

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

13919

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

13928

\[ {}m x^{\prime \prime } = f \left (x^{\prime }\right ) \]

[[_2nd_order, _missing_x]]

13934

\[ {}{y^{\prime \prime }}^{3}+y^{\prime \prime }+1 = x \]

[[_2nd_order, _quadrature]]

13940

\[ {}x y^{\prime \prime } = y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right ) \]

[[_2nd_order, _missing_y]]

14161

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x} = 0 \]

[[_2nd_order, _missing_y]]

14226

\[ {}y^{\prime \prime } = \frac {1}{2 y^{\prime }} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn]]

14230

\[ {}x y^{\prime \prime }-y^{\prime } = x^{2} {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _missing_y]]

14232

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime } = \sin \left (2 x \right ) \]
i.c.

[[_2nd_order, _missing_y]]

14233

\[ {}{y^{\prime \prime }}^{2}+{y^{\prime }}^{2} = a^{2} \]
i.c.

[[_2nd_order, _missing_x]]

14234

\[ {}y^{\prime \prime } = \frac {1}{2 y^{\prime }} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn]]

14261

\[ {}y^{\prime \prime }-3 y^{\prime } = 2-6 x \]

[[_2nd_order, _missing_y]]

14327

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

14482

\[ {}x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

14483

\[ {}x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

14927

\[ {}y^{\prime \prime }+2 y^{\prime } = 3 t +2 \]
i.c.

[[_2nd_order, _missing_y]]

14928

\[ {}y^{\prime \prime }+4 y^{\prime } = 3 t +2 \]
i.c.

[[_2nd_order, _missing_y]]

14984

\[ {}y^{\prime \prime } = \frac {x +1}{x -1} \]

[[_2nd_order, _quadrature]]

14985

\[ {}x^{2} y^{\prime \prime } = 1 \]

[[_2nd_order, _quadrature]]

14988

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

14998

\[ {}y^{\prime \prime } = \sin \left (2 x \right ) \]

[[_2nd_order, _quadrature]]

14999

\[ {}y^{\prime \prime }-3 = x \]

[[_2nd_order, _quadrature]]

15007

\[ {}x y^{\prime \prime }+2 = \sqrt {x} \]
i.c.

[[_2nd_order, _quadrature]]

15209

\[ {}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2} \]

[[_2nd_order, _missing_y]]

15210

\[ {}x y^{\prime \prime } = 2 y^{\prime } \]

[[_2nd_order, _missing_y]]

15211

\[ {}y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_x]]

15212

\[ {}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _missing_y]]

15213

\[ {}x y^{\prime \prime } = y^{\prime }-2 x^{2} y^{\prime } \]

[[_2nd_order, _missing_y]]

15214

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

15215

\[ {}y^{\prime \prime } = 4 x \sqrt {y^{\prime }} \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

15216

\[ {}y^{\prime \prime } y^{\prime } = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

15218

\[ {}x y^{\prime \prime } = {y^{\prime }}^{2}-y^{\prime } \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

15219

\[ {}x y^{\prime \prime }-{y^{\prime }}^{2} = 6 x^{5} \]

[[_2nd_order, _missing_y]]

15221

\[ {}y^{\prime \prime } = 2 y^{\prime }-6 \]

[[_2nd_order, _missing_x]]

15223

\[ {}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _missing_y]]

15231

\[ {}y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_x]]

15234

\[ {}y^{\prime \prime } = 4 x \sqrt {y^{\prime }} \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

15235

\[ {}y^{\prime \prime } y^{\prime } = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

15236

\[ {}x y^{\prime \prime } = {y^{\prime }}^{2}-y^{\prime } \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

15237

\[ {}x y^{\prime \prime }-y^{\prime } = 6 x^{5} \]

[[_2nd_order, _missing_y]]

15241

\[ {}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _missing_y]]

15242

\[ {}y^{\prime \prime } = y^{\prime } \left (y^{\prime }-2\right ) \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

15243

\[ {}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

15244

\[ {}x y^{\prime \prime } = 2 y^{\prime } \]
i.c.

[[_2nd_order, _missing_y]]

15245

\[ {}y^{\prime \prime } = y^{\prime } \]
i.c.

[[_2nd_order, _missing_x]]

15246

\[ {}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _missing_y]]

15249

\[ {}x y^{\prime \prime }+2 y^{\prime } = 6 \]
i.c.

[[_2nd_order, _missing_y]]

15250

\[ {}2 x y^{\prime } y^{\prime \prime } = -1+{y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

15254

\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

15255

\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

15256

\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

15257

\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

15312

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15318

\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

15381

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

15393

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

15435

\[ {}y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{\frac {x}{2}} \]

[[_2nd_order, _missing_y]]

15439

\[ {}y^{\prime \prime }+3 y^{\prime } = 26 \cos \left (\frac {x}{3}\right )-12 \sin \left (\frac {x}{3}\right ) \]

[[_2nd_order, _missing_y]]

15450

\[ {}y^{\prime \prime } = 6 x \,{\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _quadrature]]

15455

\[ {}y^{\prime \prime }+4 y^{\prime } = 20 \]

[[_2nd_order, _missing_x]]

15456

\[ {}y^{\prime \prime }+4 y^{\prime } = x^{2} \]

[[_2nd_order, _missing_y]]

15541

\[ {}2 x y^{\prime \prime }+y^{\prime } = \sqrt {x} \]

[[_2nd_order, _missing_y]]

15550

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

15561

\[ {}2 y^{\prime \prime }-7 y^{\prime }+3 = 0 \]

[[_2nd_order, _missing_x]]

15563

\[ {}x y^{\prime \prime } = 3 y^{\prime } \]

[[_2nd_order, _missing_y]]

15564

\[ {}y^{\prime \prime }-5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

15576

\[ {}x y^{\prime \prime }-y^{\prime } = -3 x {y^{\prime }}^{3} \]

[[_2nd_order, _missing_y]]

15794

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

15823

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16206

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

16208

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

16221

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16222

\[ {}3 y^{\prime \prime }-y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16256

\[ {}y^{\prime \prime }+2 y^{\prime } = 3-4 t \]

[[_2nd_order, _missing_y]]

16261

\[ {}y^{\prime \prime } = 3 t^{4}-2 t \]

[[_2nd_order, _quadrature]]

16271

\[ {}y^{\prime \prime }-2 y^{\prime } = 52 \sin \left (3 t \right ) \]

[[_2nd_order, _missing_y]]

16279

\[ {}y^{\prime \prime }+4 y^{\prime } = 8 \,{\mathrm e}^{4 t}-4 \,{\mathrm e}^{-4 t} \]

[[_2nd_order, _missing_y]]

16280

\[ {}y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t} \]

[[_2nd_order, _missing_y]]

16281

\[ {}y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \]

[[_2nd_order, _missing_y]]

16282

\[ {}y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t} \]

[[_2nd_order, _missing_y]]

16283

\[ {}y^{\prime \prime } = t^{2}+{\mathrm e}^{t}+\sin \left (t \right ) \]

[[_2nd_order, _quadrature]]

16284

\[ {}y^{\prime \prime }+3 y^{\prime } = 18 \]
i.c.

[[_2nd_order, _missing_x]]

16292

\[ {}y^{\prime \prime }-3 y^{\prime } = -{\mathrm e}^{3 t}-2 t \]
i.c.

[[_2nd_order, _missing_y]]

16293

\[ {}y^{\prime \prime }-y^{\prime } = -3 t -4 t^{2} {\mathrm e}^{2 t} \]
i.c.

[[_2nd_order, _missing_y]]

16294

\[ {}y^{\prime \prime }-2 y^{\prime } = 2 t^{2} \]
i.c.

[[_2nd_order, _missing_y]]

16295

\[ {}y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \]
i.c.

[[_2nd_order, _missing_y]]

16296

\[ {}y^{\prime \prime }-3 y^{\prime } = {\mathrm e}^{-3 t}-{\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _missing_y]]

16309

\[ {}y^{\prime \prime }+16 y^{\prime } = t \]

[[_2nd_order, _missing_y]]

16576

\[ {}y^{\prime \prime }+5 y^{\prime } = 5 t^{2} \]

[[_2nd_order, _missing_y]]

16577

\[ {}y^{\prime \prime }-4 y^{\prime } = -3 \sin \left (t \right ) \]

[[_2nd_order, _missing_y]]

16580

\[ {}y^{\prime \prime }-2 y^{\prime } = \frac {1}{1+{\mathrm e}^{2 t}} \]

[[_2nd_order, _missing_y]]

16908

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

16909

\[ {}\left (x -1\right ) y^{\prime \prime } = 1 \]

[[_2nd_order, _quadrature]]

16913

\[ {}y^{\prime \prime } = \left ({y^{\prime }}^{2}+1\right )^{{3}/{2}} \]

[[_2nd_order, _missing_x]]

16917

\[ {}y^{\prime \prime } \left (x +2\right )^{5} = 1 \]
i.c.

[[_2nd_order, _quadrature]]

16918

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]
i.c.

[[_2nd_order, _quadrature]]

16919

\[ {}y^{\prime \prime } = 2 x \ln \left (x \right ) \]

[[_2nd_order, _quadrature]]

16920

\[ {}x y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_y]]

16921

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

16922

\[ {}x y^{\prime \prime } = \left (2 x^{2}+1\right ) y^{\prime } \]

[[_2nd_order, _missing_y]]

16923

\[ {}x y^{\prime \prime } = y^{\prime }+x^{2} \]

[[_2nd_order, _missing_y]]

16924

\[ {}x \ln \left (x \right ) y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_y]]

16926

\[ {}2 y^{\prime \prime } = \frac {y^{\prime }}{x}+\frac {x^{2}}{y^{\prime }} \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_poly_yn]]

16929

\[ {}y^{\prime \prime } = \sqrt {{y^{\prime }}^{2}+1} \]

[[_2nd_order, _missing_x]]

16930

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

16931

\[ {}y^{\prime \prime } = \sqrt {1-{y^{\prime }}^{2}} \]

[[_2nd_order, _missing_x]]

16932

\[ {}y^{\prime \prime } = {y^{\prime }}^{2}+1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

16933

\[ {}y^{\prime \prime } = \sqrt {1+y^{\prime }} \]

[[_2nd_order, _missing_x]]

16934

\[ {}y^{\prime \prime } = y^{\prime } \ln \left (y^{\prime }\right ) \]
i.c.

[[_2nd_order, _missing_x]]

16935

\[ {}y^{\prime \prime }+y^{\prime }+2 = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16936

\[ {}y^{\prime \prime } = y^{\prime } \left (1+y^{\prime }\right ) \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

16937

\[ {}3 y^{\prime \prime } = \left ({y^{\prime }}^{2}+1\right )^{{3}/{2}} \]

[[_2nd_order, _missing_x]]

16974

\[ {}y^{\prime \prime }+3 y^{\prime } = 3 \]

[[_2nd_order, _missing_x]]

16975

\[ {}y^{\prime \prime }-7 y^{\prime } = \left (x -1\right )^{2} \]

[[_2nd_order, _missing_y]]

16976

\[ {}y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

16977

\[ {}y^{\prime \prime }+7 y^{\prime } = {\mathrm e}^{-7 x} \]

[[_2nd_order, _missing_y]]

16980

\[ {}4 y^{\prime \prime }-3 y^{\prime } = x \,{\mathrm e}^{\frac {3 x}{4}} \]

[[_2nd_order, _missing_y]]

16981

\[ {}y^{\prime \prime }-4 y^{\prime } = x \,{\mathrm e}^{4 x} \]

[[_2nd_order, _missing_y]]

17011

\[ {}y^{\prime \prime }+2 y^{\prime } = -2 \]

[[_2nd_order, _missing_x]]

17019

\[ {}y^{\prime \prime }+8 y^{\prime } = 8 x \]

[[_2nd_order, _missing_y]]

17023

\[ {}7 y^{\prime \prime }-y^{\prime } = 14 x \]

[[_2nd_order, _missing_y]]

17024

\[ {}y^{\prime \prime }+3 y^{\prime } = 3 x \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _missing_y]]

17033

\[ {}y^{\prime \prime }-y^{\prime } = {\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

17034

\[ {}y^{\prime \prime }+2 y^{\prime } = 4 \,{\mathrm e}^{x} \left (\sin \left (x \right )+\cos \left (x \right )\right ) \]

[[_2nd_order, _missing_y]]

17036

\[ {}4 y^{\prime \prime }+8 y^{\prime } = x \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

17051

\[ {}y^{\prime \prime }+4 y^{\prime } = x +{\mathrm e}^{-4 x} \]

[[_2nd_order, _missing_y]]

17057

\[ {}y^{\prime \prime }-4 y^{\prime } = 2 \cos \left (4 x \right )^{2} \]

[[_2nd_order, _missing_y]]

17059

\[ {}y^{\prime \prime }-3 y^{\prime } = 18 x -10 \cos \left (x \right ) \]

[[_2nd_order, _missing_y]]

17066

\[ {}y^{\prime \prime }+y^{\prime } = \cos \left (x \right )^{2}+{\mathrm e}^{x}+x^{2} \]

[[_2nd_order, _missing_y]]

17069

\[ {}y^{\prime \prime }+y^{\prime } = x^{2}-{\mathrm e}^{-x}+{\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

17076

\[ {}y^{\prime \prime }-3 y^{\prime } = 1+{\mathrm e}^{x}+\cos \left (x \right )+\sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

17082

\[ {}y^{\prime \prime }+2 y^{\prime }+1 = 3 \sin \left (2 x \right )+\cos \left (x \right ) \]

[[_2nd_order, _missing_y]]

17094

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{-x} \]
i.c.

[[_2nd_order, _missing_y]]

17101

\[ {}y^{\prime \prime }-y^{\prime } = -5 \,{\mathrm e}^{-x} \left (\sin \left (x \right )+\cos \left (x \right )\right ) \]
i.c.

[[_2nd_order, _missing_y]]

17120

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

17149

\[ {}y^{\prime \prime }+y^{\prime } = \frac {1}{{\mathrm e}^{x}+1} \]

[[_2nd_order, _missing_y]]

17155

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{2 x} \cos \left ({\mathrm e}^{x}\right ) \]

[[_2nd_order, _missing_y]]

17157

\[ {}x y^{\prime \prime }-\left (2 x^{2}+1\right ) y^{\prime } = 4 x^{3} {\mathrm e}^{x^{2}} \]

[[_2nd_order, _missing_y]]

17158

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime } = 1 \]

[[_2nd_order, _missing_y]]

17159

\[ {}x \ln \left (x \right ) y^{\prime \prime }-y^{\prime } = \ln \left (x \right )^{2} \]

[[_2nd_order, _missing_y]]

17160

\[ {}x y^{\prime \prime }+\left (2 x -1\right ) y^{\prime } = -4 x^{2} \]

[[_2nd_order, _missing_y]]

17161

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime } = \cos \left (x \right ) \cot \left (x \right ) \]

[[_2nd_order, _missing_y]]

17164

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x = \frac {1}{x^{2}+1} \]
i.c.

[[_2nd_order, _missing_y]]

17188

\[ {}y^{\prime \prime }+\alpha y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17195

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

17595

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

17617

\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17645

\[ {}y^{\prime \prime }+2 y^{\prime } = 3+4 \sin \left (2 t \right ) \]

[[_2nd_order, _missing_y]]

17663

\[ {}y^{\prime \prime }+3 y^{\prime } = 2 t^{4}+t^{2} {\mathrm e}^{-3 t}+\sin \left (3 t \right ) \]

[[_2nd_order, _missing_y]]

17893

\[ {}y^{\prime \prime } = \sin \left (x \right ) \]

[[_2nd_order, _quadrature]]

17986

\[ {}a^{2} y^{\prime \prime } = 2 x \sqrt {{y^{\prime }}^{2}+1} \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

17991

\[ {}{y^{\prime \prime }}^{2}+2 x y^{\prime \prime }-y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

17992

\[ {}{y^{\prime \prime }}^{2}-2 x y^{\prime \prime }-y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

18188

\[ {}x y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

18190

\[ {}x^{2} y^{\prime \prime } = 2 y^{\prime } x +{y^{\prime }}^{2} \]

[[_2nd_order, _missing_y]]

18193

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

[[_2nd_order, _missing_y]]

18194

\[ {}\left (x^{2}+2 y^{\prime }\right ) y^{\prime \prime }+2 y^{\prime } x = 0 \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

18197

\[ {}y^{\prime \prime } = {y^{\prime }}^{2}+1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

18198

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

18209

\[ {}y^{\prime \prime }+2 x {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

18214

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x = 1 \]

[[_2nd_order, _missing_y]]

18221

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

18233

\[ {}x^{2} y^{\prime \prime } = y^{\prime } \left (3 x -2 y^{\prime }\right ) \]

[[_2nd_order, _missing_y]]

18244

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

18249

\[ {}x y^{\prime \prime }-y^{\prime } = 3 x^{2} \]

[[_2nd_order, _missing_y]]

18250

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

18253

\[ {}y^{\prime \prime }-2 y^{\prime } = 6 \]

[[_2nd_order, _missing_x]]

18255

\[ {}y^{\prime \prime } = {\mathrm e}^{x} \]

[[_2nd_order, _quadrature]]

18256

\[ {}y^{\prime \prime }-2 y^{\prime } = 4 \]

[[_2nd_order, _missing_x]]

18259

\[ {}y^{\prime \prime }+2 y^{\prime } = 6 \,{\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

18269

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

18270

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

18296

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

18330

\[ {}y^{\prime \prime }-2 y^{\prime } = 12 x -10 \]

[[_2nd_order, _missing_y]]

18333

\[ {}y^{\prime \prime }+y^{\prime } = 10 x^{4}+2 \]

[[_2nd_order, _missing_y]]

18520

\[ {}x^{\prime \prime }+3 x^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

18567

\[ {}y^{\prime \prime } = \frac {m \sqrt {{y^{\prime }}^{2}+1}}{k} \]

[[_2nd_order, _missing_x]]

18596

\[ {}y^{\prime \prime } = c \left ({y^{\prime }}^{2}+1\right ) \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

18597

\[ {}y^{\prime \prime } = c \left ({y^{\prime }}^{2}+1\right )^{{3}/{2}} \]

[[_2nd_order, _missing_x]]

18600

\[ {}1+{y^{\prime }}^{2}+\frac {m y^{\prime \prime }}{\sqrt {{y^{\prime }}^{2}+1}} = 0 \]

[[_2nd_order, _missing_x]]

18608

\[ {}v^{\prime \prime }+\frac {2 v^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

18611

\[ {}\left ({y^{\prime }}^{2}+1\right )^{{3}/{2}} = r y^{\prime \prime } \]

[[_2nd_order, _missing_x]]

18616

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

18678

\[ {}e y^{\prime \prime } = \frac {P \left (\frac {L}{2}-x \right )}{2} \]

[[_2nd_order, _quadrature]]

18679

\[ {}e y^{\prime \prime } = \frac {w \left (\frac {L^{2}}{4}-x^{2}\right )}{2} \]

[[_2nd_order, _quadrature]]

18680

\[ {}e y^{\prime \prime } = -\frac {\left (w L +P \right ) x}{2}-\frac {w \,x^{2}}{2} \]

[[_2nd_order, _quadrature]]

18681

\[ {}e y^{\prime \prime } = -P \left (L -x \right ) \]

[[_2nd_order, _quadrature]]

18682

\[ {}e y^{\prime \prime } = -P L +\left (w L +P \right ) x -\frac {w \left (L^{2}+x^{2}\right )}{2} \]

[[_2nd_order, _quadrature]]

18689

\[ {}x y^{\prime \prime }+2 y^{\prime } = 2 x \]

[[_2nd_order, _missing_y]]

18698

\[ {}y^{\prime \prime } = \cos \left (x \right ) \]

[[_2nd_order, _quadrature]]

18699

\[ {}x^{2} y^{\prime \prime } = \ln \left (x \right ) \]

[[_2nd_order, _quadrature]]

18704

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-1-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

18705

\[ {}x y^{\prime \prime }+3 y^{\prime } = 3 x \]

[[_2nd_order, _missing_y]]

18706

\[ {}x = y^{\prime \prime }+y^{\prime } \]

[[_2nd_order, _missing_y]]

18709

\[ {}V^{\prime \prime }+\frac {2 V^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

18710

\[ {}V^{\prime \prime }+\frac {V^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

18725

\[ {}v^{\prime \prime }+\frac {2 v^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

18956

\[ {}y^{\prime \prime } = x^{2} \sin \left (x \right ) \]

[[_2nd_order, _quadrature]]

18962

\[ {}y^{\prime \prime } = \sqrt {{y^{\prime }}^{2}+1} \]

[[_2nd_order, _missing_x]]

18963

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

18965

\[ {}y^{\prime \prime }-a {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

18968

\[ {}y^{\prime \prime }+2 y^{\prime }+4 {y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x]]

18972

\[ {}a^{2} y^{\prime \prime } y^{\prime } = x \]

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

18973

\[ {}a y^{\prime \prime } = \sqrt {{y^{\prime }}^{2}+1} \]

[[_2nd_order, _missing_x]]

18974

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

18983

\[ {}y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x \left (a^{2}-x^{2}\right )} = \frac {x^{2}}{a \left (a^{2}-x^{2}\right )} \]

[[_2nd_order, _missing_y]]

18989

\[ {}y^{\prime \prime }+y^{\prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x]]

18990

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x = 2 \]

[[_2nd_order, _missing_y]]

18993

\[ {}y^{\prime \prime } = \frac {a}{x} \]

[[_2nd_order, _quadrature]]

18996

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

18999

\[ {}a y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_x]]

19002

\[ {}y^{\prime \prime } = a^{2}+k^{2} {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

19008

\[ {}a^{2} {y^{\prime \prime }}^{2} = {y^{\prime }}^{2}+1 \]

[[_2nd_order, _missing_x]]

19046

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

19332

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x = \ln \left (x \right ) \]

[[_2nd_order, _missing_y]]

19346

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime } = \left (2 x +3\right ) \left (2 x +4\right ) \]

[[_2nd_order, _missing_y]]

19366

\[ {}y^{\prime \prime } = x +\sin \left (x \right ) \]

[[_2nd_order, _quadrature]]

19367

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

[[_2nd_order, _quadrature]]

19368

\[ {}y^{\prime \prime } \cos \left (x \right )^{2} = 1 \]

[[_2nd_order, _quadrature]]

19370

\[ {}y^{\prime \prime } = \frac {a}{x} \]

[[_2nd_order, _quadrature]]

19372

\[ {}y^{\prime \prime } \sqrt {a^{2}+x^{2}} = x \]

[[_2nd_order, _quadrature]]

19373

\[ {}x^{2} y^{\prime \prime } = \ln \left (x \right ) \]

[[_2nd_order, _quadrature]]

19380

\[ {}y^{\prime \prime } = y^{\prime } x \]

[[_2nd_order, _missing_y]]

19381

\[ {}y^{\prime \prime } = \sqrt {{y^{\prime }}^{2}+1} \]

[[_2nd_order, _missing_x]]

19382

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

19383

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x} = 0 \]

[[_2nd_order, _missing_y]]

19385

\[ {}y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x \left (a^{2}-x^{2}\right )} = \frac {x^{2}}{a \left (a^{2}-x^{2}\right )} \]

[[_2nd_order, _missing_y]]

19386

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +a x = 0 \]

[[_2nd_order, _missing_y]]

19387

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x = a x \]

[[_2nd_order, _missing_y]]

19388

\[ {}x y^{\prime \prime }+x {y^{\prime }}^{2}-y^{\prime } = 0 \]

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

19390

\[ {}y^{\prime }-x y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2}}{a} = 0 \]

[[_2nd_order, _missing_y]]

19391

\[ {}x y^{\prime \prime }+y^{\prime } = x \]

[[_2nd_order, _missing_y]]

19392

\[ {}\left (a^{2}-x^{2}\right ) y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2}}{a} = 0 \]

[[_2nd_order, _missing_y]]

19396

\[ {}y^{\prime \prime }+2 y^{\prime }+4 {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

19397

\[ {}y^{\prime \prime } = a {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

19400

\[ {}a y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_x]]

19401

\[ {}a^{2} y^{\prime \prime } y^{\prime } = x \]

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

19403

\[ {}y^{\prime \prime } = {y^{\prime }}^{2}+1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

19404

\[ {}a y^{\prime \prime } = \sqrt {{y^{\prime }}^{2}+1} \]

[[_2nd_order, _missing_x]]

19405

\[ {}y^{\prime \prime } = a^{2}+k^{2} {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

19406

\[ {}a^{2} {y^{\prime \prime }}^{2} = {y^{\prime }}^{2}+1 \]

[[_2nd_order, _missing_x]]

19407

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

19428

\[ {}-a y^{\prime \prime } = \left ({y^{\prime }}^{2}+1\right )^{{3}/{2}} \]

[[_2nd_order, _missing_x]]

19430

\[ {}{\mathrm e}^{x} \left (x y^{\prime \prime }-y^{\prime }\right ) = x^{3} \]

[[_2nd_order, _missing_y]]

19431

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x = 2 \]

[[_2nd_order, _missing_y]]

19603

\[ {}y^{\prime \prime } = x^{2} \sin \left (x \right ) \]

[[_2nd_order, _quadrature]]

19604

\[ {}y^{\prime \prime } = \sec \left (x \right )^{2} \]

[[_2nd_order, _quadrature]]

19605

\[ {}y^{\prime \prime }+y^{\prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x]]

19606

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

19610

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]