2.4.19 second order bessel ode

Table 2.463: second order bessel ode

#

ODE

CAS classification

Solved?

514

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

515

\[ {}x y^{\prime \prime }+3 y^{\prime }+x y = 0 \]

[_Lienard]

516

\[ {}x y^{\prime \prime }-y^{\prime }+36 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

517

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+\left (8+x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

518

\[ {}36 x^{2} y^{\prime \prime }+60 x y^{\prime }+\left (9 x^{3}-5\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

519

\[ {}16 x^{2} y^{\prime \prime }+24 x y^{\prime }+\left (144 x^{3}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

520

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

521

\[ {}4 x^{2} y^{\prime \prime }-12 x y^{\prime }+\left (15+16 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

522

\[ {}16 x^{2} y^{\prime \prime }-\left (-144 x^{3}+5\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

523

\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }-2 \left (-x^{5}+14\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

524

\[ {}y^{\prime \prime }+x^{4} y = 0 \]

[[_Emden, _Fowler]]

525

\[ {}x y^{\prime \prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler]]

526

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

[_Lienard]

1350

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = g \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1749

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (-16 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1751

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1818

\[ {}2 x y^{\prime \prime }+2 y^{\prime }+2 y = \sin \left (\sqrt {x}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1821

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = x^{3} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1822

\[ {}x y^{\prime \prime }-y^{\prime }-4 x^{3} y = 8 x^{5} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1824

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (-16 x^{2}+3\right ) y = 8 x^{{5}/{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1825

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}+3\right ) y = x^{{7}/{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1826

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-\left (x^{2}-2\right ) y = 3 x^{4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1831

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (x^{2}+6\right ) y = x^{4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2399

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2410

\[ {}y^{\prime \prime }+\frac {t^{2} y}{4} = f \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3805

\[ {}y^{\prime \prime }+x y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6076

\[ {}u^{\prime \prime }-\frac {a^{2} u}{x^{{2}/{3}}} = 0 \]

[[_Emden, _Fowler]]

6077

\[ {}u^{\prime \prime }-\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6078

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6079

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}+a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6080

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}-a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6081

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}+a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6082

\[ {}y^{\prime \prime }-a^{2} y = \frac {6 y}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

6083

\[ {}y^{\prime \prime }+n^{2} y = \frac {6 y}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

6084

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-\left (x^{2}+\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6085

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\frac {\left (-9 a^{2}+4 x^{2}\right ) y}{4 a^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6086

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {25}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6088

\[ {}y^{\prime \prime }+{\mathrm e}^{2 x} y = n^{2} y \]

[[_2nd_order, _with_linear_symmetries]]

6089

\[ {}y^{\prime \prime }+\frac {y}{4 x} = 0 \]

[[_Emden, _Fowler]]

6090

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

6091

\[ {}x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler]]

6411

\[ {}x y^{\prime \prime }+\frac {y^{\prime }}{2}+2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6413

\[ {}2 x y^{\prime \prime }-y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

6698

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6764

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6765

\[ {}x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+y = \frac {x +1}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6766

\[ {}x^{8} y^{\prime \prime }+4 x^{7} y^{\prime }+y = \frac {1}{x^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6770

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (9 x^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6771

\[ {}x y^{\prime \prime }+2 y^{\prime }+4 x y = 4 \]

[[_2nd_order, _linear, _nonhomogeneous]]

7158

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+x^{2} y = 0 \]

[[_Emden, _Fowler]]

7174

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7221

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7362

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7963

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7964

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

[_Bessel]

7965

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}-25\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7966

\[ {}16 x^{2} y^{\prime \prime }+16 x y^{\prime }+\left (16 x^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7967

\[ {}x y^{\prime \prime }+y^{\prime }+x y = 0 \]

[_Lienard]

7968

\[ {}x y^{\prime \prime }+y^{\prime }+\left (x -\frac {4}{x}\right ) y = 0 \]

[_Bessel]

7969

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (9 x^{2}-4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7970

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (36 x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7971

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (25 x^{2}-\frac {4}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7972

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (2 x^{2}-64\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7973

\[ {}x y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

[[_Emden, _Fowler]]

7974

\[ {}x y^{\prime \prime }+3 y^{\prime }+x y = 0 \]

[_Lienard]

7975

\[ {}x y^{\prime \prime }-y^{\prime }+x y = 0 \]

[_Lienard]

7976

\[ {}x y^{\prime \prime }-5 y^{\prime }+x y = 0 \]

[_Lienard]

7977

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7978

\[ {}4 x^{2} y^{\prime \prime }+\left (16 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7979

\[ {}x y^{\prime \prime }+3 y^{\prime }+x^{3} y = 0 \]

[[_Emden, _Fowler]]

7980

\[ {}9 x^{2} y^{\prime \prime }+9 x y^{\prime }+\left (x^{6}-36\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7981

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

[[_Emden, _Fowler]]

7982

\[ {}x y^{\prime \prime }+y^{\prime }-7 x^{3} y = 0 \]

[[_Emden, _Fowler]]

7984

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7985

\[ {}16 x^{2} y^{\prime \prime }+32 x y^{\prime }+\left (x^{4}-12\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7986

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (16 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8302

\[ {}x y^{\prime \prime }+y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8333

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

[_Bessel]

8441

\[ {}t y^{\prime \prime }-y^{\prime }+4 t^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8511

\[ {}y^{\prime \prime }-x y-x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8515

\[ {}y^{\prime \prime }-x^{2} y-x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8516

\[ {}y^{\prime \prime }-x^{2} y-x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8517

\[ {}y^{\prime \prime }-x^{2} y-x^{4} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8518

\[ {}y^{\prime \prime }-x^{2} y-x^{4}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8519

\[ {}y^{\prime \prime }-2 x^{2} y-x^{4}+1 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8520

\[ {}y^{\prime \prime }-x^{3} y-x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8521

\[ {}y^{\prime \prime }-x^{3} y-x^{4} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8528

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x y-x^{2}-\frac {1}{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8529

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{2} y-x^{3}-\frac {1}{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8530

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{3} y-x^{4}-\frac {1}{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8641

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8815

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8817

\[ {}x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+a^{2} y = \frac {1}{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8822

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 8 x^{3} \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8823

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = x^{5} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8833

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 \left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8836

\[ {}x y^{\prime \prime }+2 y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8837

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

[_Lienard]

8844

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-5\right ) y = 0 \]

[_Bessel]

10700

\[ {}y^{\prime \prime }-c \,x^{a} y = 0 \]

[[_Emden, _Fowler]]

10703

\[ {}y^{\prime \prime }+\left ({\mathrm e}^{2 x}-v^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10704

\[ {}y^{\prime \prime }+a \,{\mathrm e}^{b x} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10718

\[ {}y^{\prime \prime }+y^{\prime }+a \,{\mathrm e}^{-2 x} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10719

\[ {}y^{\prime \prime }-y^{\prime }+{\mathrm e}^{2 x} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10768

\[ {}4 y^{\prime \prime }+9 x y = 0 \]

[[_Emden, _Fowler]]

10773

\[ {}x \left (y^{\prime \prime }+y\right )-\cos \left (x \right ) = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10776

\[ {}x y^{\prime \prime }+y^{\prime }+a y = 0 \]

[[_Emden, _Fowler]]

10777

\[ {}x y^{\prime \prime }+y^{\prime }+l x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10779

\[ {}x y^{\prime \prime }-y^{\prime }+a y = 0 \]

[[_Emden, _Fowler]]

10780

\[ {}x y^{\prime \prime }-y^{\prime }-y a \,x^{3} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10782

\[ {}x y^{\prime \prime }+2 y^{\prime }-x y-{\mathrm e}^{x} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10783

\[ {}x y^{\prime \prime }+2 y^{\prime }+a x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10784

\[ {}x y^{\prime \prime }+2 y^{\prime }+a \,x^{2} y = 0 \]

[[_Emden, _Fowler]]

10785

\[ {}x y^{\prime \prime }-2 y^{\prime }+a y = 0 \]

[[_Emden, _Fowler]]

10786

\[ {}x y^{\prime \prime }+v y^{\prime }+a y = 0 \]

[[_Emden, _Fowler]]

10787

\[ {}x y^{\prime \prime }+a y^{\prime }+b x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10788

\[ {}x y^{\prime \prime }+a y^{\prime }+b \,x^{\operatorname {a1}} y = 0 \]

[[_Emden, _Fowler]]

10812

\[ {}2 x y^{\prime \prime }+y^{\prime }+a y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10817

\[ {}4 x y^{\prime \prime }+2 y^{\prime }-y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10822

\[ {}a x y^{\prime \prime }+b y^{\prime }+c y = 0 \]

[[_Emden, _Fowler]]

10831

\[ {}x^{2} y^{\prime \prime }+\left (a x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10832

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10833

\[ {}x^{2} y^{\prime \prime }-\left (a \,x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10834

\[ {}x^{2} y^{\prime \prime }+\left (a^{2} x^{2}-6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10835

\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{2}-v \left (v -1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10837

\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{k}-b \left (b -1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10843

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-\left (x +a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10844

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (-v^{2}+x^{2}\right ) y = 0 \]

[_Bessel]

10845

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (-v^{2}+x^{2}\right ) y-f \left (x \right ) = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10846

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (l \,x^{2}-v^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10849

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+\left (a \,x^{m}+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10851

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+\left (a x -b^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10852

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+\left (a \,x^{2}+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10858

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10859

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y-\frac {x^{2}}{\cos \left (x \right )} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10860

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y-\frac {x^{3}}{\cos \left (x \right )} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10861

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (a^{2} x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10862

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+\left (-v^{2}+x^{2}+1\right ) y-f \left (x \right ) = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10867

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }-\left (2 x^{3}-4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10871

\[ {}x^{2} y^{\prime \prime }+a x y^{\prime }+\left (b \,x^{m}+c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10953

\[ {}4 x^{2} y^{\prime \prime }+\left (4 a^{2} x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10955

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (-v^{2}+x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10957

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }-\left (4 x^{2}+1\right ) y-4 \sqrt {x^{3}}\, {\mathrm e}^{x} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10958

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }-\left (a \,x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10969

\[ {}16 x^{2} y^{\prime \prime }+\left (4 x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10970

\[ {}16 x^{2} y^{\prime \prime }+32 x y^{\prime }-\left (4 x +5\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11022

\[ {}y^{\prime \prime } = -\frac {a y}{x^{4}} \]

[[_Emden, _Fowler]]

11027

\[ {}y^{\prime \prime } = -\frac {y^{\prime }}{x}-\frac {y}{x^{4}} \]

[[_Emden, _Fowler]]

11030

\[ {}y^{\prime \prime } = -\frac {2 y^{\prime }}{x}-\frac {a^{2} y}{x^{4}} \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11080

\[ {}y^{\prime \prime } = \frac {y^{\prime }}{x}-\frac {a y}{x^{6}} \]

[[_Emden, _Fowler]]

11349

\[ {}x^{2} y^{\prime \prime }-\left (2 a +b -1\right ) x y^{\prime }+\left (c^{2} b^{2} x^{2 b}+a \left (a +b \right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12183

\[ {}y^{\prime \prime }-a \,x^{n} y = 0 \]

[[_Emden, _Fowler]]

12237

\[ {}x y^{\prime \prime }+\frac {y^{\prime }}{2}+a y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12238

\[ {}x y^{\prime \prime }+a y^{\prime }+b y = 0 \]

[[_Emden, _Fowler]]

12239

\[ {}x y^{\prime \prime }+a y^{\prime }+b x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12243

\[ {}x y^{\prime \prime }+a y^{\prime }+b \,x^{n} y = 0 \]

[[_Emden, _Fowler]]

12287

\[ {}x^{2} y^{\prime \prime }+\left (a x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12288

\[ {}x^{2} y^{\prime \prime }+\left (a^{2} x^{2}-n \left (n +1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12289

\[ {}x^{2} y^{\prime \prime }-\left (a^{2} x^{2}+n \left (n +1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12292

\[ {}x^{2} y^{\prime \prime }-\left (a \,x^{3}+\frac {5}{16}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12294

\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12300

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\left (n +\frac {1}{2}\right )^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12301

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-\left (x^{2}+\left (n +\frac {1}{2}\right )^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12302

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (-\nu ^{2}+x^{2}\right ) y = 0 \]

[_Bessel]

12303

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-\left (\nu ^{2}+x^{2}\right ) y = 0 \]

[[_Bessel, _modified]]

12304

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-\left (a^{2} x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12305

\[ {}x^{2} y^{\prime \prime }-2 a x y^{\prime }+\left (b^{2} x^{2}+a \left (a +1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12306

\[ {}x^{2} y^{\prime \prime }-2 a x y^{\prime }+\left (-b^{2} x^{2}+a \left (a +1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12308

\[ {}x^{2} y^{\prime \prime }+a x y^{\prime }+\left (b \,x^{n}+c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12358

\[ {}x^{3} y^{\prime \prime }+\left (a x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12387

\[ {}x^{4} y^{\prime \prime }+a y = 0 \]

[[_Emden, _Fowler]]

12415

\[ {}x^{6} y^{\prime \prime }-x^{5} y^{\prime }+a y = 0 \]

[[_Emden, _Fowler]]

12441

\[ {}y^{\prime \prime }+a \,{\mathrm e}^{\lambda x} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12442

\[ {}y^{\prime \prime }+\left (a \,{\mathrm e}^{x}-b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12448

\[ {}y^{\prime \prime }+a y^{\prime }+b \,{\mathrm e}^{2 a x} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12449

\[ {}y^{\prime \prime }-a y^{\prime }+b \,{\mathrm e}^{2 a x} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12450

\[ {}y^{\prime \prime }+a y^{\prime }+\left (b \,{\mathrm e}^{\lambda x}+c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12648

\[ {}x y^{\prime \prime }+2 y^{\prime }-x y = 2 \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12652

\[ {}x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+y = \frac {1}{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12656

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (-x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12659

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (x^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13338

\[ {}t x^{\prime \prime }-2 x^{\prime }+9 t^{5} x = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13346

\[ {}t^{3} x^{\prime \prime }+3 t^{2} x^{\prime }+x = 0 \]

[[_Emden, _Fowler]]

13591

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (9 x^{2}-\frac {1}{25}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13634

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

[[_Emden, _Fowler]]

13810

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{4 x^{2}}\right ) y = x \]

[[_2nd_order, _linear, _nonhomogeneous]]

13822

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

[[_Emden, _Fowler]]

13823

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

13824

\[ {}x y^{\prime \prime }+x^{2} y = 0 \]

[[_Emden, _Fowler]]

13829

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (-\nu ^{2}+x^{2}\right ) y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14979

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14982

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15200

\[ {}x y^{\prime \prime }-y^{\prime }-4 x^{3} y = x^{3} {\mathrm e}^{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16036

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y = t^{3}+2 t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16038

\[ {}t y^{\prime \prime }+2 y^{\prime }+t y = -t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16040

\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y = 16 t^{{3}/{2}} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16839

\[ {}4 x y^{\prime \prime }+2 y^{\prime }+y = \frac {6+x}{x^{2}} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16843

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}-y = 4 \,{\mathrm e}^{x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16892

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (4 x^{2}-\frac {1}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16893

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16894

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+\frac {y}{9} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16895

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16896

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+4 \left (x^{4}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16897

\[ {}x y^{\prime \prime }+\frac {y^{\prime }}{2}+\frac {y}{4} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16898

\[ {}y^{\prime \prime }+\frac {5 y^{\prime }}{x}+y = 0 \]

[_Lienard]

16899

\[ {}y^{\prime \prime }+\frac {3 y^{\prime }}{x}+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

17221

\[ {}y^{\prime \prime }+t y = 0 \]

[[_Emden, _Fowler]]

17224

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (-\nu ^{2}+x^{2}\right ) y = 0 \]

[_Bessel]

17226

\[ {}y^{\prime \prime }-t y = \frac {1}{\pi } \]

unknown

17233

\[ {}t y^{\prime \prime }+3 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

17378

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 3 x^{{3}/{2}} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17380

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = g \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17672

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+y = 0 \]

[_Lienard]

17708

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}+\left (1-\frac {m^{2}}{x^{2}}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

17709

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+y = 0 \]

[_Lienard]

17710

\[ {}y^{\prime \prime }+\frac {2 p y^{\prime }}{x}+y = 0 \]

[_Lienard]

17711

\[ {}x y^{\prime \prime }-y^{\prime }-x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

17937

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (x^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18209

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+k^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18278

\[ {}x y^{\prime \prime }+2 y^{\prime } = x y \]

[[_2nd_order, _with_linear_symmetries]]