2.2.241 Problems 24001 to 24100

Table 2.495: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

24001

\begin{align*} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y&=x -{\mathrm e}^{3 x} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.176

24002

\begin{align*} y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }-2 y&=\cosh \left (x \right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.615

24003

\begin{align*} y^{\prime \prime \prime }-y&=x^{n} \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

28.722

24004

\begin{align*} y^{\prime \prime }-y&=4 \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

28.958

24005

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.800

24006

\begin{align*} y^{\prime \prime }+y&=\csc \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.069

24007

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=\frac {{\mathrm e}^{2 x}}{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

29.047

24008

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }&=f \left (x \right ) \\ \end{align*}

[[_3rd_order, _missing_y]]

0.239

24009

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{2} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.227

24010

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{2} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.222

24011

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.234

24012

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.238

24013

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{3 x} \sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

31.572

24014

\begin{align*} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y&=2 x \,{\mathrm e}^{3 x} \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.171

24015

\begin{align*} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime }&={\mathrm e}^{x} \\ \end{align*}

[[_high_order, _missing_y]]

0.172

24016

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x} \ln \left (x \right )}{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

29.016

24017

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=\sin \left (x \right ) {\mathrm e}^{x} x \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.278

24018

\begin{align*} y^{\prime \prime \prime }+3 k y^{\prime \prime }+3 k^{2} y^{\prime }+k^{3} y&={\mathrm e}^{-x k} f^{\prime \prime \prime }\left (x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.562

24019

\begin{align*} y^{\prime \prime }-4 y^{\prime }+5 y&={\mathrm e}^{2 x} \sec \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

28.118

24020

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime }-2 y&=2+x +x \,{\mathrm e}^{-x}+x^{2} {\mathrm e}^{2 x} \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.541

24021

\begin{align*} y^{\prime \prime }+y&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.648

24022

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

5.572

24023

\begin{align*} -4 y^{\prime }+y^{\prime \prime \prime }&=x^{2}-x \\ \end{align*}

[[_3rd_order, _missing_y]]

0.153

24024

\begin{align*} y^{\prime \prime \prime }+4 y^{\prime \prime }&={\mathrm e}^{-4 x} \\ \end{align*}

[[_3rd_order, _missing_y]]

0.154

24025

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

28.630

24026

\begin{align*} y^{\prime \prime \prime \prime }+y^{\prime \prime }&=\sin \left (x \right ) \\ \end{align*}

[[_high_order, _missing_y]]

0.392

24027

\begin{align*} y^{\left (6\right )}+y^{\prime \prime \prime \prime }-y&=4 x^{5}-6 x^{2}+2 \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.294

24028

\begin{align*} y^{\left (8\right )}+y&=x^{15} \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

7.146

24029

\begin{align*} y^{\prime \prime }+2 y^{\prime }-2 y&=x^{2}+4 x +3 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

30.842

24030

\begin{align*} y^{\prime \prime }+3 y&=-x^{6}+x^{4} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

54.398

24031

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&=x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

36.145

24032

\begin{align*} y^{\left (8\right )}+8 y^{\left (7\right )}+28 y^{\left (6\right )}+56 y^{\left (5\right )}+70 y^{\prime \prime \prime \prime }+56 y^{\prime \prime \prime }+28 y^{\prime \prime }+8 y^{\prime }&={\mathrm e}^{-x} x^{9} \\ \end{align*}

[[_high_order, _missing_y]]

4.467

24033

\begin{align*} y^{\prime \prime }-6 y^{\prime }+8 y&={\mathrm e}^{x} x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

36.329

24034

\begin{align*} y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y&={\mathrm e}^{2 x} \cos \left (3 x \right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.240

24035

\begin{align*} 6 x^{2} y^{\prime \prime }-5 y^{\prime } x +4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.148

24036

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.143

24037

\begin{align*} x \left (x +1\right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-\left (2+x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.162

24038

\begin{align*} x^{2} y^{\prime \prime }+x^{2} y^{\prime }-y x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

29.099

24039

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3.174

24040

\begin{align*} y^{\prime \prime }+y^{\prime } x +\left (3 x -9\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.203

24041

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=6 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.819

24042

\begin{align*} x^{2} y^{\prime \prime }+x^{2} y^{\prime }-y x&=2 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

29.213

24043

\begin{align*} y^{\prime \prime }+p \left (x \right ) y^{\prime }+q \left (x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.450

24044

\begin{align*} x \left (x -1\right ) y^{\prime \prime }+\left (-x^{2}+2 x +1\right ) y^{\prime }-\left (x +1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

52.607

24045

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{x} \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.384

24046

\begin{align*} y^{\prime \prime }+y&=x \sin \left (x \right ) \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.500

24047

\begin{align*} y^{\prime \prime \prime }+y&={\mathrm e}^{x} \sin \left (x \right ) \\ \end{align*}
Using Laplace transform method.

[[_3rd_order, _linear, _nonhomogeneous]]

0.556

24048

\begin{align*} y^{\prime \prime \prime \prime }+16 y&=x^{2}-4 \cos \left (3 x \right ) \\ \end{align*}
Using Laplace transform method.

[[_high_order, _linear, _nonhomogeneous]]

0.706

24049

\begin{align*} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+4 y^{\prime \prime }&=16 \,{\mathrm e}^{2 x} \\ \end{align*}
Using Laplace transform method.

[[_high_order, _missing_y]]

0.497

24050

\begin{align*} y^{\prime \prime \prime \prime }-12 y^{\prime \prime \prime }+54 y^{\prime \prime }-108 y^{\prime }+81 y&=x^{2} {\mathrm e}^{3 x} \\ \end{align*}
Using Laplace transform method.

[[_high_order, _linear, _nonhomogeneous]]

0.490

24051

\begin{align*} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-y^{\prime }+2 y&=-2 x^{4}+x^{2} \\ \end{align*}
Using Laplace transform method.

[[_high_order, _linear, _nonhomogeneous]]

0.792

24052

\begin{align*} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+4 y^{\prime \prime }&=\cosh \left (2 x \right ) \\ \end{align*}
Using Laplace transform method.

[[_high_order, _missing_y]]

0.530

24053

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=4 x^{2} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.426

24054

\begin{align*} y^{\prime \prime }+9 y&=3 x -6 \\ y \left (0\right ) &= {\frac {1}{3}} \\ y^{\prime }\left (0\right ) &= {\frac {4}{3}} \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.411

24055

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=2 x \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= -{\frac {1}{2}} \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_y]]

0.321

24056

\begin{align*} y^{\left (5\right )}&=120 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 6 \\ y^{\prime \prime \prime \prime }\left (0\right ) &= 24 \\ \end{align*}
Using Laplace transform method.

[[_high_order, _quadrature]]

0.534

24057

\begin{align*} 2 y^{\prime }+y&={\mathrm e}^{x} \\ y \left (2\right ) &= \frac {4 \,{\mathrm e}^{2}}{3} \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.371

24058

\begin{align*} y^{\prime \prime }+y&=x^{2} \\ y \left (\frac {\pi }{2}\right ) &= \frac {\pi ^{2}}{4} \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= 2 \pi \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.446

24059

\begin{align*} y^{\prime \prime \prime }-y^{\prime }&=x^{3}+{\mathrm e}^{-2 x} \\ \end{align*}

[[_3rd_order, _missing_y]]

0.183

24060

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

35.362

24061

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +2 y&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

37.232

24062

\begin{align*} y^{\prime \prime }+y^{\prime }&=x +{\mathrm e}^{-x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_y]]

2.374

24063

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=1+\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

36.418

24064

\begin{align*} y^{\left (10\right )}+y&=x^{10} \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

31.379

24065

\begin{align*} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y&={\mathrm e}^{x}+{\mathrm e}^{2 x}+{\mathrm e}^{3 x} \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.385

24066

\begin{align*} x^{\prime }-x-y^{\prime }&=0 \\ y^{\prime }+3 x-2 y&=0 \\ \end{align*}

system_of_ODEs

1.427

24067

\begin{align*} y^{\prime \prime }+3 y^{\prime }-4 y&=12 \,{\mathrm e}^{2 x} \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.881

24068

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{x}+1\right )^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

29.162

24069

\begin{align*} y^{\prime \prime \prime }-2 y^{\prime \prime }+y&=x^{5}+2 x^{2} \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.199

24070

\begin{align*} y^{\prime \prime }+i y&=\cosh \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

30.507

24071

\begin{align*} 4 y+y^{\prime \prime }&=x -4 \\ y \left (0\right ) &= {\frac {1}{2}} \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

38.581

24072

\begin{align*} y^{\prime \prime }-4 y^{\prime }-5 y&=x^{2} {\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

37.312

24073

\begin{align*} y^{\prime \prime }-y^{\prime }-y&=\sinh \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

31.214

24074

\begin{align*} y^{\left (6\right )}+y&=x^{7}+2 x^{3} \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

2.994

24075

\begin{align*} y^{\prime \prime }+y&=\cot \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.305

24076

\begin{align*} x-y+z^{\prime }&=0 \\ x^{\prime }-y&=1 \\ y^{\prime }-y+z&=0 \\ \end{align*}

system_of_ODEs

1.309

24077

\begin{align*} x^{2} y^{\prime \prime }+a x y^{\prime }+b y&=f \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

12.957

24078

\begin{align*} 4 y^{\prime \prime }+x^{2} y^{\prime }-y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.477

24079

\begin{align*} y^{\prime \prime }-2 y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Lienard]

0.455

24080

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }+3 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_separable]

0.358

24081

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +20 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Gegenbauer]

0.551

24082

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +56 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Gegenbauer]

0.575

24083

\begin{align*} 4 \left (-x^{2}+1\right ) y^{\prime \prime }-8 y^{\prime } x +3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.611

24084

\begin{align*} \left (x^{2}+2\right ) y^{\prime \prime }+3 y^{\prime } x -y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.576

24085

\begin{align*} y^{\prime \prime }+3 x^{3} y^{\prime }+x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.468

24086

\begin{align*} \left (x^{3}+8\right ) y^{\prime \prime }+3 x^{2} y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.575

24087

\begin{align*} \left (x^{3}-8\right ) y^{\prime \prime }-4 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.500

24088

\begin{align*} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_3rd_order, _with_linear_symmetries]]

0.036

24089

\begin{align*} \left (-x^{4}+1\right ) y^{\prime \prime \prime }-24 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_3rd_order, _exact, _linear, _homogeneous]]

0.036

24090

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (x^{2}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.742

24091

\begin{align*} y^{\prime \prime } x +y^{\prime }-x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.759

24092

\begin{align*} x^{2} y^{\prime \prime \prime }-y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_3rd_order, _with_linear_symmetries]]

0.036

24093

\begin{align*} x^{4} y^{\prime \prime \prime }+\frac {x^{2} y^{\prime \prime }}{x +1}-\left (x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_3rd_order, _with_linear_symmetries]]

0.039

24094

\begin{align*} x^{4} y^{\prime \prime \prime }-\frac {x^{2} y^{\prime }}{x +1}+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_3rd_order, _with_linear_symmetries]]

0.036

24095

\begin{align*} x^{2} y^{\prime \prime }+\sin \left (x \right ) y^{\prime }-2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.803

24096

\begin{align*} x^{2} y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_separable]

0.089

24097

\begin{align*} y^{\prime } x +\left (x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_separable]

0.408

24098

\begin{align*} x^{2} y^{\prime \prime }+5 y^{\prime } x -5 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.726

24099

\begin{align*} 2 y^{\prime \prime } x +y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.928

24100

\begin{align*} 25 x^{2} y^{\prime \prime }+\left (2 x +4\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.797