2.4.25 second order ode flip role

Table 2.499: second order ode flip role

#

ODE

CAS classification

Solved?

11721

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}-1-2 a y \left ({y^{\prime }}^{2}+1\right )^{{3}/{2}} = 0 \]

[[_2nd_order, _missing_x]]

11786

\[ {}2 y \left (1-y\right ) y^{\prime \prime }-\left (1-3 y\right ) {y^{\prime }}^{2}+h \left (y\right ) = 0 \]

[[_2nd_order, _missing_x]]

11789

\[ {}3 y \left (1-y\right ) y^{\prime \prime }-2 \left (1-2 y\right ) {y^{\prime }}^{2}-h \left (y\right ) = 0 \]

[[_2nd_order, _missing_x]]

11790

\[ {}\left (1-y\right ) y^{\prime \prime }-3 \left (1-2 y\right ) {y^{\prime }}^{2}-h \left (y\right ) = 0 \]

[[_2nd_order, _missing_x]]

11791

\[ {}a y \left (-1+y\right ) y^{\prime \prime }+\left (b y+c \right ) {y^{\prime }}^{2}+h \left (y\right ) = 0 \]

[[_2nd_order, _missing_x]]

11813

\[ {}h \left (y\right ) y^{\prime \prime }+a h \left (y\right ) {y^{\prime }}^{2}+j \left (y\right ) = 0 \]

[[_2nd_order, _missing_x]]

11853

\[ {}y^{\prime \prime }-f \left (y\right ) = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

13927

\[ {}m x^{\prime \prime } = f \left (x\right ) \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]