2.2.25 Problems 2401 to 2500

Table 2.51: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

2401

t2yyt+y=0

[[_Emden, _Fowler]]

2402

y+y=sec(t)

[[_2nd_order, _linear, _nonhomogeneous]]

2403

y4y+4y=e2tt

[[_2nd_order, _linear, _nonhomogeneous]]

2404

2y3y+y=(t2+1)et

[[_2nd_order, _linear, _nonhomogeneous]]

2405

y3y+2y=te3t+1

[[_2nd_order, _linear, _nonhomogeneous]]

2406

3y+4y+y=sin(t)et
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2407

y+4y+4y=t5/2e2t
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2408

y3y+2y=1+t
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2409

yy=f(t)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2410

y+t2y4=fcos(t)

[[_2nd_order, _linear, _nonhomogeneous]]

2411

y2tyt2+1+2yt2+1=t2+1

[[_2nd_order, _with_linear_symmetries]]

2412

my+cy+ky=F0cos(ωt)

[[_2nd_order, _linear, _nonhomogeneous]]

2413

y+yt+y=0

[[_2nd_order, _exact, _linear, _homogeneous]]

2414

yty=0

[[_Emden, _Fowler]]

2415

(t2+2)yyt3y=0

[[_2nd_order, _exact, _linear, _homogeneous]]

2416

yt3y=0

[[_Emden, _Fowler]]

2417

t(2t)y6(t1)y4y=0
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

2418

y+t2y=0
i.c.

[[_Emden, _Fowler]]

2419

yt3y=0
i.c.

[[_Emden, _Fowler]]

2420

y+(t2+2t+1)y(4+4t)y=0
i.c.

[[_2nd_order, _with_linear_symmetries]]

2421

y2yt+λy=0

[[_2nd_order, _with_linear_symmetries]]

2422

(t2+1)y2yt+α(α+1)y=0

[_Gegenbauer]

2423

(t2+1)yyt+α2y=0

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2424

y+t3y+3t2y=0

[[_2nd_order, _exact, _linear, _homogeneous]]

2425

y+t3y+3t2y=0
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

2426

(1t)y+yt+y=0
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

2427

y+y+ty=0
i.c.

[[_2nd_order, _with_linear_symmetries]]

2428

y+yt+ety=0
i.c.

[[_2nd_order, _with_linear_symmetries]]

2429

y+y+ety=0
i.c.

[[_2nd_order, _with_linear_symmetries]]

2430

y+y+ety=0
i.c.

[[_2nd_order, _with_linear_symmetries]]

2431

t2y5yt+9y=0

[[_Emden, _Fowler]]

2432

t2y+5yt5y=0

[[_Emden, _Fowler]]

2433

2t2y+3yty=0

[[_2nd_order, _exact, _linear, _homogeneous]]

2434

(t1)2y2(t1)y+2y=0

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2435

t2y+3yt+y=0

[[_2nd_order, _exact, _linear, _homogeneous]]

2436

t2yyt+y=0

[[_Emden, _Fowler]]

2437

(t2)2y+5(t2)y+4y=0

[[_2nd_order, _with_linear_symmetries]]

2438

t2y+yt+y=0

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2439

t2yyt+2y=0
i.c.

[[_Emden, _Fowler]]

2440

t2y3yt+4y=0
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2441

t(t2)2y+yt+y=0

[[_2nd_order, _with_linear_symmetries]]

2442

t(t2)2y+yt+y=0

[[_2nd_order, _with_linear_symmetries]]

2443

sin(t)y+cos(t)y+yt=0

[[_2nd_order, _with_linear_symmetries]]

2444

(et1)y+ety+y=0

[[_2nd_order, _with_linear_symmetries]]

2445

(t2+1)y+ysin(1+t)+y=0

[[_2nd_order, _with_linear_symmetries]]

2446

t3y+sin(t3)y+ty=0

[[_2nd_order, _with_linear_symmetries]]

2447

2t2y+3yt(1+t)y=0

[[_2nd_order, _with_linear_symmetries]]

2448

2ty+(12t)yy=0

[_Laguerre]

2449

2ty+(1+t)y2y=0

[[_2nd_order, _with_linear_symmetries]]

2450

2t2yyt+(1+t)y=0

[[_2nd_order, _with_linear_symmetries]]

2451

4ty+3y3y=0

[[_Emden, _Fowler]]

2452

2t2y+(t2t)y+y=0

[[_2nd_order, _with_linear_symmetries]]

2453

t3yyt(t2+54)y=0

[[_2nd_order, _with_linear_symmetries]]

2454

t2y+(t2+t)yy=0

[[_2nd_order, _with_linear_symmetries]]

2455

ty(t2+2)y+ty=0

[_Lienard]

2456

t2y+(t2+3t)yty=0

[_Laguerre, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2457

t2y+t(1+t)yy=0

[[_2nd_order, _with_linear_symmetries]]

2458

ty(t+4)y+2y=0

[_Laguerre]

2459

t2y+(t23t)y+3y=0

[[_2nd_order, _with_linear_symmetries]]

2460

t2y+yt(1+t)y=0

[[_2nd_order, _with_linear_symmetries]]

2461

ty+yt+2y=0

[[_2nd_order, _with_linear_symmetries]]

2462

ty+(t2+1)y+4ty=0

[[_2nd_order, _with_linear_symmetries]]

2463

t2y+yt+t2y=0

[_Lienard]

2464

t2y+yt+(t2v2)y=0

[_Bessel]

2465

ty+(1t)y+λy=0

[_Laguerre]

2466

2sin(t)y+(1t)y2y=0

[[_2nd_order, _with_linear_symmetries]]

2467

t2y+yt+(1+t)y=0

[[_2nd_order, _with_linear_symmetries]]

2468

ty+y4y=0

[[_Emden, _Fowler]]

2469

t2yt(1+t)y+y=0

[[_2nd_order, _with_linear_symmetries]]

2470

t2y+yt+(t21)y=0

[_Bessel]

2471

ty+3y3y=0

[[_Emden, _Fowler]]

2472

cos(t)y+y=0

[_separable]

2473

tsin(t)y+y=0

[_separable]

2474

2tyt2+1+y=1t2+1

[_linear]

2475

y+y=ett

[[_linear, ‘class A‘]]

2476

t2y+y=1

[_linear]

2477

t2y+y=t2

[_separable]

2478

tyt2+1+y=1t3yt4+1

[_linear]

2479

t2+1y+y=0
i.c.

[_separable]

2480

t2+1yet+y=0
i.c.

[_separable]

2481

t2+1yet+y=0
i.c.

[_separable]

2482

y2ty=t
i.c.

[_separable]

2483

ty+y=1+t
i.c.

[_linear]

2484

y+y=1t2+1
i.c.

[_linear]

2485

y2ty=1
i.c.

[_linear]

2486

ty+(t2+1)y=(t2+1)5/2

[_linear]

2487

4ty+(t2+1)y=t
i.c.

[_separable]

2488

y+y={20t101<t
i.c.

[[_linear, ‘class A‘]]

2489

(t2+1)y=1+y2

[_separable]

2490

y=(1+t)(1+y)

[_separable]

2491

y=1t+y2ty2

[_separable]

2492

y=e3+t+y

[_separable]

2493

cos(y)sin(t)y=cos(t)sin(y)

[_separable]

2494

t2(1+y2)+2yy=0
i.c.

[_separable]

2495

y=2ty+t2y
i.c.

[_separable]

2496

1+y2y=ty3t2+1
i.c.

[_separable]

2497

y=3t2+4t+22+2y
i.c.

[_separable]

2498

cos(y)y=tsin(y)t2+1
i.c.

[_separable]

2499

y=k(ay)(by)
i.c.

[_quadrature]

2500

3yt=cos(t)y
i.c.

[_separable]