# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}y^{\prime } = \frac {2 y}{t}+\frac {y^{2}}{t^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
2.081 |
|
\[
{}t y^{\prime } = y+\sqrt {t^{2}+y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
2.769 |
|
\[
{}2 t y y^{\prime } = 3 y^{2}-t^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
4.039 |
|
\[
{}\left (t -\sqrt {t y}\right ) y^{\prime } = y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
7.040 |
|
\[
{}y^{\prime } = \frac {y+t}{t -y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
2.558 |
|
\[
{}{\mathrm e}^{\frac {t}{y}} \left (y-t \right ) y^{\prime }+y \left (1+{\mathrm e}^{\frac {t}{y}}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
4.599 |
|
\[
{}y^{\prime } = \frac {t +y+1}{t -y+3}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
1.873 |
|
\[
{}1+t -2 y+\left (4 t -3 y-6\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
5.270 |
|
\[
{}t +2 y+3+\left (2 t +4 y-1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
1.399 |
|
\[
{}2 t \sin \left (y\right )+{\mathrm e}^{t} y^{3}+\left (t^{2} \cos \left (y\right )+3 \,{\mathrm e}^{t} y^{2}\right ) y^{\prime } = 0
\] |
[_exact] |
✓ |
5.080 |
|
\[
{}1+{\mathrm e}^{t y} \left (t y+1\right )+\left (1+{\mathrm e}^{t y} t^{2}\right ) y^{\prime } = 0
\] |
[_exact] |
✓ |
2.083 |
|
\[
{}\sec \left (t \right ) \tan \left (t \right )+\sec \left (t \right )^{2} y+\left (\tan \left (t \right )+2 y\right ) y^{\prime } = 0
\] |
[_exact, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
18.800 |
|
\[
{}\frac {y^{2}}{2}-2 \,{\mathrm e}^{t} y+\left (-{\mathrm e}^{t}+y\right ) y^{\prime } = 0
\] |
[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
1.658 |
|
\[
{}2 t y^{3}+3 t^{2} y^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
2.215 |
|
\[
{}2 t \cos \left (y\right )+3 t^{2} y+\left (2 t^{2}+2 y\right ) y^{\prime } = 0
\] |
[‘x=_G(y,y’)‘] |
✗ |
2.552 |
|
\[
{}3 t^{2}+4 t y+\left (2 t^{2}+2 y\right ) y^{\prime } = 0
\] |
[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
1.594 |
|
\[
{}2 t -2 \,{\mathrm e}^{t y} \sin \left (2 t \right )+{\mathrm e}^{t y} \cos \left (2 t \right ) y+\left (-3+{\mathrm e}^{t y} t \cos \left (2 t \right )\right ) y^{\prime } = 0
\] |
[_exact] |
✓ |
75.677 |
|
\[
{}3 t y+y^{2}+\left (t^{2}+t y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
5.378 |
|
\[
{}y^{\prime } = 2 t \left (1+y\right )
\] |
[_separable] |
✓ |
1.428 |
|
\[
{}y^{\prime } = t^{2}+y^{2}
\] |
[[_Riccati, _special]] |
✗ |
1.438 |
|
\[
{}y^{\prime } = {\mathrm e}^{t}+y^{2}
\] |
[_Riccati] |
✓ |
2.129 |
|
\[
{}y^{\prime } = y^{2}+\cos \left (t \right )^{2}
\] |
[_Riccati] |
✓ |
4.967 |
|
\[
{}y^{\prime } = 1+y+y^{2} \cos \left (t \right )
\] |
[_Riccati] |
✗ |
11.955 |
|
\[
{}y^{\prime } = t +y^{2}
\] |
[[_Riccati, _special]] |
✓ |
1.378 |
|
\[
{}y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2}
\] |
[_Riccati] |
✗ |
1.174 |
|
\[
{}y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2}
\] |
[_Riccati] |
✗ |
0.329 |
|
\[
{}y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2}
\] |
[_Riccati] |
✗ |
0.311 |
|
\[
{}y^{\prime } = y+{\mathrm e}^{-y}+{\mathrm e}^{-t}
\] |
[‘y=_G(x,y’)‘] |
✗ |
0.779 |
|
\[
{}y^{\prime } = y^{3}+{\mathrm e}^{-5 t}
\] |
[_Abel] |
✗ |
0.878 |
|
\[
{}y^{\prime } = {\mathrm e}^{\left (y-t \right )^{2}}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
3.249 |
|
\[
{}y^{\prime } = \left (4 y+{\mathrm e}^{-t^{2}}\right ) {\mathrm e}^{2 y}
\] |
[‘y=_G(x,y’)‘] |
✗ |
0.809 |
|
\[
{}y^{\prime } = {\mathrm e}^{-t}+\ln \left (1+y^{2}\right )
\] |
[‘y=_G(x,y’)‘] |
✗ |
0.829 |
|
\[
{}y^{\prime } = \frac {\left (1+\cos \left (4 t \right )\right ) y}{4}-\frac {\left (1-\cos \left (4 t \right )\right ) y^{2}}{800}
\] |
[_Bernoulli] |
✓ |
8.513 |
|
\[
{}y^{\prime } = t^{2}+y^{2}
\] |
[[_Riccati, _special]] |
✓ |
1.721 |
|
\[
{}y^{\prime } = t \left (1+y\right )
\] |
[_separable] |
✓ |
1.062 |
|
\[
{}y^{\prime } = t y^{a}
\] |
[_separable] |
✓ |
4.351 |
|
\[
{}y^{\prime } = t \sqrt {1-y^{2}}
\] |
[_separable] |
✓ |
5.280 |
|
\[
{}y^{\prime } = y+{\mathrm e}^{-y}+2 t
\] |
[‘y=_G(x,y’)‘] |
✗ |
0.699 |
|
\[
{}y^{\prime } = 1-t +y^{2}
\] |
[_Riccati] |
✓ |
1.598 |
|
\[
{}y^{\prime } = \frac {t^{2}+y^{2}}{1+t +y^{2}}
\] |
[_rational] |
✗ |
0.719 |
|
\[
{}y^{\prime } = {\mathrm e}^{t} y^{2}-2 y
\] |
[[_1st_order, _with_linear_symmetries], _Bernoulli] |
✓ |
1.440 |
|
\[
{}y^{\prime } = t y^{3}-y
\] |
[_Bernoulli] |
✓ |
3.628 |
|
\[
{}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.530 |
|
\[
{}y^{\prime \prime }+t y^{\prime }+y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.118 |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.455 |
|
\[
{}6 y^{\prime \prime }-7 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.334 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.671 |
|
\[
{}3 y^{\prime \prime }+6 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.692 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.691 |
|
\[
{}2 y^{\prime \prime }+y^{\prime }-10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.823 |
|
\[
{}5 y^{\prime \prime }+5 y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.095 |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.042 |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.591 |
|
\[
{}t^{2} y^{\prime \prime }+\alpha t y^{\prime }+\beta y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.786 |
|
\[
{}t^{2} y^{\prime \prime }+5 t y^{\prime }-2 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
2.993 |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.454 |
|
\[
{}2 y^{\prime \prime }+3 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.309 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.469 |
|
\[
{}4 y^{\prime \prime }-y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.317 |
|
\[
{}y^{\prime \prime }+y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.917 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.199 |
|
\[
{}2 y^{\prime \prime }-y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
2.827 |
|
\[
{}3 y^{\prime \prime }-2 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
3.720 |
|
\[
{}y^{\prime \prime }+w^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.432 |
|
\[
{}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.278 |
|
\[
{}t^{2} y^{\prime \prime }+2 t y^{\prime }+2 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
2.107 |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.330 |
|
\[
{}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.565 |
|
\[
{}9 y^{\prime \prime }+6 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.792 |
|
\[
{}4 y^{\prime \prime }-4 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.520 |
|
\[
{}6 y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
2.596 |
|
\[
{}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.847 |
|
\[
{}y^{\prime \prime }-\frac {2 \left (1+t \right ) y^{\prime }}{t^{2}+2 t -1}+\frac {2 y}{t^{2}+2 t -1} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.092 |
|
\[
{}y^{\prime \prime }-4 t y^{\prime }+\left (4 t^{2}-2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.312 |
|
\[
{}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0
\] |
[_Gegenbauer] |
✓ |
0.091 |
|
\[
{}\left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.083 |
|
\[
{}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+6 y = 0
\] |
[_Gegenbauer] |
✓ |
0.083 |
|
\[
{}\left (2 t +1\right ) y^{\prime \prime }-4 \left (1+t \right ) y^{\prime }+4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.093 |
|
\[
{}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.108 |
|
\[
{}t y^{\prime \prime }-\left (1+3 t \right ) y^{\prime }+3 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.102 |
|
\[
{}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.278 |
|
\[
{}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.180 |
|
\[
{}y^{\prime \prime }+y = \sec \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.204 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = t \,{\mathrm e}^{2 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.609 |
|
\[
{}2 y^{\prime \prime }-3 y^{\prime }+y = \left (t^{2}+1\right ) {\mathrm e}^{t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.787 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = t \,{\mathrm e}^{3 t}+1
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.643 |
|
\[
{}3 y^{\prime \prime }+4 y^{\prime }+y = \sin \left (t \right ) {\mathrm e}^{-t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.252 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = t^{{5}/{2}} {\mathrm e}^{-2 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.043 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = \sqrt {1+t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.261 |
|
\[
{}y^{\prime \prime }-y = f \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.567 |
|
\[
{}t^{2} y^{\prime \prime }-2 y = t^{2}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
0.897 |
|
\[
{}y^{\prime \prime }+p \left (t \right ) y^{\prime }+q \left (t \right ) y = 1+t
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.474 |
|
\[
{}y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1} = t^{2}+1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.848 |
|
\[
{}y^{\prime \prime }+3 y = t^{3}-1
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.370 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = t \,{\mathrm e}^{\alpha t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.882 |
|
\[
{}y^{\prime \prime }-y = t^{2} {\mathrm e}^{t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.278 |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = t^{2}+t +1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
11.225 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.597 |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+4 y = t^{2} {\mathrm e}^{7 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.824 |
|
\[
{}y^{\prime \prime }+4 y = t \sin \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.547 |
|