2.2.27 Problems 2601 to 2700

Table 2.55: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

2601

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = \left (3 t^{7}-5 t^{4}\right ) {\mathrm e}^{3 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.829

2602

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 2 \cos \left (t \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

21.514

2603

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 2 \cos \left (t \right )^{2} {\mathrm e}^{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

11.197

2604

\[ {}y^{\prime \prime }+y^{\prime }-6 y = \sin \left (t \right )+t \,{\mathrm e}^{2 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.530

2605

\[ {}y^{\prime \prime }+y^{\prime }+4 y = t^{2}+\left (2 t +3\right ) \left (1+\cos \left (t \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

78.704

2606

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{t}+{\mathrm e}^{2 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.765

2607

\[ {}y^{\prime \prime }+2 y^{\prime } = 1+t^{2}+{\mathrm e}^{-2 t} \]

[[_2nd_order, _missing_y]]

1.334

2608

\[ {}y^{\prime \prime }+y = \cos \left (t \right ) \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.309

2609

\[ {}y^{\prime \prime }+y = \cos \left (t \right ) \cos \left (2 t \right ) \cos \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.046

2610

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = t^{{3}/{2}} {\mathrm e}^{3 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.760

2611

\[ {}y^{\prime \prime }+t y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.280

2612

\[ {}y^{\prime \prime }-t y = 0 \]

[[_Emden, _Fowler]]

0.203

2613

\[ {}\left (t^{2}+2\right ) y^{\prime \prime }-t y^{\prime }-3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.289

2614

\[ {}y^{\prime \prime }-t^{3} y = 0 \]

[[_Emden, _Fowler]]

0.235

2615

\[ {}t \left (2-t \right ) y^{\prime \prime }-6 \left (t -1\right ) y^{\prime }-4 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.500

2616

\[ {}y^{\prime \prime }+t^{2} y = 0 \]
i.c.

[[_Emden, _Fowler]]

0.371

2617

\[ {}y^{\prime \prime }-t^{3} y = 0 \]
i.c.

[[_Emden, _Fowler]]

0.186

2618

\[ {}y^{\prime \prime }+\left (t^{2}+2 t +1\right ) y^{\prime }-\left (4+4 t \right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.451

2619

\[ {}y^{\prime \prime }-2 t y^{\prime }+\lambda y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.483

2620

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+\alpha \left (\alpha +1\right ) y = 0 \]

[_Gegenbauer]

0.604

2621

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-t y^{\prime }+\alpha ^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.373

2622

\[ {}y^{\prime \prime }+t^{3} y^{\prime }+3 t^{2} y = {\mathrm e}^{t} \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.367

2623

\[ {}\left (1-t \right ) y^{\prime \prime }+t y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.470

2624

\[ {}y^{\prime \prime }+y^{\prime }+t y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.437

2625

\[ {}y^{\prime \prime }+t y^{\prime }+{\mathrm e}^{t} y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.416

2626

\[ {}y^{\prime \prime }+y^{\prime }+{\mathrm e}^{t} y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.352

2627

\[ {}y^{\prime \prime }+y^{\prime }+{\mathrm e}^{-t} y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.658

2628

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y = 0 \]

[[_Emden, _Fowler]]

0.973

2629

\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.058

2630

\[ {}\left (t -1\right )^{2} y^{\prime \prime }-2 \left (t -1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.749

2631

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.135

2632

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

0.864

2633

\[ {}\left (t -2\right )^{2} y^{\prime \prime }+5 \left (t -2\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.895

2634

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.111

2635

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

1.611

2636

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }-2 y = 0 \]
i.c.

[[_Emden, _Fowler]]

3.141

2637

\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.428

2638

\[ {}t \left (t -2\right )^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.273

2639

\[ {}t \left (t -2\right )^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.125

2640

\[ {}\sin \left (t \right ) y^{\prime \prime }+\cos \left (t \right ) y^{\prime }+\frac {y}{t} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.716

2641

\[ {}\left ({\mathrm e}^{t}-1\right ) y^{\prime \prime }+{\mathrm e}^{t} y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.662

2642

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }+\frac {y^{\prime }}{\sin \left (1+t \right )}+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.280

2643

\[ {}t^{3} y^{\prime \prime }+\sin \left (t^{2}\right ) y^{\prime }+t y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.329

2644

\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-\left (1+t \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.781

2645

\[ {}2 t y^{\prime \prime }+\left (1-2 t \right ) y^{\prime }-y = 0 \]

[_Laguerre]

0.994

2646

\[ {}2 t y^{\prime \prime }+\left (1+t \right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.803

2647

\[ {}2 t^{2} y^{\prime \prime }-t y^{\prime }+\left (1+t \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.958

2648

\[ {}4 t y^{\prime \prime }+3 y^{\prime }-3 y = 0 \]

[[_Emden, _Fowler]]

0.758

2649

\[ {}2 t^{2} y^{\prime \prime }+\left (t^{2}-t \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.960

2650

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }-\left (t^{2}+\frac {5}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.749

2651

\[ {}t^{2} y^{\prime \prime }+\left (-t^{2}+t \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.714

2652

\[ {}t y^{\prime \prime }-\left (t^{2}+2\right ) y^{\prime }+t y = 0 \]

[_Lienard]

0.930

2653

\[ {}t^{2} y^{\prime \prime }+\left (-t^{2}+3 t \right ) y^{\prime }-t y = 0 \]

[_Laguerre, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.767

2654

\[ {}t^{2} y^{\prime \prime }+t \left (1+t \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.964

2655

\[ {}t y^{\prime \prime }-\left (t +4\right ) y^{\prime }+2 y = 0 \]

[_Laguerre]

0.852

2656

\[ {}t^{2} y^{\prime \prime }+\left (t^{2}-3 t \right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.471

2657

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }-\left (1+t \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.144

2658

\[ {}t y^{\prime \prime }+t y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.459

2659

\[ {}t^{2} y^{\prime \prime }+\left (-t^{2}+1\right ) y^{\prime }+4 t y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.089

2660

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+t^{2} y = 0 \]

[_Lienard]

0.562

2661

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-v^{2}\right ) y = 0 \]

[_Bessel]

0.727

2662

\[ {}t y^{\prime \prime }+\left (1-t \right ) y^{\prime }+\lambda y = 0 \]

[_Laguerre]

1.118

2663

\[ {}t \left (1-t \right ) y^{\prime \prime }+\left (\gamma -\left (\alpha +\beta +1\right ) t \right ) y^{\prime }-\alpha \beta y = 0 \]

[_Jacobi]

1.117

2664

\[ {}2 \sin \left (t \right ) y^{\prime \prime }+\left (1-t \right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.710

2665

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (1+t \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.813

2666

\[ {}t y^{\prime \prime }+y^{\prime }-4 y = 0 \]

[[_Emden, _Fowler]]

0.711

2667

\[ {}t^{2} y^{\prime \prime }-t \left (1+t \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.717

2668

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-1\right ) y = 0 \]

[_Bessel]

1.139

2669

\[ {}t y^{\prime \prime }+3 y^{\prime }-3 y = 0 \]

[[_Emden, _Fowler]]

1.566

2670

\[ {}t^{2} y^{\prime \prime }+t p \left (t \right ) y^{\prime }+q \left (t \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

24.172

2671

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = {\mathrm e}^{2 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.316

2672

\[ {}2 y^{\prime \prime }+y^{\prime }-y = {\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.776

2673

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.381

2674

\[ {}y^{\prime \prime }+y = t^{2} \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.490

2675

\[ {}y^{\prime \prime }+3 y^{\prime }+7 y = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.982

2676

\[ {}y^{\prime \prime }+y^{\prime }+y = t^{3} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.431

2677

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = {\mathrm e}^{4 t} \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

0.730

2678

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.291

2679

\[ {}y^{\prime \prime }+y = \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.425

2680

\[ {}y^{\prime \prime }+y = t \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.427

2681

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} t \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.369

2682

\[ {}y^{\prime \prime }-2 y^{\prime }+7 y = \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.577

2683

\[ {}y^{\prime \prime }+y^{\prime }+y = 1+{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.488

2684

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} 2 & 0\le t \le 3 \\ 3 t -7 & 3<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.506

2685

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 \left (t -3\right ) \operatorname {Heaviside}\left (t -3\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.386

2686

\[ {}y^{\prime \prime }+y^{\prime }+y = \operatorname {Heaviside}\left (t -\pi \right )-\operatorname {Heaviside}\left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.472

2687

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 1 & 0\le t <4 \\ 0 & 4<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.458

2688

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\pi \\ \cos \left (t \right ) & \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.428

2689

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} \cos \left (t \right ) & 0\le t <\frac {\pi }{2} \\ 0 & \frac {\pi }{2}\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.430

2690

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \left \{\begin {array}{cc} \sin \left (2 t \right ) & 0\le t <\frac {\pi }{2} \\ 0 & \frac {\pi }{2}\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.522

2691

\[ {}y^{\prime \prime }+y^{\prime }+7 y = \left \{\begin {array}{cc} t & 0\le t <2 \\ 0 & 2\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.981

2692

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t^{2} & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.554

2693

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \left \{\begin {array}{cc} 0 & 0\le t <1 \\ t & 1\le t <2 \\ 0 & 2\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.477

2694

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.353

2695

\[ {}y^{\prime \prime }+4 y = \sin \left (t \right )+\delta \left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.329

2696

\[ {}y^{\prime \prime }+y^{\prime }+y = 2 \delta \left (t -1\right )-\delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.735

2697

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t}+3 \delta \left (t -3\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.323

2698

\[ {}\left [\begin {array}{c} x^{\prime }=6 x-3 y \\ y^{\prime }=2 x+y \end {array}\right ] \]

system_of_ODEs

0.303

2699

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x+y+t \\ y^{\prime }=-4 x+3 y-1 \end {array}\right ] \]

system_of_ODEs

0.933

2700

\[ {}\left [\begin {array}{c} x^{\prime }=6 x-3 y \\ y^{\prime }=2 x+y \end {array}\right ] \]

system_of_ODEs

0.661