2.2.28 Problems 2701 to 2800

Table 2.57: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

2701

\[ {}\left [\begin {array}{c} x^{\prime }=x+y+{\mathrm e}^{t} \\ y^{\prime }=x-y-{\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.661

2702

\[ {}\left [\begin {array}{c} x^{\prime }=x+y \\ y^{\prime }=4 x+y \end {array}\right ] \]
i.c.

system_of_ODEs

0.352

2703

\[ {}\left [\begin {array}{c} x^{\prime }=x-3 y \\ y^{\prime }=-2 x+2 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.701

2704

\[ {}\left [\begin {array}{c} x^{\prime }=x-y \\ y^{\prime }=5 x-3 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.398

2705

\[ {}\left [\begin {array}{c} x^{\prime }=3 x-2 y \\ y^{\prime }=4 x-y \end {array}\right ] \]
i.c.

system_of_ODEs

0.727

2706

\[ {}\left [\begin {array}{c} x^{\prime }=4 x+5 y+4 \,{\mathrm e}^{t} \cos \left (t \right ) \\ y^{\prime }=-2 x-2 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.881

2707

\[ {}\left [\begin {array}{c} x^{\prime }=3 x-4 y+{\mathrm e}^{t} \\ y^{\prime }=x-y+{\mathrm e}^{t} \end {array}\right ] \]
i.c.

system_of_ODEs

0.937

2708

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-5 y+\sin \left (t \right ) \\ y^{\prime }=x-2 y+\tan \left (t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

1.799

2709

\[ {}\left [\begin {array}{c} x^{\prime }=y+\textit {f\_1} \left (t \right ) \\ y^{\prime }=-x+f_{2} \left (t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

1.176

2710

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

0.089

2711

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+5 y^{\prime }+12 y = 0 \]

[[_3rd_order, _missing_x]]

0.080

2712

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \]

[[_high_order, _missing_x]]

0.086

2713

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

0.091

2714

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+14 y^{\prime \prime }-20 y^{\prime }+25 y = 0 \]
i.c.

[[_high_order, _missing_x]]

1.313

2715

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]
i.c.

[[_high_order, _missing_x]]

0.102

2716

\[ {}y^{\left (5\right )}-2 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 0 \]
i.c.

[[_high_order, _missing_x]]

0.116

2717

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime }+2 y^{\prime }-2 y = 0 \]

[[_high_order, _missing_x]]

0.044

2718

\[ {}y^{\prime \prime \prime }+y^{\prime } = \tan \left (t \right ) \]

[[_3rd_order, _missing_y]]

0.398

2719

\[ {}y^{\prime \prime \prime \prime }-y = g \left (t \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.401

2720

\[ {}y^{\prime \prime \prime \prime }+y = g \left (t \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

1.093

2721

\[ {}y^{\prime \prime \prime }+y^{\prime } = 2 t^{2}+4 \sin \left (t \right ) \]

[[_3rd_order, _missing_y]]

0.896

2722

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = t +\cos \left (t \right )+2 \,{\mathrm e}^{-2 t} \]

[[_3rd_order, _missing_y]]

0.199

2723

\[ {}y^{\prime \prime \prime \prime }-y = t +\sin \left (t \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.571

2724

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = t^{2} \sin \left (t \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

1.533

2725

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = t^{2} \]

[[_high_order, _missing_y]]

0.148

2726

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = t +{\mathrm e}^{-t} \]

[[_3rd_order, _with_linear_symmetries]]

0.144

2727

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = t^{3} {\mathrm e}^{-t} \]

[[_high_order, _linear, _nonhomogeneous]]

0.177

2728

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=6 x_{1}-3 x_{2} \\ x_{2}^{\prime }=2 x_{1}+x_{2} \end {array}\right ] \]

system_of_ODEs

0.634

2729

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-2 x_{1}+x_{2} \\ x_{2}^{\prime }=-4 x_{1}+3 x_{2} \end {array}\right ] \]

system_of_ODEs

0.307

2730

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}+2 x_{2}+4 x_{3} \\ x_{2}^{\prime }=2 x_{1}+2 x_{3} \\ x_{3}^{\prime }=4 x_{1}+2 x_{2}+3 x_{3} \end {array}\right ] \]

system_of_ODEs

0.749

2731

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=7 x_{1}-x_{2}+6 x_{3} \\ x_{2}^{\prime }=-10 x_{1}+4 x_{2}-12 x_{3} \\ x_{3}^{\prime }=-2 x_{1}+x_{2}-x_{3} \end {array}\right ] \]

system_of_ODEs

0.804

2732

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-7 x_{1}+6 x_{3} \\ x_{2}^{\prime }=5 x_{2} \\ x_{3}^{\prime }=6 x_{1}+2 x_{3} \end {array}\right ] \]

system_of_ODEs

0.402

2733

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+2 x_{2}+3 x_{3}+6 x_{4} \\ x_{2}^{\prime }=3 x_{1}+6 x_{2}+9 x_{3}+18 x_{4} \\ x_{3}^{\prime }=5 x_{1}+10 x_{2}+15 x_{3}+30 x_{4} \\ x_{4}^{\prime }=7 x_{1}+14 x_{2}+21 x_{3}+42 x_{4} \end {array}\right ] \]

system_of_ODEs

0.887

2734

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2} \\ x_{2}^{\prime }=4 x_{1}+x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.686

2735

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-3 x_{2} \\ x_{2}^{\prime }=-2 x_{1}+2 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.365

2736

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}+x_{2}-x_{3} \\ x_{2}^{\prime }=x_{1}+3 x_{2}-x_{3} \\ x_{3}^{\prime }=3 x_{1}+3 x_{2}-x_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

0.707

2737

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-x_{2} \\ x_{2}^{\prime }=x_{1}+2 x_{2}+x_{3} \\ x_{3}^{\prime }=x_{1}+10 x_{2}+2 x_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

0.801

2738

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-3 x_{2}+2 x_{3} \\ x_{2}^{\prime }=-x_{2} \\ x_{3}^{\prime }=-x_{2}-2 x_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

0.457

2739

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}+x_{2}-2 x_{3} \\ x_{2}^{\prime }=-x_{1}+2 x_{2}+x_{3} \\ x_{3}^{\prime }=4 x_{1}+x_{2}-3 x_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

0.776

2740

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}+2 x_{2} \\ x_{2}^{\prime }=-x_{1}-x_{2} \end {array}\right ] \]

system_of_ODEs

0.685

2741

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-5 x_{2} \\ x_{2}^{\prime }=x_{1}-3 x_{2} \\ x_{3}^{\prime }=x_{3} \end {array}\right ] \]

system_of_ODEs

0.485

2742

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1} \\ x_{2}^{\prime }=3 x_{1}+x_{2}-2 x_{3} \\ x_{3}^{\prime }=2 x_{1}+2 x_{2}+x_{3} \end {array}\right ] \]

system_of_ODEs

0.890

2743

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{3} \\ x_{2}^{\prime }=x_{2}-x_{3} \\ x_{3}^{\prime }=-2 x_{1}-x_{3} \end {array}\right ] \]

system_of_ODEs

0.829

2744

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-x_{2} \\ x_{2}^{\prime }=5 x_{1}-3 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.694

2745

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-2 x_{2} \\ x_{2}^{\prime }=4 x_{1}-x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.442

2746

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}+2 x_{3} \\ x_{2}^{\prime }=x_{1}-x_{2} \\ x_{3}^{\prime }=-2 x_{1}-x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

1.346

2747

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{2} \\ x_{2}^{\prime }=-2 x_{1} \\ x_{3}^{\prime }=-3 x_{4} \\ x_{4}^{\prime }=3 x_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

1.560

2748

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2} \\ x_{2}^{\prime }=x_{2} \\ x_{3}^{\prime }=2 x_{3} \end {array}\right ] \]

system_of_ODEs

0.645

2749

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}+x_{2}+3 x_{3} \\ x_{2}^{\prime }=2 x_{2}-x_{3} \\ x_{3}^{\prime }=2 x_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

0.385

2750

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{2}+x_{3} \\ x_{2}^{\prime }=2 x_{1}-3 x_{2}+x_{3} \\ x_{3}^{\prime }=x_{1}-x_{2}-x_{3} \end {array}\right ] \]

system_of_ODEs

0.713

2751

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime }=2 x_{1}+x_{2}-x_{3} \\ x_{3}^{\prime }=-3 x_{1}+2 x_{2}+4 x_{3} \end {array}\right ] \]

system_of_ODEs

0.722

2752

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}-x_{2} \\ x_{2}^{\prime }=-x_{2} \\ x_{3}^{\prime }=-2 x_{3} \end {array}\right ] \]

system_of_ODEs

0.357

2753

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-x_{3} \\ x_{2}^{\prime }=2 x_{2}+x_{3} \\ x_{3}^{\prime }=2 x_{3} \\ x_{4}^{\prime }=-x_{3}+2 x_{4} \end {array}\right ] \]

system_of_ODEs

0.749

2754

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}+x_{2}+2 x_{3} \\ x_{2}^{\prime }=-x_{1}+x_{2}+x_{3} \\ x_{3}^{\prime }=-2 x_{1}+x_{2}+3 x_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

0.393

2755

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-4 x_{1}-4 x_{2} \\ x_{2}^{\prime }=10 x_{1}+9 x_{2}+x_{3} \\ x_{3}^{\prime }=-4 x_{1}-3 x_{2}+x_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

0.777

2756

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+2 x_{2}-3 x_{3} \\ x_{2}^{\prime }=x_{1}+x_{2}+2 x_{3} \\ x_{3}^{\prime }=x_{1}-x_{2}+4 x_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

0.394

2757

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1} \\ x_{2}^{\prime }=x_{1}+3 x_{2} \\ x_{3}^{\prime }=3 x_{3} \\ x_{4}^{\prime }=2 x_{3}+3 x_{4} \end {array}\right ] \]
i.c.

system_of_ODEs

0.795

2758

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1} \\ x_{2}^{\prime }=2 x_{1}+x_{2}-2 x_{3} \\ x_{3}^{\prime }=3 x_{1}+2 x_{2}+x_{3}+{\mathrm e}^{t} \cos \left (2 t \right ) \end {array}\right ] \]

system_of_ODEs

1.540

2759

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+{\mathrm e}^{c t} \\ x_{2}^{\prime }=2 x_{1}+x_{2}-2 x_{3} \\ x_{3}^{\prime }=3 x_{1}+2 x_{2}+x_{3} \end {array}\right ] \]

system_of_ODEs

1.606

2760

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=4 x_{1}+5 x_{2}+4 \,{\mathrm e}^{t} \cos \left (t \right ) \\ x_{2}^{\prime }=-2 x_{1}-2 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

1.279

2761

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-4 x_{2}+{\mathrm e}^{t} \\ x_{2}^{\prime }=x_{1}-x_{2}+{\mathrm e}^{t} \end {array}\right ] \]
i.c.

system_of_ODEs

0.945

2762

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-5 x_{2}+\sin \left (t \right ) \\ x_{2}^{\prime }=x_{1}-2 x_{2}+\tan \left (t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

1.858

2763

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{2}+f_{1} \left (t \right ) \\ x_{2}^{\prime }=-x_{1}+f_{2} \left (t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

1.195

2764

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}+x_{3}+{\mathrm e}^{2 t} \\ x_{2}^{\prime }=2 x_{2} \\ x_{3}^{\prime }=x_{2}+3 x_{3}+{\mathrm e}^{2 t} \end {array}\right ] \]
i.c.

system_of_ODEs

1.005

2765

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}-x_{2}-2 x_{3}+{\mathrm e}^{t} \\ x_{2}^{\prime }=x_{1}+x_{2}+x_{3} \\ x_{3}^{\prime }=2 x_{1}+x_{2}+3 x_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

1.068

2766

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}+x_{2}+{\mathrm e}^{3 t} \\ x_{2}^{\prime }=3 x_{1}-2 x_{2}+{\mathrm e}^{3 t} \end {array}\right ] \]

system_of_ODEs

1.119

2767

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-x_{2}-t^{2} \\ x_{2}^{\prime }=x_{1}+3 x_{2}+2 t \end {array}\right ] \]

system_of_ODEs

0.590

2768

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+3 x_{2}+2 x_{3}+\sin \left (t \right ) \\ x_{2}^{\prime }=-x_{1}+2 x_{2}+x_{3} \\ x_{3}^{\prime }=4 x_{1}-x_{2}-x_{3} \end {array}\right ] \]

system_of_ODEs

1.447

2769

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+2 x_{2}-3 x_{3}+{\mathrm e}^{t} \\ x_{2}^{\prime }=x_{1}+x_{2}+2 x_{3} \\ x_{3}^{\prime }=x_{1}-x_{2}+4 x_{3}-{\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

1.144

2770

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}-x_{2}+1 \\ x_{2}^{\prime }=-4 x_{2}-x_{3}+t \\ x_{3}^{\prime }=5 x_{2}+{\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

1.625

2771

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}-x_{3}+{\mathrm e}^{2 t} \\ x_{2}^{\prime }=2 x_{1}+3 x_{2}-4 x_{3}+2 \,{\mathrm e}^{2 t} \\ x_{3}^{\prime }=4 x_{1}+x_{2}-4 x_{3}+{\mathrm e}^{2 t} \end {array}\right ] \]

system_of_ODEs

1.289

2772

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-x_{2}-x_{3}+{\mathrm e}^{3 t} \\ x_{2}^{\prime }=x_{1}+3 x_{2}+x_{3}-{\mathrm e}^{3 t} \\ x_{3}^{\prime }=-3 x_{1}+x_{2}-x_{3}-{\mathrm e}^{3 t} \end {array}\right ] \]

system_of_ODEs

1.210

2773

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}+2 x_{2}+4 x_{3}+2 \,{\mathrm e}^{8 t} \\ x_{2}^{\prime }=2 x_{1}+2 x_{3}+{\mathrm e}^{8 t} \\ x_{3}^{\prime }=4 x_{1}+2 x_{2}+3 x_{3}+2 \,{\mathrm e}^{8 t} \end {array}\right ] \]

system_of_ODEs

1.125

2774

\[ {}y x +\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

1.504

2775

\[ {}x y^{2}+x +\left (y-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

4.040

2776

\[ {}1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

2.047

2777

\[ {}y+y^{\prime } x = 0 \]

[_separable]

1.810

2778

\[ {}y^{\prime } = 2 y x \]

[_separable]

1.431

2779

\[ {}x y^{2}+x +\left (x^{2} y-y\right ) y^{\prime } = 0 \]

[_separable]

2.224

2780

\[ {}\sqrt {-x^{2}+1}+\sqrt {1-y^{2}}\, y^{\prime } = 0 \]

[_separable]

2.570

2781

\[ {}\left (x +1\right ) y^{\prime }-1+y = 0 \]

[_separable]

1.672

2782

\[ {}y^{\prime } \tan \left (x \right )-y = 1 \]

[_separable]

1.766

2783

\[ {}y+3+\cot \left (x \right ) y^{\prime } = 0 \]

[_separable]

1.525

2784

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

3.968

2785

\[ {}x^{\prime } = 1-\sin \left (2 t \right ) \]

[_quadrature]

0.665

2786

\[ {}y+y^{\prime } x = y^{2} \]

[_separable]

2.128

2787

\[ {}\sin \left (x \right ) \cos \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime } = 0 \]

[_separable]

5.484

2788

\[ {}\sec \left (x \right ) \cos \left (y\right )^{2} = \cos \left (x \right ) \sin \left (y\right ) y^{\prime } \]

[_separable]

15.421

2789

\[ {}y+y^{\prime } x = x y \left (y^{\prime }-1\right ) \]

[_separable]

1.864

2790

\[ {}y x +\sqrt {x^{2}+1}\, y^{\prime } = 0 \]

[_separable]

1.547

2791

\[ {}y = y x +x^{2} y^{\prime } \]

[_separable]

1.830

2792

\[ {}\tan \left (x \right ) \sin \left (x \right )^{2}+\cos \left (x \right )^{2} \cot \left (y\right ) y^{\prime } = 0 \]

[_separable]

8.468

2793

\[ {}y^{2}+y y^{\prime }+x^{2} y y^{\prime }-1 = 0 \]

[_separable]

5.071

2794

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

1.466

2795

\[ {}y^{\prime } x +2 y = 0 \]
i.c.

[_separable]

2.859

2796

\[ {}\sin \left (x \right ) \cos \left (y\right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

4.218

2797

\[ {}x^{2} y^{\prime }+y^{2} = 0 \]
i.c.

[_separable]

3.723

2798

\[ {}y^{\prime } = {\mathrm e}^{y} \]
i.c.

[_quadrature]

0.732

2799

\[ {}{\mathrm e}^{y} \left (y^{\prime }+1\right ) = 1 \]
i.c.

[_quadrature]

0.500

2800

\[ {}1+y^{2} = \frac {y^{\prime }}{x^{3} \left (x -1\right )} \]
i.c.

[_separable]

2.685