# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}\left [\begin {array}{c} x^{\prime }=x+y+{\mathrm e}^{t} \\ y^{\prime }=x-y-{\mathrm e}^{t} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.661 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x+y \\ y^{\prime }=4 x+y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.352 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x-3 y \\ y^{\prime }=-2 x+2 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.701 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x-y \\ y^{\prime }=5 x-3 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.398 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=3 x-2 y \\ y^{\prime }=4 x-y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.727 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=4 x+5 y+4 \,{\mathrm e}^{t} \cos \left (t \right ) \\ y^{\prime }=-2 x-2 y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.881 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=3 x-4 y+{\mathrm e}^{t} \\ y^{\prime }=x-y+{\mathrm e}^{t} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.937 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=2 x-5 y+\sin \left (t \right ) \\ y^{\prime }=x-2 y+\tan \left (t \right ) \end {array}\right ]
\] |
system_of_ODEs |
✓ |
1.799 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=y+\textit {f\_1} \left (t \right ) \\ y^{\prime }=-x+f_{2} \left (t \right ) \end {array}\right ]
\] |
system_of_ODEs |
✓ |
1.176 |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.089 |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+5 y^{\prime }+12 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.080 |
|
\[
{}y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }-8 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.086 |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.091 |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+14 y^{\prime \prime }-20 y^{\prime }+25 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
1.313 |
|
\[
{}y^{\prime \prime \prime \prime }-y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.102 |
|
\[
{}y^{\left (5\right )}-2 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.116 |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime }+2 y^{\prime }-2 y = 0
\] |
[[_high_order, _missing_x]] |
✗ |
0.044 |
|
\[
{}y^{\prime \prime \prime }+y^{\prime } = \tan \left (t \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
0.398 |
|
\[
{}y^{\prime \prime \prime \prime }-y = g \left (t \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
0.401 |
|
\[
{}y^{\prime \prime \prime \prime }+y = g \left (t \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
1.093 |
|
\[
{}y^{\prime \prime \prime }+y^{\prime } = 2 t^{2}+4 \sin \left (t \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
0.896 |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime } = t +\cos \left (t \right )+2 \,{\mathrm e}^{-2 t}
\] |
[[_3rd_order, _missing_y]] |
✓ |
0.199 |
|
\[
{}y^{\prime \prime \prime \prime }-y = t +\sin \left (t \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
0.571 |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = t^{2} \sin \left (t \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
1.533 |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime } = t^{2}
\] |
[[_high_order, _missing_y]] |
✓ |
0.148 |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = t +{\mathrm e}^{-t}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
0.144 |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = t^{3} {\mathrm e}^{-t}
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
0.177 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=6 x_{1}-3 x_{2} \\ x_{2}^{\prime }=2 x_{1}+x_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.634 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=-2 x_{1}+x_{2} \\ x_{2}^{\prime }=-4 x_{1}+3 x_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.307 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}+2 x_{2}+4 x_{3} \\ x_{2}^{\prime }=2 x_{1}+2 x_{3} \\ x_{3}^{\prime }=4 x_{1}+2 x_{2}+3 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.749 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=7 x_{1}-x_{2}+6 x_{3} \\ x_{2}^{\prime }=-10 x_{1}+4 x_{2}-12 x_{3} \\ x_{3}^{\prime }=-2 x_{1}+x_{2}-x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.804 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=-7 x_{1}+6 x_{3} \\ x_{2}^{\prime }=5 x_{2} \\ x_{3}^{\prime }=6 x_{1}+2 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.402 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+2 x_{2}+3 x_{3}+6 x_{4} \\ x_{2}^{\prime }=3 x_{1}+6 x_{2}+9 x_{3}+18 x_{4} \\ x_{3}^{\prime }=5 x_{1}+10 x_{2}+15 x_{3}+30 x_{4} \\ x_{4}^{\prime }=7 x_{1}+14 x_{2}+21 x_{3}+42 x_{4} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.887 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2} \\ x_{2}^{\prime }=4 x_{1}+x_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.686 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-3 x_{2} \\ x_{2}^{\prime }=-2 x_{1}+2 x_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.365 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}+x_{2}-x_{3} \\ x_{2}^{\prime }=x_{1}+3 x_{2}-x_{3} \\ x_{3}^{\prime }=3 x_{1}+3 x_{2}-x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.707 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-x_{2} \\ x_{2}^{\prime }=x_{1}+2 x_{2}+x_{3} \\ x_{3}^{\prime }=x_{1}+10 x_{2}+2 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.801 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-3 x_{2}+2 x_{3} \\ x_{2}^{\prime }=-x_{2} \\ x_{3}^{\prime }=-x_{2}-2 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.457 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}+x_{2}-2 x_{3} \\ x_{2}^{\prime }=-x_{1}+2 x_{2}+x_{3} \\ x_{3}^{\prime }=4 x_{1}+x_{2}-3 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.776 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}+2 x_{2} \\ x_{2}^{\prime }=-x_{1}-x_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.685 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-5 x_{2} \\ x_{2}^{\prime }=x_{1}-3 x_{2} \\ x_{3}^{\prime }=x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.485 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=x_{1} \\ x_{2}^{\prime }=3 x_{1}+x_{2}-2 x_{3} \\ x_{3}^{\prime }=2 x_{1}+2 x_{2}+x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.890 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{3} \\ x_{2}^{\prime }=x_{2}-x_{3} \\ x_{3}^{\prime }=-2 x_{1}-x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.829 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-x_{2} \\ x_{2}^{\prime }=5 x_{1}-3 x_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.694 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-2 x_{2} \\ x_{2}^{\prime }=4 x_{1}-x_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.442 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}+2 x_{3} \\ x_{2}^{\prime }=x_{1}-x_{2} \\ x_{3}^{\prime }=-2 x_{1}-x_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
1.346 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{2} \\ x_{2}^{\prime }=-2 x_{1} \\ x_{3}^{\prime }=-3 x_{4} \\ x_{4}^{\prime }=3 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
1.560 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2} \\ x_{2}^{\prime }=x_{2} \\ x_{3}^{\prime }=2 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.645 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}+x_{2}+3 x_{3} \\ x_{2}^{\prime }=2 x_{2}-x_{3} \\ x_{3}^{\prime }=2 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.385 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=-x_{2}+x_{3} \\ x_{2}^{\prime }=2 x_{1}-3 x_{2}+x_{3} \\ x_{3}^{\prime }=x_{1}-x_{2}-x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.713 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime }=2 x_{1}+x_{2}-x_{3} \\ x_{3}^{\prime }=-3 x_{1}+2 x_{2}+4 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.722 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}-x_{2} \\ x_{2}^{\prime }=-x_{2} \\ x_{3}^{\prime }=-2 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.357 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-x_{3} \\ x_{2}^{\prime }=2 x_{2}+x_{3} \\ x_{3}^{\prime }=2 x_{3} \\ x_{4}^{\prime }=-x_{3}+2 x_{4} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.749 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}+x_{2}+2 x_{3} \\ x_{2}^{\prime }=-x_{1}+x_{2}+x_{3} \\ x_{3}^{\prime }=-2 x_{1}+x_{2}+3 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.393 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=-4 x_{1}-4 x_{2} \\ x_{2}^{\prime }=10 x_{1}+9 x_{2}+x_{3} \\ x_{3}^{\prime }=-4 x_{1}-3 x_{2}+x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.777 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+2 x_{2}-3 x_{3} \\ x_{2}^{\prime }=x_{1}+x_{2}+2 x_{3} \\ x_{3}^{\prime }=x_{1}-x_{2}+4 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.394 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1} \\ x_{2}^{\prime }=x_{1}+3 x_{2} \\ x_{3}^{\prime }=3 x_{3} \\ x_{4}^{\prime }=2 x_{3}+3 x_{4} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.795 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=x_{1} \\ x_{2}^{\prime }=2 x_{1}+x_{2}-2 x_{3} \\ x_{3}^{\prime }=3 x_{1}+2 x_{2}+x_{3}+{\mathrm e}^{t} \cos \left (2 t \right ) \end {array}\right ]
\] |
system_of_ODEs |
✓ |
1.540 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+{\mathrm e}^{c t} \\ x_{2}^{\prime }=2 x_{1}+x_{2}-2 x_{3} \\ x_{3}^{\prime }=3 x_{1}+2 x_{2}+x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
1.606 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=4 x_{1}+5 x_{2}+4 \,{\mathrm e}^{t} \cos \left (t \right ) \\ x_{2}^{\prime }=-2 x_{1}-2 x_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
1.279 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-4 x_{2}+{\mathrm e}^{t} \\ x_{2}^{\prime }=x_{1}-x_{2}+{\mathrm e}^{t} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.945 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-5 x_{2}+\sin \left (t \right ) \\ x_{2}^{\prime }=x_{1}-2 x_{2}+\tan \left (t \right ) \end {array}\right ]
\] |
system_of_ODEs |
✓ |
1.858 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=x_{2}+f_{1} \left (t \right ) \\ x_{2}^{\prime }=-x_{1}+f_{2} \left (t \right ) \end {array}\right ]
\] |
system_of_ODEs |
✓ |
1.195 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}+x_{3}+{\mathrm e}^{2 t} \\ x_{2}^{\prime }=2 x_{2} \\ x_{3}^{\prime }=x_{2}+3 x_{3}+{\mathrm e}^{2 t} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
1.005 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}-x_{2}-2 x_{3}+{\mathrm e}^{t} \\ x_{2}^{\prime }=x_{1}+x_{2}+x_{3} \\ x_{3}^{\prime }=2 x_{1}+x_{2}+3 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
1.068 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}+x_{2}+{\mathrm e}^{3 t} \\ x_{2}^{\prime }=3 x_{1}-2 x_{2}+{\mathrm e}^{3 t} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
1.119 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-x_{2}-t^{2} \\ x_{2}^{\prime }=x_{1}+3 x_{2}+2 t \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.590 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+3 x_{2}+2 x_{3}+\sin \left (t \right ) \\ x_{2}^{\prime }=-x_{1}+2 x_{2}+x_{3} \\ x_{3}^{\prime }=4 x_{1}-x_{2}-x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
1.447 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+2 x_{2}-3 x_{3}+{\mathrm e}^{t} \\ x_{2}^{\prime }=x_{1}+x_{2}+2 x_{3} \\ x_{3}^{\prime }=x_{1}-x_{2}+4 x_{3}-{\mathrm e}^{t} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
1.144 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}-x_{2}+1 \\ x_{2}^{\prime }=-4 x_{2}-x_{3}+t \\ x_{3}^{\prime }=5 x_{2}+{\mathrm e}^{t} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
1.625 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}-x_{3}+{\mathrm e}^{2 t} \\ x_{2}^{\prime }=2 x_{1}+3 x_{2}-4 x_{3}+2 \,{\mathrm e}^{2 t} \\ x_{3}^{\prime }=4 x_{1}+x_{2}-4 x_{3}+{\mathrm e}^{2 t} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
1.289 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-x_{2}-x_{3}+{\mathrm e}^{3 t} \\ x_{2}^{\prime }=x_{1}+3 x_{2}+x_{3}-{\mathrm e}^{3 t} \\ x_{3}^{\prime }=-3 x_{1}+x_{2}-x_{3}-{\mathrm e}^{3 t} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
1.210 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}+2 x_{2}+4 x_{3}+2 \,{\mathrm e}^{8 t} \\ x_{2}^{\prime }=2 x_{1}+2 x_{3}+{\mathrm e}^{8 t} \\ x_{3}^{\prime }=4 x_{1}+2 x_{2}+3 x_{3}+2 \,{\mathrm e}^{8 t} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
1.125 |
|
\[
{}y x +\left (x^{2}+1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
1.504 |
|
\[
{}x y^{2}+x +\left (y-x^{2} y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
4.040 |
|
\[
{}1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
2.047 |
|
\[
{}y+y^{\prime } x = 0
\] |
[_separable] |
✓ |
1.810 |
|
\[
{}y^{\prime } = 2 y x
\] |
[_separable] |
✓ |
1.431 |
|
\[
{}x y^{2}+x +\left (x^{2} y-y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
2.224 |
|
\[
{}\sqrt {-x^{2}+1}+\sqrt {1-y^{2}}\, y^{\prime } = 0
\] |
[_separable] |
✓ |
2.570 |
|
\[
{}\left (x +1\right ) y^{\prime }-1+y = 0
\] |
[_separable] |
✓ |
1.672 |
|
\[
{}y^{\prime } \tan \left (x \right )-y = 1
\] |
[_separable] |
✓ |
1.766 |
|
\[
{}y+3+\cot \left (x \right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
1.525 |
|
\[
{}y^{\prime } = \frac {x}{y}
\] |
[_separable] |
✓ |
3.968 |
|
\[
{}x^{\prime } = 1-\sin \left (2 t \right )
\] |
[_quadrature] |
✓ |
0.665 |
|
\[
{}y+y^{\prime } x = y^{2}
\] |
[_separable] |
✓ |
2.128 |
|
\[
{}\sin \left (x \right ) \cos \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
5.484 |
|
\[
{}\sec \left (x \right ) \cos \left (y\right )^{2} = \cos \left (x \right ) \sin \left (y\right ) y^{\prime }
\] |
[_separable] |
✓ |
15.421 |
|
\[
{}y+y^{\prime } x = x y \left (y^{\prime }-1\right )
\] |
[_separable] |
✓ |
1.864 |
|
\[
{}y x +\sqrt {x^{2}+1}\, y^{\prime } = 0
\] |
[_separable] |
✓ |
1.547 |
|
\[
{}y = y x +x^{2} y^{\prime }
\] |
[_separable] |
✓ |
1.830 |
|
\[
{}\tan \left (x \right ) \sin \left (x \right )^{2}+\cos \left (x \right )^{2} \cot \left (y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
8.468 |
|
\[
{}y^{2}+y y^{\prime }+x^{2} y y^{\prime }-1 = 0
\] |
[_separable] |
✓ |
5.071 |
|
\[
{}y^{\prime } = \frac {y}{x}
\] |
[_separable] |
✓ |
1.466 |
|
\[
{}y^{\prime } x +2 y = 0
\] |
[_separable] |
✓ |
2.859 |
|
\[
{}\sin \left (x \right ) \cos \left (y\right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
4.218 |
|
\[
{}x^{2} y^{\prime }+y^{2} = 0
\] |
[_separable] |
✓ |
3.723 |
|
\[
{}y^{\prime } = {\mathrm e}^{y}
\] |
[_quadrature] |
✓ |
0.732 |
|
\[
{}{\mathrm e}^{y} \left (y^{\prime }+1\right ) = 1
\] |
[_quadrature] |
✓ |
0.500 |
|
\[
{}1+y^{2} = \frac {y^{\prime }}{x^{3} \left (x -1\right )}
\] |
[_separable] |
✓ |
2.685 |
|