| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 2701 |
\begin{align*}
2 x^{2} \left (2+x \right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (x +1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.202 |
|
| 2702 |
\(\left [\begin {array}{cc} 13 & -15 \\ 6 & -6 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.202 |
|
| 2703 |
\begin{align*}
\left (-y+y^{\prime } x \right )^{2}&=1+{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.202 |
|
| 2704 |
\begin{align*}
2 x^{\prime \prime }-2 x^{\prime }&=\left (1+t \right ) {\mathrm e}^{t} \\
x \left (0\right ) &= {\frac {1}{2}} \\
x^{\prime }\left (0\right ) &= {\frac {1}{2}} \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.202 |
|
| 2705 |
\begin{align*}
y^{\prime \prime } x +\left (2 x +3\right ) y^{\prime }+\left (x +3\right ) y&=3 \,{\mathrm e}^{-x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✗ |
✗ |
0.202 |
|
| 2706 |
\begin{align*}
y^{\prime }&=y x \\
y \left (0\right ) &= 5 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.202 |
|
| 2707 |
\begin{align*}
4 y^{\prime \prime }+y^{\prime } x +4 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.203 |
|
| 2708 |
\begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.203 |
|
| 2709 |
\begin{align*}
4 x^{2} \left (x^{2}+3 x +1\right ) y^{\prime \prime }+8 x^{2} \left (2 x +3\right ) y^{\prime }+\left (9 x^{2}+3 x +1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.203 |
|
| 2710 |
\begin{align*}
2 x^{2} \left (2+x \right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (x +1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.203 |
|
| 2711 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.203 |
|
| 2712 |
\begin{align*}
x^{2} \left (1-2 x \right ) y^{\prime \prime }-x \left (5-4 x \right ) y^{\prime }+\left (9-4 x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.203 |
|
| 2713 |
\begin{align*}
t y^{\prime \prime }+2 y^{\prime }+t y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.203 |
|
| 2714 |
\begin{align*}
y^{\prime \prime \prime \prime }+y^{\prime \prime }+16 y&=16 x^{2}+256 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.203 |
|
| 2715 |
\begin{align*}
b^{\left (7\right )}&=3 p \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.203 |
|
| 2716 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=4 t^{2} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.203 |
|
| 2717 |
\begin{align*}
y^{\prime \prime }+y^{\prime } x +\left (3 x -9\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.203 |
|
| 2718 |
\begin{align*}
y^{\prime \prime \prime \prime }-y^{\prime \prime }&=12 x -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.203 |
|
| 2719 |
\begin{align*}
x^{\prime \prime }-x^{\prime }-2 x&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| 2720 |
\begin{align*}
y^{\prime \prime }&=4 y \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| 2721 |
\begin{align*}
y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y&=12 \,{\mathrm e}^{-x}+9 \cos \left (2 x \right )-13 \sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| 2722 |
\begin{align*}
x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y&=2 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| 2723 |
\begin{align*}
y^{2}+\cos \left (x \right )+\left (2 y x +\sin \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.204 |
|
| 2724 |
\begin{align*}
\left (\cos \left (x \right )+1\right ) y^{\prime }&=\sin \left (x \right ) \left (\sin \left (x \right )+\cos \left (x \right ) \sin \left (x \right )-y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| 2725 |
\begin{align*}
{y^{\prime }}^{2}-\frac {a^{2}}{x^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| 2726 |
\begin{align*}
y^{\prime \prime \prime \prime }&=\sin \left (x \right )+24 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| 2727 |
\begin{align*}
y+2 y^{\prime }&=0 \\
y \left (0\right ) &= -3 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| 2728 |
\begin{align*}
y x -1+x^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| 2729 |
\begin{align*}
4 x^{2} \left (x +1\right ) y^{\prime \prime }+8 x^{2} y^{\prime }+\left (x +1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.204 |
|
| 2730 |
\begin{align*}
y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.204 |
|
| 2731 |
\begin{align*}
2 x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (6-x \right ) y^{\prime }+\left (8-x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.204 |
|
| 2732 |
\begin{align*}
y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.204 |
|
| 2733 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }-6 y^{\prime } x +12 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.204 |
|
| 2734 |
\(\left [\begin {array}{cc} 1 & 2 \\ 3 & 2 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.204 |
|
| 2735 |
\begin{align*}
y^{\prime \prime \prime }+4 y^{\prime \prime }+29 y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 5 \\
y^{\prime \prime }\left (0\right ) &= -20 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| 2736 |
\(\left [\begin {array}{cc} 1 & 0 \\ 2 & 3 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.204 |
|
| 2737 |
\begin{align*}
t^{2} y^{\prime \prime }-4 y^{\prime } t +\left (t^{2}+6\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| 2738 |
\begin{align*}
y^{\prime \prime \prime }-4 y^{\prime \prime }-11 y^{\prime }+30 y&={\mathrm e}^{4 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| 2739 |
\begin{align*}
y^{\prime \prime \prime }+3 y^{\prime \prime }-10 y^{\prime }-24 y&={\mathrm e}^{-3 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| 2740 |
\begin{align*}
y-4 y^{\prime }+6 y^{\prime \prime }-4 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime }&={\mathrm e}^{x} \left (x +1\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| 2741 |
\begin{align*}
y^{\prime \prime \prime }+9 y^{\prime }&=11 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| 2742 |
\begin{align*}
y&=y^{\prime } x -\frac {{y^{\prime }}^{2}}{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.205 |
|
| 2743 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }+8 y^{\prime } x +12 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.205 |
|
| 2744 |
\begin{align*}
\left (1-x \right ) x^{2} y^{\prime \prime }-x \left (3-5 x \right ) y^{\prime }+\left (4-5 x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.205 |
|
| 2745 |
\(\left [\begin {array}{cc} 6 & -4 \\ 3 & -1 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.205 |
|
| 2746 |
\(\left [\begin {array}{cc} -2 & -4 \\ 1 & 3 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.205 |
|
| 2747 |
\begin{align*}
y^{\prime \prime \prime \prime }+9 y^{\prime \prime }&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.205 |
|
| 2748 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x -a^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.205 |
|
| 2749 |
\begin{align*}
x^{\prime }&=a x \\
y^{\prime }&=a y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.205 |
|
| 2750 |
\begin{align*}
w^{\prime }-w-2 y&=1 \\
y^{\prime }-4 w-3 y&=-1 \\
\end{align*} With initial conditions \begin{align*}
y \left (0\right ) &= 2 \\
w \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.205 |
|
| 2751 |
\begin{align*}
y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime }&=3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.205 |
|
| 2752 |
\begin{align*}
y^{\prime \prime \prime }-y&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.205 |
|
| 2753 |
\begin{align*}
y^{\prime \prime \prime }+6 y^{\prime \prime }+9 y^{\prime }&={\mathrm e}^{-3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.205 |
|
| 2754 |
\begin{align*}
y^{\prime \prime \prime \prime }-7 y^{\prime \prime \prime }+18 y^{\prime \prime }-20 y^{\prime }+8 y&={\mathrm e}^{2 x} \left (-5 x^{2}-8 x +3\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.206 |
|
| 2755 |
\begin{align*}
y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y&=12 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.206 |
|
| 2756 |
\begin{align*}
x^{2}-y-y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.206 |
|
| 2757 |
\begin{align*}
x^{4} y^{\prime \prime \prime \prime }-x^{2} y^{\prime \prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.206 |
|
| 2758 |
\begin{align*}
3 x^{2} \ln \left (x \right )+x^{2}+y+y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.206 |
|
| 2759 |
\begin{align*}
4 x^{2} \left (x^{2}+3 x +1\right ) y^{\prime \prime }-4 x \left (-3 x^{2}-3 x +1\right ) y^{\prime }+3 \left (x^{2}-x +1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.206 |
|
| 2760 |
\begin{align*}
2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.206 |
|
| 2761 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }-6 y^{\prime } x +12 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.206 |
|
| 2762 |
\begin{align*}
y^{\prime \prime \prime }-13 y^{\prime }+12 y&=\cos \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.206 |
|
| 2763 |
\begin{align*}
x^{2} y^{\prime \prime \prime }-2 y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.206 |
|
| 2764 |
\begin{align*}
y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y&=x^{4} {\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.206 |
|
| 2765 |
\begin{align*}
y^{\prime \prime \prime \prime }-y^{\prime \prime }+4 y&={\mathrm e}^{x}-x \,{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| 2766 |
\begin{align*}
2 \left (x -1\right ) y^{\prime }&=3 y \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| 2767 |
\begin{align*}
y^{\prime \prime }+2 x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| 2768 |
\begin{align*}
y^{\prime \prime \prime }-a^{2} y^{\prime }-{\mathrm e}^{2 a x} \sin \left (x \right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| 2769 |
\(\left [\begin {array}{cc} 10 & -9 \\ 6 & -5 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.207 |
|
| 2770 |
\(\left [\begin {array}{cc} 6 & 0 \\ 0 & -13 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.207 |
|
| 2771 |
\begin{align*}
{y^{\prime }}^{2}+\left (a +x \right ) y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| 2772 |
\begin{align*}
y^{\prime \prime }+8 y^{\prime }+20 y&=\sin \left (2 t \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -4 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| 2773 |
\begin{align*}
y^{\left (6\right )}-64 y&={\mathrm e}^{-2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| 2774 |
\begin{align*}
x^{2} {y^{\prime }}^{2}+3 y y^{\prime } x +2 y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| 2775 |
\begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| 2776 |
\begin{align*}
4 x^{\prime }-2 y&=\cos \left (2 t \right ) \\
x-2 y^{\prime }&=0 \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| 2777 |
\begin{align*}
8 y-8 y^{\prime } x +4 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime }&=0 \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 1 \\
y^{\prime \prime }\left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| 2778 |
\begin{align*}
y^{\prime \prime \prime \prime }+4 y^{\prime \prime }&=12 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| 2779 |
\begin{align*}
y^{\prime \prime \prime \prime }+2 y^{\prime \prime }&=7 x -3 \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.208 |
|
| 2780 |
\begin{align*}
2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.208 |
|
| 2781 |
\begin{align*}
\left (-x +3\right ) y-x \left (4-x \right ) y^{\prime }+2 \left (-x +2\right ) x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.208 |
|
| 2782 |
\begin{align*}
2 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (8 x^{2}+3\right ) y^{\prime }-\left (-4 x^{2}+3\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.208 |
|
| 2783 |
\begin{align*}
x^{2} \left (2 x +1\right ) y^{\prime \prime }+x \left (5+9 x \right ) y^{\prime }+\left (3 x +4\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.208 |
|
| 2784 |
\begin{align*}
2 y^{\prime \prime } x -y^{\prime }+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.208 |
|
| 2785 |
\begin{align*}
x^{\prime }+y^{\prime }-2 x-4 y&={\mathrm e}^{t} \\
x^{\prime }+y^{\prime }-y&={\mathrm e}^{4 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.208 |
|
| 2786 |
\(\left [\begin {array}{cc} 1 & 0 \\ 0 & 2 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.208 |
|
| 2787 |
\begin{align*}
{\mathrm e}^{x y^{2}-x^{2}} \left (y^{2}-2 x \right )+2 \,{\mathrm e}^{x y^{2}-x^{2}} x y y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.208 |
|
| 2788 |
\begin{align*}
x^{2} y^{\prime \prime \prime }&=2 y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.208 |
|
| 2789 |
\begin{align*}
y^{\prime \prime }-8 y^{\prime }+25 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.208 |
|
| 2790 |
\begin{align*}
y^{\prime }+y&=1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.208 |
|
| 2791 |
\begin{align*}
x^{2} y^{\prime \prime \prime }-4 y^{\prime \prime } x +6 y^{\prime }&=4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.208 |
|
| 2792 |
\begin{align*}
y^{\prime } \left (y^{\prime }-y\right )&=x \left (x +y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.208 |
|
| 2793 |
\begin{align*}
x^{\prime \prime }&=\delta \left (-t +a \right ) \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.208 |
|
| 2794 |
\begin{align*}
x^{\prime \prime }+8 x^{\prime }+15 x&=0 \\
x \left (0\right ) &= 2 \\
x^{\prime }\left (0\right ) &= -3 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.209 |
|
| 2795 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.209 |
|
| 2796 |
\begin{align*}
y^{\prime \prime }-t^{3} y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.209 |
|
| 2797 |
\begin{align*}
2 y x +x^{2}+b +\left (a +x^{2}+y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.209 |
|
| 2798 |
\begin{align*}
y^{\prime }+y&=y^{4} {\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.209 |
|
| 2799 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+6 y^{\prime } x +6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.209 |
|
| 2800 |
\begin{align*}
x^{2} \left (2 x +1\right ) y^{\prime \prime }-2 x \left (3+14 x \right ) y^{\prime }+\left (6+100 x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.209 |
|