| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 2801 |
\(\left [\begin {array}{cc} -2 & 7 \\ 3 & 2 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.209 |
|
| 2802 |
\begin{align*}
x^{\prime \prime }&=\cos \left (t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.209 |
|
| 2803 |
\begin{align*}
y^{\prime }+2 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.210 |
|
| 2804 |
\begin{align*}
y^{\prime \prime }-4 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.210 |
|
| 2805 |
\begin{align*}
y^{\prime \prime \prime }-6 y^{\prime \prime }+25 y^{\prime }&=\sin \left (4 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.210 |
|
| 2806 |
\begin{align*}
{y^{\prime }}^{2}-\left (x +1\right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.210 |
|
| 2807 |
\begin{align*}
{y^{\prime }}^{2}-2 y^{\prime } x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.210 |
|
| 2808 |
\begin{align*}
\left (x +1\right ) y^{\prime }&=x^{2}-2 x +y \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.210 |
|
| 2809 |
\(\left [\begin {array}{cc} 19 & -10 \\ 21 & -10 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.210 |
|
| 2810 |
\(\left [\begin {array}{cc} 0 & 1 \\ -1 & 0 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.210 |
|
| 2811 |
\begin{align*}
y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }&=x +\cos \left (x \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
y^{\prime \prime }\left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.210 |
|
| 2812 |
\begin{align*}
x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+15 x^{2} y^{\prime \prime }+9 y^{\prime } x +16 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.210 |
|
| 2813 |
\begin{align*}
y^{\prime \prime \prime \prime }+y^{\prime \prime }&=1 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 3 \\
y^{\prime \prime }\left (0\right ) &= 0 \\
y^{\prime \prime \prime }\left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.210 |
|
| 2814 |
\begin{align*}
y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime }&=x^{2} {\mathrm e}^{3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.210 |
|
| 2815 |
\begin{align*}
2 x^{\prime }+6 x&=t \,{\mathrm e}^{-3 t} \\
x \left (0\right ) &= -{\frac {1}{2}} \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.210 |
|
| 2816 |
\begin{align*}
x y {y^{\prime }}^{2}+\left (3 x^{2}-2 y^{2}\right ) y^{\prime }-6 y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.210 |
|
| 2817 |
\begin{align*}
y^{\prime }+2 x&=2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.210 |
|
| 2818 |
\begin{align*}
x^{\prime }+y^{\prime }+2 x-y&=-\sin \left (t \right ) \\
x^{\prime }-3 x+y^{\prime }+2 y&=4 \cos \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.210 |
|
| 2819 |
\begin{align*}
y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y&=16 x^{3}+20 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.210 |
|
| 2820 |
\begin{align*}
y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.211 |
|
| 2821 |
\begin{align*}
x^{\prime \prime }+4 x&=\delta \left (t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.211 |
|
| 2822 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=\frac {4}{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.211 |
|
| 2823 |
\begin{align*}
{y^{\prime }}^{2}+\left (1-x \right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.211 |
|
| 2824 |
\begin{align*}
x^{2} y^{\prime \prime }+\frac {\left (x +\frac {3}{4}\right ) y}{4}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.211 |
|
| 2825 |
\begin{align*}
x^{2} \left (1-2 x \right ) y^{\prime \prime }+3 y^{\prime } x +\left (4 x +1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.211 |
|
| 2826 |
\(\left [\begin {array}{cc} 3 & -5 \\ -4 & 2 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.211 |
|
| 2827 |
\begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=5 x^{5} {\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.211 |
|
| 2828 |
\begin{align*}
y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }&=\cos \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.211 |
|
| 2829 |
\begin{align*}
{y^{\prime }}^{2}-7 y^{\prime }+12&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.211 |
|
| 2830 |
\begin{align*}
y^{\prime }&=2 x -y \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.211 |
|
| 2831 |
\begin{align*}
y^{\prime \prime \prime }-5 y^{\prime \prime }+4 y&=14 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.211 |
|
| 2832 |
\begin{align*}
y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.212 |
|
| 2833 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.212 |
|
| 2834 |
\begin{align*}
y^{\prime \prime \prime }-y^{\prime }&={\mathrm e}^{x} \left (\sin \left (x \right )-x^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.212 |
|
| 2835 |
\begin{align*}
2 x +\cos \left (x \right ) y+\left (2 y+\sin \left (x \right )-\sin \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.212 |
|
| 2836 |
\begin{align*}
y \sec \left (x \right )+\sin \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.212 |
|
| 2837 |
\begin{align*}
x^{3} \left (x -1\right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+3 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
0.212 |
|
| 2838 |
\begin{align*}
8 y^{\left (5\right )}+4 y^{\prime \prime \prime \prime }+66 y^{\prime \prime \prime }-41 y^{\prime \prime }-37 y^{\prime }&=0 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= -14 \\
y^{\prime \prime }\left (0\right ) &= -14 \\
y^{\prime \prime \prime }\left (0\right ) &= 139 \\
y^{\prime \prime \prime \prime }\left (0\right ) &= -{\frac {29}{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.212 |
|
| 2839 |
\begin{align*}
y^{\prime }-\tan \left (x \right ) y+y^{2} \cos \left (x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.213 |
|
| 2840 |
\begin{align*}
\cos \left (y\right )-\left (x \sin \left (y\right )-y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.213 |
|
| 2841 |
\begin{align*}
y^{\prime \prime }+2 x^{3} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.213 |
|
| 2842 |
\begin{align*}
x {y^{\prime }}^{2}-\left (y x +1\right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.213 |
|
| 2843 |
\begin{align*}
f \left (x \right ) \sin \left (x \right ) y x y^{\prime } \pi &=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.213 |
|
| 2844 |
\begin{align*}
t y^{\prime \prime }-4 y^{\prime }+t y&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
0.213 |
|
| 2845 |
\begin{align*}
\left (x -2\right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.214 |
|
| 2846 |
\begin{align*}
\left (x -1\right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.214 |
|
| 2847 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.214 |
|
| 2848 |
\begin{align*}
{y^{\prime }}^{2}+y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.214 |
|
| 2849 |
\begin{align*}
x^{3} y^{\prime \prime }+4 x^{2} y^{\prime }+3 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
0.214 |
|
| 2850 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }-6 y^{\prime } x +12 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.214 |
|
| 2851 |
\begin{align*}
x^{\prime \prime }-2 x&=1 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.214 |
|
| 2852 |
\(\left [\begin {array}{cc} 3 & 2 \\ 6 & -1 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.214 |
|
| 2853 |
\begin{align*}
y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }-12 y&=\cos \left (4 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.214 |
|
| 2854 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=\sin \left (2 t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.214 |
|
| 2855 |
\begin{align*}
x^{2} y^{\prime \prime \prime }-y^{\prime \prime } x +y^{\prime }&=\frac {\ln \left (x \right )}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.214 |
|
| 2856 |
\begin{align*}
\left (2 x -1\right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.215 |
|
| 2857 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.215 |
|
| 2858 |
\begin{align*}
{y^{\prime }}^{2}+\left (a +x \right ) y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.215 |
|
| 2859 |
\begin{align*}
y^{\prime \prime }&=x +6 y^{2} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.215 |
|
| 2860 |
\begin{align*}
2 y x +\left (x^{2}+3 y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.215 |
|
| 2861 |
\(\left [\begin {array}{cc} 0 & -6 \\ 6 & 0 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.215 |
|
| 2862 |
\begin{align*}
x^{2}+y^{\prime } x&=3 x +y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.215 |
|
| 2863 |
\begin{align*}
{y^{\prime }}^{2}-5 y^{\prime }+6&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.215 |
|
| 2864 |
\begin{align*}
v^{\prime \prime }+v&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.215 |
|
| 2865 |
\begin{align*}
y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }&=12 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.215 |
|
| 2866 |
\begin{align*}
y^{\prime \prime \prime \prime }-18 y^{\prime \prime }+81 y&=36 \,{\mathrm e}^{3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.215 |
|
| 2867 |
\begin{align*}
y^{\prime \prime \prime }+y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= 4 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.215 |
|
| 2868 |
\begin{align*}
y^{\prime \prime \prime }+9 y^{\prime \prime }+24 y^{\prime }+16 y&=8 \,{\mathrm e}^{-x}+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.216 |
|
| 2869 |
\begin{align*}
x -2 y x +{\mathrm e}^{y}+\left (x \,{\mathrm e}^{y}+y-x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.216 |
|
| 2870 |
\begin{align*}
2 \left (1-x \right ) x y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.216 |
|
| 2871 |
\(\left [\begin {array}{cc} 0 & -12 \\ 12 & 0 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.216 |
|
| 2872 |
\(\left [\begin {array}{cc} 3 & 1 \\ 12 & 2 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.216 |
|
| 2873 |
\(\left [\begin {array}{cc} 3 & 4 \\ 5 & 2 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.216 |
|
| 2874 |
\begin{align*}
4 t^{2} y^{\prime \prime }+4 y^{\prime } t +\left (16 t^{2}-1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.216 |
|
| 2875 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x -3 y&=5 x^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.216 |
|
| 2876 |
\begin{align*}
{y^{\prime }}^{2}+2 y^{\prime } x -3 x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.216 |
|
| 2877 |
\begin{align*}
y^{\prime \prime \prime \prime }+4 y&=\cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.216 |
|
| 2878 |
\begin{align*}
x^{3} \left (x^{2}+3\right ) y^{\prime \prime }+5 y^{\prime } x -\left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
0.217 |
|
| 2879 |
\begin{align*}
{y^{\prime }}^{2}-2 x^{2} y^{\prime }+2 y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.217 |
|
| 2880 |
\begin{align*}
{\mathrm e}^{t} \left (-t +y\right )+\left (1+{\mathrm e}^{t}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.217 |
|
| 2881 |
\begin{align*}
\cos \left (\theta \right ) r^{\prime }-r \sin \left (\theta \right )+{\mathrm e}^{\theta }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.217 |
|
| 2882 |
\begin{align*}
\pi y \sin \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.217 |
|
| 2883 |
\begin{align*}
2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.217 |
|
| 2884 |
\begin{align*}
x^{2} \left (x +4\right ) y^{\prime \prime }-x \left (1-3 x \right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.217 |
|
| 2885 |
\begin{align*}
4 x^{2} \left (x +1\right ) y^{\prime \prime }+4 x \left (4 x +1\right ) y^{\prime }-\left (49+27 x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.217 |
|
| 2886 |
\begin{align*}
y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y&=36 t \,{\mathrm e}^{4 t} \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= -6 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.217 |
|
| 2887 |
\begin{align*}
y^{\prime \prime }-y^{\prime }+6 y&=-2 \sin \left (3 x \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.217 |
|
| 2888 |
\begin{align*}
y^{\prime \prime }+4 y&=\sin \left (2 t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.217 |
|
| 2889 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=\sqrt {x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.217 |
|
| 2890 |
\begin{align*}
x^{2} y^{\prime \prime \prime }+y^{\prime \prime } x -4 y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.217 |
|
| 2891 |
\begin{align*}
x y^{\prime \prime } \left (\cos \left (x \right ) x -2 \sin \left (x \right )\right )+\left (x^{2}+2\right ) y^{\prime } \sin \left (x \right )-2 y \left (x \sin \left (x \right )+\cos \left (x \right )\right )&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
0.217 |
|
| 2892 |
\begin{align*}
3 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime }&=x +1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.217 |
|
| 2893 |
\begin{align*}
y^{\prime \prime \prime \prime }+9 y^{\prime \prime \prime }&=11 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.217 |
|
| 2894 |
\begin{align*}
y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }&=12 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.217 |
|
| 2895 |
\begin{align*}
y^{\prime }+2 y^{\prime \prime }+y^{\prime \prime \prime }&={\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.217 |
|
| 2896 |
\begin{align*}
\left (-x +2\right ) x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.218 |
|
| 2897 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime \prime }+8 y^{\prime \prime } x +10 y^{\prime }-3+\frac {1}{x^{2}}-2 \ln \left (x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.218 |
|
| 2898 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=18 \,{\mathrm e}^{-t} \sin \left (3 t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.218 |
|
| 2899 |
\begin{align*}
y^{\prime \prime \prime }+y^{\prime \prime }+4 y^{\prime }+4 y&=8 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= -3 \\
y^{\prime \prime }\left (0\right ) &= -3 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.218 |
|
| 2900 |
\begin{align*}
x^{\prime }-x&=\cos \left (t \right )-\sin \left (t \right ) \\
x \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.218 |
|