| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 5401 |
\begin{align*}
x^{\prime }&=-4 x-y+{\mathrm e}^{-t} \\
y^{\prime }&=x-2 y+2 \,{\mathrm e}^{-3 t} \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 2 \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.426 |
|
| 5402 |
\begin{align*}
y^{\prime \prime }+\cos \left (x \right ) y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.426 |
|
| 5403 |
\begin{align*}
y^{\prime \prime \prime }+8 y&=-12 \,{\mathrm e}^{-2 t} \\
y \left (0\right ) &= -8 \\
y^{\prime }\left (0\right ) &= 24 \\
y^{\prime \prime }\left (0\right ) &= -46 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.426 |
|
| 5404 |
\begin{align*}
x^{\prime }&=y \\
y^{\prime }&=-x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.426 |
|
| 5405 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=4 x^{2} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.426 |
|
| 5406 |
\begin{align*}
x_{1}^{\prime }&=-50 x_{1}+20 x_{2} \\
x_{2}^{\prime }&=100 x_{1}-60 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.427 |
|
| 5407 |
\begin{align*}
\left (-t^{2}+1\right ) y^{\prime \prime }-y^{\prime } t +\alpha ^{2} y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.427 |
|
| 5408 |
\begin{align*}
y^{\prime }&=\frac {t}{\sqrt {t}+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.427 |
|
| 5409 |
\begin{align*}
y^{\prime }&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.427 |
|
| 5410 |
\begin{align*}
x^{\prime }&=y-z \\
y^{\prime }&=x+y \\
z^{\prime }&=x+z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.427 |
|
| 5411 |
\begin{align*}
y^{\prime }&=\frac {1}{x -1} \\
y \left (2\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.427 |
|
| 5412 |
\begin{align*}
x^{\prime }+2 x+y^{\prime }+y&=0 \\
5 x+y^{\prime }+3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.427 |
|
| 5413 |
\begin{align*}
y_{1}^{\prime }&=y_{1}+2 y_{2} \\
y_{2}^{\prime }&=-4 y_{1}+5 y_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| 5414 |
\begin{align*}
y^{\prime \prime \prime }+4 y^{\prime \prime }+5 y^{\prime }&={\mathrm e}^{-2 x} \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| 5415 |
\begin{align*}
x^{\prime }+x \sin \left (t \right )&=0 \\
x \left (0\right ) &= 1 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| 5416 |
\begin{align*}
\left (x^{2}+2\right ) y^{\prime \prime }+3 y^{\prime } x -y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| 5417 |
\begin{align*}
x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-2 x \left (2 x^{2}+1\right ) y^{\prime }+\left (-2 x^{2}+2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.428 |
|
| 5418 |
\begin{align*}
x^{\prime }&=-x+a y \\
y^{\prime }&=-x-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| 5419 |
\begin{align*}
x^{\prime }&=x+y \\
y^{\prime }&=x-y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| 5420 |
\begin{align*}
x y {y^{\prime }}^{2}-\left (x^{2}+y^{2}\right ) y^{\prime }+y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| 5421 |
\begin{align*}
u^{\prime }&=2 v-1 \\
v^{\prime }&=1+2 u \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| 5422 |
\begin{align*}
x^{\prime }&=y \\
y^{\prime }&=-x \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| 5423 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +6 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| 5424 |
\begin{align*}
y^{\prime \prime }+\sqrt {y^{\prime }}+y&=t \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.428 |
|
| 5425 |
\begin{align*}
x_{1}^{\prime }&=x_{1}-5 x_{2} \\
x_{2}^{\prime }&=x_{1}-x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.429 |
|
| 5426 |
\begin{align*}
x_{1}^{\prime }&=2 x_{1}-5 x_{2} \\
x_{2}^{\prime }&=x_{1}-2 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.429 |
|
| 5427 |
\begin{align*}
x^{2} y^{\prime \prime }+x \left (x -3\right ) y^{\prime }+\left (4-x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.429 |
|
| 5428 |
\begin{align*}
y^{\prime \prime \prime \prime }-y&=\cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.429 |
|
| 5429 |
\begin{align*}
y^{\prime }&=2 y x \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.429 |
|
| 5430 |
\begin{align*}
x^{\prime }&=-3 x+4 y \\
y^{\prime }&=-2 x+3 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.429 |
|
| 5431 |
\begin{align*}
\theta ^{\prime }&=2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.429 |
|
| 5432 |
\begin{align*}
y&=x \left (1+y^{\prime }\right )+{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.429 |
|
| 5433 |
\begin{align*}
x^{\prime }&=2 x-4 y \\
y^{\prime }&=-x+2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.429 |
|
| 5434 |
\begin{align*}
x^{\prime }&=3 x-2 y \\
y^{\prime }&=2 x-2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.429 |
|
| 5435 |
\begin{align*}
x^{\prime }&=-x+y \\
y^{\prime }&=-x-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.429 |
|
| 5436 |
\begin{align*}
y_{1}^{\prime }&=1 \\
y_{2}^{\prime }&=2 y_{1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| 5437 |
\begin{align*}
x y y^{\prime \prime }&=-y y^{\prime }+x {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.430 |
|
| 5438 |
\begin{align*}
y^{\prime }&=-4 x-y \\
x^{\prime }&=2 x-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| 5439 |
\begin{align*}
x^{\prime }&=-x-2 y \\
y^{\prime }&=2 x-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| 5440 |
\begin{align*}
y^{\prime }&=x \sin \left (x \right ) \\
y \left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| 5441 |
\begin{align*}
y^{\prime \prime \prime }-6 y^{\prime \prime }+21 y^{\prime }-26 y&=36 \,{\mathrm e}^{2 x} \sin \left (3 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| 5442 |
\begin{align*}
x^{\prime }&=-2 x+y \\
y^{\prime }&=-2 y \\
z^{\prime }&=z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| 5443 |
\begin{align*}
x^{\prime }&=-x+2 y \\
y^{\prime }&=2 x-4 y \\
z^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| 5444 |
\begin{align*}
y^{\prime }&=\frac {x}{\sqrt {x^{2}-16}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| 5445 |
\begin{align*}
x^{\prime }&=x-y+2 \cos \left (t \right ) \\
y^{\prime }&=x+y+3 \sin \left (t \right ) \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 3 \\
y \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| 5446 |
\begin{align*}
x^{\prime }&=y \\
y^{\prime }&=-2 x+3 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| 5447 |
\begin{align*}
x^{\prime }&=2 x-7 y \\
y^{\prime }&=3 x-8 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| 5448 |
\begin{align*}
y^{\prime \prime \prime \prime }+y^{\prime \prime }&=\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| 5449 |
\begin{align*}
\left (x^{2}+6 x \right ) y^{\prime \prime }+\left (3 x +9\right ) y^{\prime }-3 y&=0 \\
y \left (-3\right ) &= 0 \\
y^{\prime }\left (-3\right ) &= 2 \\
\end{align*} Series expansion around \(x=-3\). |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| 5450 |
\begin{align*}
y^{\prime }&=x \sqrt {x^{2}+9} \\
y \left (-4\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| 5451 |
\begin{align*}
y^{\prime \prime }-y&=\sin \left (x \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.431 |
|
| 5452 |
\begin{align*}
y y^{\prime }-2 x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.431 |
|
| 5453 |
\begin{align*}
y^{\prime \prime }+{\mathrm e}^{x} y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| 5454 |
\begin{align*}
x {y^{\prime }}^{2}-2 y y^{\prime }-x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| 5455 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +\frac {3 y}{4}&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| 5456 |
\begin{align*}
y^{\prime \prime }+\left (-1+y^{2}\right ) y^{\prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✗ |
✗ |
0.431 |
|
| 5457 |
\begin{align*}
x^{\prime }&=8 y-x \\
y^{\prime }&=x+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| 5458 |
\begin{align*}
y&=y^{\prime } x +\frac {m}{y^{\prime }} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.431 |
|
| 5459 |
\begin{align*}
y^{\prime \prime }+y^{\prime } x -2 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| 5460 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y x&=0 \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| 5461 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| 5462 |
\begin{align*}
y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| 5463 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +6 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| 5464 |
\begin{align*}
x \left (x^{2}+1\right ) y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }-8 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.432 |
|
| 5465 |
\begin{align*}
x_{1}^{\prime }&=-2 x_{1}-x_{2} \\
x_{2}^{\prime }&=x_{1}-4 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.432 |
|
| 5466 |
\begin{align*}
\left (x +1\right ) y^{\prime \prime }-\left (-x +2\right ) y^{\prime }+y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.432 |
|
| 5467 |
\begin{align*}
y^{\prime }&=y^{2}-\frac {2}{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.432 |
|
| 5468 |
\begin{align*}
y&=x^{2}+2 y^{\prime } x +\frac {{y^{\prime }}^{2}}{2} \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
0.432 |
|
| 5469 |
\begin{align*}
-y y^{\prime }-x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.432 |
|
| 5470 |
\begin{align*}
y^{\prime }&=1-x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.432 |
|
| 5471 |
\begin{align*}
{\mathrm e}^{x^{\prime }}&=x \\
x \left (t_{0} \right ) &= a \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.432 |
|
| 5472 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.432 |
|
| 5473 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{9}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.432 |
|
| 5474 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.433 |
|
| 5475 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+{\mathrm e}^{t} y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.433 |
|
| 5476 |
\begin{align*}
x_{1}^{\prime }&=x_{1}-3 x_{2} \\
x_{2}^{\prime }&=-2 x_{1}+2 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 0 \\
x_{2} \left (0\right ) &= 5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.433 |
|
| 5477 |
\begin{align*}
\tan \left (y^{\prime }\right )&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.433 |
|
| 5478 |
\begin{align*}
x^{\prime }&=y+z \\
y^{\prime }&=x+z \\
z^{\prime }&=x+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.433 |
|
| 5479 |
\begin{align*}
y^{\prime } x +y&=y^{4} x^{4} \\
y \left (1\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.434 |
|
| 5480 |
\begin{align*}
14 x^{2} y^{3}+21 x^{2} y^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.434 |
|
| 5481 |
\begin{align*}
x_{1}^{\prime }&=-2 x_{2} \\
x_{2}^{\prime }&=2 x_{1}+4 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.434 |
|
| 5482 |
\begin{align*}
x^{2} y^{\prime \prime }-\left (-x^{2}+x \right ) y^{\prime }+\left (x^{3}+1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.434 |
|
| 5483 |
\begin{align*}
x^{\prime }-x+3 y&=0 \\
3 x-y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.434 |
|
| 5484 |
\begin{align*}
y y^{\prime }+y^{\prime \prime }&=-12 f \left (x \right ) y+y^{3}+12 f^{\prime }\left (x \right ) \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.434 |
|
| 5485 |
\begin{align*}
x^{\prime }&=\frac {x}{2} \\
y^{\prime }&=x-\frac {y}{2} \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 4 \\
y \left (0\right ) &= 5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.434 |
|
| 5486 |
\begin{align*}
x y y^{\prime \prime }-x {y^{\prime }}^{2}+a y y^{\prime }+y^{3} b x&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.434 |
|
| 5487 |
\begin{align*}
x {y^{\prime }}^{2}-2 y y^{\prime }-x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.434 |
|
| 5488 |
\begin{align*}
x^{\prime }&=2 x+y \\
y^{\prime }&=x+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.434 |
|
| 5489 |
\begin{align*}
{y^{\prime }}^{2} \left (x^{2}-1\right )&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.434 |
|
| 5490 |
\begin{align*}
x^{\prime }&=3 x+t \\
y^{\prime }&=-y+2 t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.434 |
|
| 5491 |
\begin{align*}
x^{\prime }&=-x+y \\
y^{\prime }&=-x-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.434 |
|
| 5492 |
\begin{align*}
x^{\prime }&=4 x+3 y \\
y^{\prime }&=-x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.434 |
|
| 5493 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.434 |
|
| 5494 |
\begin{align*}
x^{\prime }&=6 x-3 y \\
y^{\prime }&=2 x+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.435 |
|
| 5495 |
\begin{align*}
y^{\prime \prime }&=f \left (x \right ) y^{2}-y^{3}+\left (f \left (x \right )-3 y\right ) y^{\prime } \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
0.435 |
|
| 5496 |
\begin{align*}
y^{\prime \prime }+y&=\sin \left (t \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.435 |
|
| 5497 |
\begin{align*}
x^{\prime }&=2 x+2 y \\
y^{\prime }&=6 x+3 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.435 |
|
| 5498 |
\begin{align*}
y^{\prime }&=\left (-1+y\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.435 |
|
| 5499 |
\begin{align*}
x_{1}^{\prime }&=3 x_{1}-2 x_{2} \\
x_{2}^{\prime }&=x_{1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.435 |
|
| 5500 |
\begin{align*}
x^{\prime }&=-x+y \\
y^{\prime }&=-x-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.435 |
|