2.3.55 Problems 5401 to 5500

Table 2.641: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

5401

20922

\begin{align*} x^{\prime }&=-4 x-y+{\mathrm e}^{-t} \\ y^{\prime }&=x-2 y+2 \,{\mathrm e}^{-3 t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= -1 \\ \end{align*}

0.426

5402

23442

\begin{align*} y^{\prime \prime }+\cos \left (x \right ) y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

0.426

5403

23662

\begin{align*} y^{\prime \prime \prime }+8 y&=-12 \,{\mathrm e}^{-2 t} \\ y \left (0\right ) &= -8 \\ y^{\prime }\left (0\right ) &= 24 \\ y^{\prime \prime }\left (0\right ) &= -46 \\ \end{align*}
Using Laplace transform method.

0.426

5404

23768

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=-x \\ \end{align*}

0.426

5405

24053

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=4 x^{2} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.426

5406

636

\begin{align*} x_{1}^{\prime }&=-50 x_{1}+20 x_{2} \\ x_{2}^{\prime }&=100 x_{1}-60 x_{2} \\ \end{align*}

0.427

5407

2422

\begin{align*} \left (-t^{2}+1\right ) y^{\prime \prime }-y^{\prime } t +\alpha ^{2} y&=0 \\ \end{align*}
Series expansion around \(t=0\).

0.427

5408

3423

\begin{align*} y^{\prime }&=\frac {t}{\sqrt {t}+1} \\ \end{align*}

0.427

5409

7216

\begin{align*} y^{\prime }&=y \\ \end{align*}

0.427

5410

13104

\begin{align*} x^{\prime }&=y-z \\ y^{\prime }&=x+y \\ z^{\prime }&=x+z \\ \end{align*}

0.427

5411

15574

\begin{align*} y^{\prime }&=\frac {1}{x -1} \\ y \left (2\right ) &= 1 \\ \end{align*}

0.427

5412

20205

\begin{align*} x^{\prime }+2 x+y^{\prime }+y&=0 \\ 5 x+y^{\prime }+3 y&=0 \\ \end{align*}

0.427

5413

2287

\begin{align*} y_{1}^{\prime }&=y_{1}+2 y_{2} \\ y_{2}^{\prime }&=-4 y_{1}+5 y_{2} \\ \end{align*}

0.428

5414

3200

\begin{align*} y^{\prime \prime \prime }+4 y^{\prime \prime }+5 y^{\prime }&={\mathrm e}^{-2 x} \cos \left (x \right ) \\ \end{align*}

0.428

5415

7651

\begin{align*} x^{\prime }+x \sin \left (t \right )&=0 \\ x \left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(t=0\).

0.428

5416

8490

\begin{align*} \left (x^{2}+2\right ) y^{\prime \prime }+3 y^{\prime } x -y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.428

5417

10583

\begin{align*} x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-2 x \left (2 x^{2}+1\right ) y^{\prime }+\left (-2 x^{2}+2\right ) y&=0 \\ \end{align*}

0.428

5418

18679

\begin{align*} x^{\prime }&=-x+a y \\ y^{\prime }&=-x-y \\ \end{align*}

0.428

5419

21223

\begin{align*} x^{\prime }&=x+y \\ y^{\prime }&=x-y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

0.428

5420

22321

\begin{align*} x y {y^{\prime }}^{2}-\left (x^{2}+y^{2}\right ) y^{\prime }+y x&=0 \\ \end{align*}

0.428

5421

22883

\begin{align*} u^{\prime }&=2 v-1 \\ v^{\prime }&=1+2 u \\ \end{align*}

0.428

5422

23563

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=-x \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

0.428

5423

23704

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +6 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

0.428

5424

25184

\begin{align*} y^{\prime \prime }+\sqrt {y^{\prime }}+y&=t \\ \end{align*}

0.428

5425

628

\begin{align*} x_{1}^{\prime }&=x_{1}-5 x_{2} \\ x_{2}^{\prime }&=x_{1}-x_{2} \\ \end{align*}

0.429

5426

1403

\begin{align*} x_{1}^{\prime }&=2 x_{1}-5 x_{2} \\ x_{2}^{\prime }&=x_{1}-2 x_{2} \\ \end{align*}

0.429

5427

4033

\begin{align*} x^{2} y^{\prime \prime }+x \left (x -3\right ) y^{\prime }+\left (4-x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.429

5428

8938

\begin{align*} y^{\prime \prime \prime \prime }-y&=\cos \left (x \right ) \\ \end{align*}

0.429

5429

9347

\begin{align*} y^{\prime }&=2 y x \\ \end{align*}
Series expansion around \(x=0\).

0.429

5430

9463

\begin{align*} x^{\prime }&=-3 x+4 y \\ y^{\prime }&=-2 x+3 y \\ \end{align*}

0.429

5431

15833

\begin{align*} \theta ^{\prime }&=2 \\ \end{align*}

0.429

5432

18012

\begin{align*} y&=x \left (1+y^{\prime }\right )+{y^{\prime }}^{2} \\ \end{align*}

0.429

5433

20993

\begin{align*} x^{\prime }&=2 x-4 y \\ y^{\prime }&=-x+2 y \\ \end{align*}

0.429

5434

23589

\begin{align*} x^{\prime }&=3 x-2 y \\ y^{\prime }&=2 x-2 y \\ \end{align*}

0.429

5435

23787

\begin{align*} x^{\prime }&=-x+y \\ y^{\prime }&=-x-y \\ \end{align*}

0.429

5436

4174

\begin{align*} y_{1}^{\prime }&=1 \\ y_{2}^{\prime }&=2 y_{1} \\ \end{align*}

0.430

5437

6497

\begin{align*} x y y^{\prime \prime }&=-y y^{\prime }+x {y^{\prime }}^{2} \\ \end{align*}

0.430

5438

7522

\begin{align*} y^{\prime }&=-4 x-y \\ x^{\prime }&=2 x-y \\ \end{align*}

0.430

5439

14381

\begin{align*} x^{\prime }&=-x-2 y \\ y^{\prime }&=2 x-y \\ \end{align*}

0.430

5440

15573

\begin{align*} y^{\prime }&=x \sin \left (x \right ) \\ y \left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}

0.430

5441

15687

\begin{align*} y^{\prime \prime \prime }-6 y^{\prime \prime }+21 y^{\prime }-26 y&=36 \,{\mathrm e}^{2 x} \sin \left (3 x \right ) \\ \end{align*}

0.430

5442

16043

\begin{align*} x^{\prime }&=-2 x+y \\ y^{\prime }&=-2 y \\ z^{\prime }&=z \\ \end{align*}

0.430

5443

16045

\begin{align*} x^{\prime }&=-x+2 y \\ y^{\prime }&=2 x-4 y \\ z^{\prime }&=0 \\ \end{align*}

0.430

5444

16982

\begin{align*} y^{\prime }&=\frac {x}{\sqrt {x^{2}-16}} \\ \end{align*}

0.430

5445

20923

\begin{align*} x^{\prime }&=x-y+2 \cos \left (t \right ) \\ y^{\prime }&=x+y+3 \sin \left (t \right ) \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 3 \\ y \left (0\right ) &= 2 \\ \end{align*}

0.430

5446

21743

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=-2 x+3 y \\ \end{align*}

0.430

5447

21777

\begin{align*} x^{\prime }&=2 x-7 y \\ y^{\prime }&=3 x-8 y \\ \end{align*}

0.430

5448

24711

\begin{align*} y^{\prime \prime \prime \prime }+y^{\prime \prime }&=\sin \left (x \right ) \\ \end{align*}

0.430

5449

447

\begin{align*} \left (x^{2}+6 x \right ) y^{\prime \prime }+\left (3 x +9\right ) y^{\prime }-3 y&=0 \\ y \left (-3\right ) &= 0 \\ y^{\prime }\left (-3\right ) &= 2 \\ \end{align*}
Series expansion around \(x=-3\).

0.431

5450

656

\begin{align*} y^{\prime }&=x \sqrt {x^{2}+9} \\ y \left (-4\right ) &= 0 \\ \end{align*}

0.431

5451

3343

\begin{align*} y^{\prime \prime }-y&=\sin \left (x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Series expansion around \(x=0\).

0.431

5452

6505

\begin{align*} y y^{\prime }-2 x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

0.431

5453

8969

\begin{align*} y^{\prime \prime }+{\mathrm e}^{x} y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

0.431

5454

14052

\begin{align*} x {y^{\prime }}^{2}-2 y y^{\prime }-x&=0 \\ \end{align*}

0.431

5455

14762

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +\frac {3 y}{4}&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.431

5456

17698

\begin{align*} y^{\prime \prime }+\left (-1+y^{2}\right ) y^{\prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

0.431

5457

18428

\begin{align*} x^{\prime }&=8 y-x \\ y^{\prime }&=x+y \\ \end{align*}

0.431

5458

20015

\begin{align*} y&=y^{\prime } x +\frac {m}{y^{\prime }} \\ \end{align*}

0.431

5459

21942

\begin{align*} y^{\prime \prime }+y^{\prime } x -2 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

0.431

5460

22174

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y x&=0 \\ \end{align*}
Series expansion around \(x=1\).

0.431

5461

23696

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Series expansion around \(x=0\).

0.431

5462

23707

\begin{align*} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Series expansion around \(x=0\).

0.431

5463

23711

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +6 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.431

5464

2052

\begin{align*} x \left (x^{2}+1\right ) y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }-8 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.432

5465

3925

\begin{align*} x_{1}^{\prime }&=-2 x_{1}-x_{2} \\ x_{2}^{\prime }&=x_{1}-4 x_{2} \\ \end{align*}

0.432

5466

8493

\begin{align*} \left (x +1\right ) y^{\prime \prime }-\left (-x +2\right ) y^{\prime }+y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Series expansion around \(x=0\).

0.432

5467

8741

\begin{align*} y^{\prime }&=y^{2}-\frac {2}{x^{2}} \\ \end{align*}

0.432

5468

15051

\begin{align*} y&=x^{2}+2 y^{\prime } x +\frac {{y^{\prime }}^{2}}{2} \\ \end{align*}

0.432

5469

15103

\begin{align*} -y y^{\prime }-x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

0.432

5470

17863

\begin{align*} y^{\prime }&=1-x \\ \end{align*}

0.432

5471

21032

\begin{align*} {\mathrm e}^{x^{\prime }}&=x \\ x \left (t_{0} \right ) &= a \\ \end{align*}

0.432

5472

22867

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.432

5473

22868

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{9}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.432

5474

1855

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.433

5475

2625

\begin{align*} y^{\prime \prime }+y^{\prime }+{\mathrm e}^{t} y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Series expansion around \(t=0\).

0.433

5476

2773

\begin{align*} x_{1}^{\prime }&=x_{1}-3 x_{2} \\ x_{2}^{\prime }&=-2 x_{1}+2 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 0 \\ x_{2} \left (0\right ) &= 5 \\ \end{align*}

0.433

5477

17901

\begin{align*} \tan \left (y^{\prime }\right )&=x \\ \end{align*}

0.433

5478

22901

\begin{align*} x^{\prime }&=y+z \\ y^{\prime }&=x+z \\ z^{\prime }&=x+y \\ \end{align*}

0.433

5479

1637

\begin{align*} y^{\prime } x +y&=y^{4} x^{4} \\ y \left (1\right ) &= {\frac {1}{2}} \\ \end{align*}

0.434

5480

1682

\begin{align*} 14 x^{2} y^{3}+21 x^{2} y^{2} y^{\prime }&=0 \\ \end{align*}

0.434

5481

3855

\begin{align*} x_{1}^{\prime }&=-2 x_{2} \\ x_{2}^{\prime }&=2 x_{1}+4 x_{2} \\ \end{align*}

0.434

5482

4028

\begin{align*} x^{2} y^{\prime \prime }-\left (-x^{2}+x \right ) y^{\prime }+\left (x^{3}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.434

5483

4534

\begin{align*} x^{\prime }-x+3 y&=0 \\ 3 x-y^{\prime }+y&=0 \\ \end{align*}

0.434

5484

6317

\begin{align*} y y^{\prime }+y^{\prime \prime }&=-12 f \left (x \right ) y+y^{3}+12 f^{\prime }\left (x \right ) \\ \end{align*}

0.434

5485

9683

\begin{align*} x^{\prime }&=\frac {x}{2} \\ y^{\prime }&=x-\frac {y}{2} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 4 \\ y \left (0\right ) &= 5 \\ \end{align*}

0.434

5486

12978

\begin{align*} x y y^{\prime \prime }-x {y^{\prime }}^{2}+a y y^{\prime }+y^{3} b x&=0 \\ \end{align*}

0.434

5487

14081

\begin{align*} x {y^{\prime }}^{2}-2 y y^{\prime }-x&=0 \\ \end{align*}

0.434

5488

15993

\begin{align*} x^{\prime }&=2 x+y \\ y^{\prime }&=x+y \\ \end{align*}

0.434

5489

19734

\begin{align*} {y^{\prime }}^{2} \left (x^{2}-1\right )&=1 \\ \end{align*}

0.434

5490

21213

\begin{align*} x^{\prime }&=3 x+t \\ y^{\prime }&=-y+2 t \\ \end{align*}

0.434

5491

23591

\begin{align*} x^{\prime }&=-x+y \\ y^{\prime }&=-x-y \\ \end{align*}

0.434

5492

23613

\begin{align*} x^{\prime }&=4 x+3 y \\ y^{\prime }&=-x \\ \end{align*}

0.434

5493

23714

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.434

5494

2699

\begin{align*} x^{\prime }&=6 x-3 y \\ y^{\prime }&=2 x+y \\ \end{align*}

0.435

5495

6328

\begin{align*} y^{\prime \prime }&=f \left (x \right ) y^{2}-y^{3}+\left (f \left (x \right )-3 y\right ) y^{\prime } \\ \end{align*}

0.435

5496

9634

\begin{align*} y^{\prime \prime }+y&=\sin \left (t \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

0.435

5497

14400

\begin{align*} x^{\prime }&=2 x+2 y \\ y^{\prime }&=6 x+3 y \\ \end{align*}

0.435

5498

17855

\begin{align*} y^{\prime }&=\left (-1+y\right )^{2} \\ \end{align*}

0.435

5499

23571

\begin{align*} x_{1}^{\prime }&=3 x_{1}-2 x_{2} \\ x_{2}^{\prime }&=x_{1} \\ \end{align*}

0.435

5500

23811

\begin{align*} x^{\prime }&=-x+y \\ y^{\prime }&=-x-y \\ \end{align*}

0.435