2.3.83 Problems 8201 to 8300

Table 2.697: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

8201

21692

\begin{align*} x^{2} y^{\prime \prime }+x \left (x +3\right ) y^{\prime }+\left (x^{2}+x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.769

8202

21769

\begin{align*} y {y^{\prime }}^{2}-2 y^{\prime } x +y&=0 \\ \end{align*}

0.769

8203

22143

\begin{align*} y^{\prime }-y&={\mathrm e}^{x} \\ \end{align*}

0.769

8204

1510

\begin{align*} y^{\prime \prime }+y&=\delta \left (t -2 \pi \right ) \cos \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

0.770

8205

2369

\begin{align*} 5 y^{\prime \prime }+5 y^{\prime }-y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

0.770

8206

5458

\begin{align*} x {y^{\prime }}^{2}-y y^{\prime }+a&=0 \\ \end{align*}

0.770

8207

8992

\begin{align*} x^{2} y^{\prime \prime }+\left (-3 x^{2}+x \right ) y^{\prime }+{\mathrm e}^{x} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.770

8208

11779

\begin{align*} \left (y^{2}-a^{2}\right ) {y^{\prime }}^{2}+y^{2}&=0 \\ \end{align*}

0.770

8209

14184

\begin{align*} \left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2}+\left (1-\ln \left (y\right )\right ) y y^{\prime \prime }&=0 \\ \end{align*}

0.770

8210

17298

\begin{align*} y^{\prime } t -{y^{\prime }}^{3}&=y \\ \end{align*}

0.770

8211

489

\begin{align*} \left (5 x^{3}+2 x^{2}\right ) y^{\prime \prime }+\left (-x^{2}+3 x \right ) y^{\prime }-\left (x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.771

8212

6566

\begin{align*} A y+\left (a +2 b x +c \,x^{2}+y^{2}\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

0.771

8213

9692

\begin{align*} x^{\prime }&=3 x+2 y+4 z \\ y^{\prime }&=2 x+2 z \\ z^{\prime }&=4 x+2 y+3 z \\ \end{align*}

0.771

8214

22182

\begin{align*} x^{4} \left (x^{2}-4\right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }+\left (x^{2}-3 x +2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=2\).

0.771

8215

1974

\begin{align*} x \left (x^{2}+3\right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-8 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.772

8216

18997

\begin{align*} x_{1}^{\prime }&=\frac {x_{1}}{2}-x_{2}-\frac {3 x_{3}}{2} \\ x_{2}^{\prime }&=\frac {3 x_{1}}{2}-2 x_{2}-\frac {3 x_{3}}{2} \\ x_{3}^{\prime }&=-2 x_{1}+2 x_{2}+x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 2 \\ x_{2} \left (0\right ) &= 1 \\ x_{3} \left (0\right ) &= 1 \\ \end{align*}

0.772

8217

19012

\begin{align*} x_{1}^{\prime }&=x_{1}-x_{2}+4 x_{3} \\ x_{2}^{\prime }&=3 x_{1}+2 x_{2}-x_{3} \\ x_{3}^{\prime }&=2 x_{1}+x_{2}-x_{3} \\ \end{align*}

0.772

8218

21244

\begin{align*} x^{\prime }&=a x+y \\ y^{\prime }&=-2 x+b y \\ \end{align*}

0.772

8219

23668

\begin{align*} y^{\prime \prime } x -\left (2 x -1\right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.772

8220

1511

\begin{align*} y^{\prime \prime }+4 y&=2 \delta \left (t -\frac {\pi }{4}\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.773

8221

8264

\begin{align*} y^{\prime }&=y \left (-3+y\right ) \\ \end{align*}

0.773

8222

8519

\begin{align*} 2 y^{\prime \prime } x -\left (2 x +3\right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.773

8223

12906

\begin{align*} 24+12 y x +x^{3} \left (-y^{3}+y y^{\prime }+y^{\prime \prime }\right )&=0 \\ \end{align*}

0.773

8224

16930

\begin{align*} x^{\prime }&=2 y \\ y^{\prime }&=1-2 x \\ \end{align*}

0.773

8225

18951

\begin{align*} y^{\prime \prime }+y&=\delta \left (t -1\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.773

8226

19032

\begin{align*} x_{1}^{\prime }&=x_{1}-x_{2}+4 x_{3} \\ x_{2}^{\prime }&=3 x_{1}+2 x_{2}-x_{3} \\ x_{3}^{\prime }&=2 x_{1}+x_{2}-x_{3} \\ \end{align*}

0.773

8227

19780

\begin{align*} y^{\prime \prime }-{y^{\prime }}^{2}-y {y^{\prime }}^{3}&=0 \\ \end{align*}

0.773

8228

1992

\begin{align*} 28 x^{2} \left (1-3 x \right ) y^{\prime \prime }-7 x \left (5+9 x \right ) y^{\prime }+7 \left (2+9 x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.774

8229

8740

\begin{align*} 2 y^{\prime }+x&=4 \sqrt {y} \\ \end{align*}

0.774

8230

23738

\begin{align*} y^{\prime \prime } x -y^{\prime }+4 x^{3} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.774

8231

502

\begin{align*} y^{\prime \prime } x -\left (x +4\right ) y^{\prime }+3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.775

8232

2065

\begin{align*} x^{2} \left (-2 x^{2}+1\right ) y^{\prime \prime }+x \left (-13 x^{2}+7\right ) y^{\prime }-14 x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.775

8233

8331

\begin{align*} y^{\prime }&=y^{2} \left (4-y^{2}\right ) \\ \end{align*}

0.775

8234

10262

\begin{align*} y^{\prime }&=1 \\ \end{align*}

0.775

8235

16428

\begin{align*} y^{\prime \prime }&=-2 x {y^{\prime }}^{2} \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.775

8236

18081

\begin{align*} y^{\prime \prime }&={y^{\prime }}^{2} \\ \end{align*}

0.775

8237

19108

\begin{align*} y {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-x&=0 \\ \end{align*}

0.775

8238

1441

\begin{align*} x_{1}^{\prime }&=-2 x_{1}+x_{2}+2 \,{\mathrm e}^{-t} \\ x_{2}^{\prime }&=x_{1}-2 x_{2}+3 t \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= \alpha _{1} \\ x_{2} \left (0\right ) &= \alpha _{2} \\ \end{align*}

0.776

8239

1957

\begin{align*} 3 x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.776

8240

2465

\begin{align*} 2 \sin \left (t \right ) y^{\prime \prime }+\left (1-t \right ) y^{\prime }-2 y&=0 \\ \end{align*}
Series expansion around \(t=0\).

0.776

8241

2782

\begin{align*} x_{1}^{\prime }&=3 x_{1}-2 x_{2}+1-\operatorname {Heaviside}\left (t -\pi \right ) \\ x_{2}^{\prime }&=2 x_{1}-2 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 0 \\ x_{2} \left (0\right ) &= 0 \\ \end{align*}

0.776

8242

7621

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -{\frac {17}{2}} \\ \end{align*}

0.776

8243

13209

\begin{align*} y^{\prime }&=y^{2}+a^{2} x^{2}+b x +c \\ \end{align*}

0.776

8244

18993

\begin{align*} x_{1}^{\prime }&=x_{1}-x_{2}+4 x_{3} \\ x_{2}^{\prime }&=3 x_{1}+2 x_{2}-x_{3} \\ x_{3}^{\prime }&=2 x_{1}+x_{2}-x_{3} \\ \end{align*}

0.776

8245

23731

\begin{align*} y^{\prime \prime } x +\left (1-x \right ) y^{\prime }+3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.776

8246

1989

\begin{align*} 8 x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+2 x \left (34 x^{2}+5\right ) y^{\prime }-\left (-30 x^{2}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.777

8247

15515

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=0 \\ y \left (0\right ) &= 1 \\ y \left (2\right ) &= 0 \\ \end{align*}

0.777

8248

1436

\begin{align*} x_{1}^{\prime }&=-\frac {5 x_{1}}{4}+\frac {3 x_{2}}{4}+2 t \\ x_{2}^{\prime }&=\frac {3 x_{1}}{4}-\frac {5 x_{2}}{4}+{\mathrm e}^{t} \\ \end{align*}

0.778

8249

1631

\begin{align*} x^{2} y^{\prime }+2 y&=2 \,{\mathrm e}^{\frac {1}{x}} \sqrt {y} \\ \end{align*}

0.778

8250

1979

\begin{align*} 2 x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+5 x \left (6 x^{2}+1\right ) y^{\prime }-\left (-40 x^{2}+2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.778

8251

3357

\begin{align*} 2 x^{2} y^{\prime \prime }-3 \left (x^{2}+x \right ) y^{\prime }+\left (3 x +2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.778

8252

5659

\begin{align*} \left (x +2 y\right ) {y^{\prime }}^{3}+3 \left (x +y\right ) {y^{\prime }}^{2}+\left (2 x +y\right ) y^{\prime }&=0 \\ \end{align*}

0.778

8253

13057

\begin{align*} y^{\prime \prime }-f \left (y\right )&=0 \\ \end{align*}

0.778

8254

16942

\begin{align*} x^{\prime }&=8 x+2 y-17 \\ y^{\prime }&=4 x+y-13 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ \end{align*}

0.778

8255

20905

\begin{align*} y^{\prime \prime } x +2 y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.778

8256

4739

\begin{align*} y^{\prime }&=a f \left (y\right ) \\ \end{align*}

0.779

8257

7036

\begin{align*} 2 y^{3} y^{\prime }+x y^{2}-x^{3}&=0 \\ \end{align*}

0.779

8258

10203

\begin{align*} x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.779

8259

14371

\begin{align*} x^{\prime \prime }+x&=3 \delta \left (t -2 \pi \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

0.779

8260

17831

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=1-x \\ \end{align*}

0.779

8261

17996

\begin{align*} {y^{\prime }}^{3}&=y {y^{\prime }}^{2}-x^{2} y^{\prime }+x^{2} y \\ \end{align*}

0.779

8262

20898

\begin{align*} \frac {y^{\prime \prime }}{x}+\frac {3 \left (x -4\right ) y^{\prime }}{6+x}+\frac {x^{2} \left (x -2\right ) y}{x -1}&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.779

8263

20907

\begin{align*} 4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}-1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.779

8264

22065

\begin{align*} y^{\prime }-7 y&={\mathrm e}^{x} \\ \end{align*}

0.779

8265

233

\begin{align*} y y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\ \end{align*}

0.780

8266

1997

\begin{align*} 4 x^{2} \left (x^{2}+2 x +3\right ) y^{\prime \prime }-x \left (-15 x^{2}-14 x +3\right ) y^{\prime }+\left (7 x^{2}+3\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.780

8267

2078

\begin{align*} x \left (x +1\right ) y^{\prime \prime }-4 y^{\prime }-2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.780

8268

4537

\begin{align*} y_{1}^{\prime }-y_{2}&=0 \\ 4 y_{1}+y_{2}^{\prime }-4 y_{2}-2 y_{3}&=0 \\ -2 y_{1}+y_{2}+y_{3}^{\prime }+y_{3}&=0 \\ \end{align*}

0.780

8269

23747

\begin{align*} y^{\prime \prime } x +\left (1-x \right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.780

8270

10664

\begin{align*} 2 t^{2} y^{\prime \prime }+\left (t^{2}-t \right ) y^{\prime }+y&=0 \\ \end{align*}

0.781

8271

16471

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=0 \\ y \left (0\right ) &= 8 \\ y^{\prime }\left (0\right ) &= -9 \\ \end{align*}

0.781

8272

21635

\begin{align*} \left (x -1\right ) y^{\prime \prime }+y^{\prime } x +\frac {y}{x}&=0 \\ \end{align*}
Series expansion around \(x=2\).

0.781

8273

21904

\begin{align*} x^{2} y^{\prime \prime }+\left (x^{2}-3 x \right ) y^{\prime }+\left (x +4\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.781

8274

1998

\begin{align*} x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.782

8275

2245

\begin{align*} y_{1}^{\prime }&=y_{1}-y_{2}-2 y_{3} \\ y_{2}^{\prime }&=y_{1}-2 y_{2}-3 y_{3} \\ y_{3}^{\prime }&=-4 y_{1}+y_{2}-y_{3} \\ \end{align*}

0.782

8276

10201

\begin{align*} y^{\prime \prime } x +\left (x +1\right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.782

8277

21685

\begin{align*} x^{2} y^{\prime \prime }+x^{2} y^{\prime }-2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.782

8278

3396

\begin{align*} 9 x^{2} y^{\prime \prime }+10 y^{\prime } x +y&=x -1 \\ \end{align*}
Series expansion around \(x=0\).

0.783

8279

3821

\begin{align*} x_{1}^{\prime }&=-2 x_{1}+x_{2}+t \\ x_{2}^{\prime }&=-2 x_{1}+x_{2}+1 \\ \end{align*}

0.783

8280

7884

\begin{align*} 2 x +3 y+4+\left (3 x +4 y+5\right ) y^{\prime }&=0 \\ \end{align*}

0.783

8281

9509

\begin{align*} y^{\prime \prime }-\left (x +1\right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.783

8282

9682

\begin{align*} x^{\prime }&=-x+4 y+2 z \\ y^{\prime }&=4 x-y-2 z \\ z^{\prime }&=6 z \\ \end{align*}

0.783

8283

9876

\begin{align*} 2 x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.783

8284

11266

\begin{align*} 2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y&=0 \\ \end{align*}

0.783

8285

12804

\begin{align*} 6 y^{\prime \prime } x +6 x^{2} y^{\prime \prime \prime }+x^{3} y^{\prime \prime \prime \prime }&=0 \\ \end{align*}

0.783

8286

22280

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

0.783

8287

2247

\begin{align*} y_{1}^{\prime }&=3 y_{1}+5 y_{2}+8 y_{3} \\ y_{2}^{\prime }&=y_{1}-y_{2}-2 y_{3} \\ y_{3}^{\prime }&=-y_{1}-y_{2}-y_{3} \\ \end{align*}

0.784

8288

2248

\begin{align*} y_{1}^{\prime }&=y_{1}-y_{2}+2 y_{3} \\ y_{2}^{\prime }&=12 y_{1}-4 y_{2}+10 y_{3} \\ y_{3}^{\prime }&=-6 y_{1}+y_{2}-7 y_{3} \\ \end{align*}

0.784

8289

3887

\begin{align*} x_{1}^{\prime }&=-8 x_{1}+6 x_{2}-3 x_{3} \\ x_{2}^{\prime }&=-12 x_{1}+10 x_{2}-3 x_{3} \\ x_{3}^{\prime }&=-2 x_{3} \\ \end{align*}

0.784

8290

5526

\begin{align*} 4 x^{2} {y^{\prime }}^{2}-4 y y^{\prime } x&=8 x^{3}-y^{2} \\ \end{align*}

0.784

8291

8558

\begin{align*} 2 y^{\prime \prime } x +y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.784

8292

11690

\begin{align*} 3 {y^{\prime }}^{2}-2 y^{\prime } x +y&=0 \\ \end{align*}

0.784

8293

1959

\begin{align*} 9 x^{2} y^{\prime \prime }+9 y^{\prime } x -\left (1+3 x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.785

8294

3906

\begin{align*} x_{1}^{\prime }&=-7 x_{1}-6 x_{2}-7 x_{3} \\ x_{2}^{\prime }&=-3 x_{1}-3 x_{2}-3 x_{3} \\ x_{3}^{\prime }&=7 x_{1}+6 x_{2}+7 x_{3} \\ \end{align*}

0.785

8295

18986

\begin{align*} x_{1}^{\prime }&=-4 x_{1}+x_{2} \\ x_{2}^{\prime }&=x_{1}-5 x_{2}+x_{3} \\ x_{3}^{\prime }&=x_{2}-4 x_{3} \\ \end{align*}

0.785

8296

21678

\begin{align*} 2 x^{2} y^{\prime \prime }+7 x \left (x +1\right ) y^{\prime }-3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.785

8297

23621

\begin{align*} x^{\prime }&=-10 x+y+7 z \\ y^{\prime }&=-9 x+4 y+5 z \\ z^{\prime }&=-17 x+y+12 z \\ \end{align*}

0.785

8298

354

\begin{align*} y^{\prime \prime }+y&=\cos \left (x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

0.786

8299

2738

\begin{align*} x_{1}^{\prime }&=3 x_{1}+x_{2}-2 x_{3} \\ x_{2}^{\prime }&=-x_{1}+2 x_{2}+x_{3} \\ x_{3}^{\prime }&=4 x_{1}+x_{2}-3 x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 4 \\ x_{3} \left (0\right ) &= -7 \\ \end{align*}

0.786

8300

3843

\begin{align*} x_{1}^{\prime }&=-3 x_{2}+x_{3} \\ x_{2}^{\prime }&=-2 x_{1}-x_{2}+x_{3} \\ x_{3}^{\prime }&=2 x_{3} \\ \end{align*}

0.786