2.2.35 Problems 3401 to 3500

Table 2.71: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

3401

\[ {}y^{\prime } = \frac {1}{x +2 y+1} \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

1.752

3402

\[ {}y^{\prime } = -\frac {x +y}{3 x +3 y-4} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.319

3403

\[ {}y^{\prime } = \tan \left (x \right ) \cos \left (y\right ) \left (\cos \left (y\right )+\sin \left (y\right )\right ) \]

[_separable]

4.855

3404

\[ {}x \left (1-2 x^{2} y\right ) y^{\prime }+y = 3 x^{2} y^{2} \]
i.c.

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.194

3405

\[ {}y^{\prime }+\frac {x y}{a^{2}+x^{2}} = x \]

[_linear]

5.631

3406

\[ {}y^{\prime } = \frac {4 y^{2}}{x^{2}}-y^{2} \]

[_separable]

3.053

3407

\[ {}y^{\prime }-\frac {y}{x} = 1 \]
i.c.

[_linear]

2.336

3408

\[ {}y^{\prime }-y \tan \left (x \right ) = 1 \]
i.c.

[_linear]

1.708

3409

\[ {}y^{\prime }-\frac {y^{2}}{x^{2}} = {\frac {1}{4}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3.793

3410

\[ {}y^{\prime }-\frac {y^{2}}{x^{2}} = {\frac {1}{4}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

2.729

3411

\[ {}y^{\prime } \sin \left (x \right )+2 y \cos \left (x \right ) = 1 \]
i.c.

[_linear]

3.264

3412

\[ {}\left (5 x +y-7\right ) y^{\prime } = 3 x +3 y+3 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7.307

3413

\[ {}y^{\prime } x +y-\frac {y^{2}}{x^{{3}/{2}}} = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7.154

3414

\[ {}\left (2 \sin \left (y\right )-x \right ) y^{\prime } = \tan \left (y\right ) \]
i.c.

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

11.348

3415

\[ {}\left (2 \sin \left (y\right )-x \right ) y^{\prime } = \tan \left (y\right ) \]
i.c.

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

12.224

3416

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

1.262

3417

\[ {}x^{\prime \prime }+\omega _{0}^{2} x = a \cos \left (\omega t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.998

3418

\[ {}f^{\prime \prime }+2 f^{\prime }+5 f = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.115

3419

\[ {}f^{\prime \prime }+2 f^{\prime }+5 f = {\mathrm e}^{-t} \cos \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

11.724

3420

\[ {}f^{\prime \prime }+6 f^{\prime }+9 f = {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2.188

3421

\[ {}f^{\prime \prime }+8 f^{\prime }+12 f = 12 \,{\mathrm e}^{-4 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.541

3422

\[ {}f^{\prime \prime }+8 f^{\prime }+12 f = 12 \,{\mathrm e}^{-4 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.336

3423

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 4 \,{\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

1.160

3424

\[ {}y^{\prime \prime \prime }-12 y^{\prime }+16 y = 32 x -8 \]

[[_3rd_order, _with_linear_symmetries]]

0.787

3425

\[ {}-\frac {{y^{\prime }}^{2}}{y^{2}}+\frac {y^{\prime \prime }}{y}+\frac {2 a \coth \left (2 a x \right ) y^{\prime }}{y} = 2 a^{2} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.532

3426

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = x \]

[[_2nd_order, _with_linear_symmetries]]

4.038

3427

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+3 \left (x +1\right ) y^{\prime }+y = x^{2} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3.924

3428

\[ {}\left (x -2\right ) y^{\prime \prime }+3 y^{\prime }+\frac {4 y}{x^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.059

3429

\[ {}y^{\prime \prime }-y = x^{n} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.862

3430

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.970

3431

\[ {}2 y y^{\prime \prime \prime }+2 \left (y+3 y^{\prime }\right ) y^{\prime \prime }+2 {y^{\prime }}^{2} = \sin \left (x \right ) \]

[[_3rd_order, _exact, _nonlinear]]

0.055

3432

\[ {}x y^{\prime \prime \prime }+2 y^{\prime \prime } = A x \]

[[_3rd_order, _missing_y]]

0.253

3433

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+6\right ) y = {\mathrm e}^{-x^{2}} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8.064

3434

\[ {}\left (-z^{2}+1\right ) y^{\prime \prime }-3 z y^{\prime }+\lambda y = 0 \]

[_Gegenbauer]

1.166

3435

\[ {}4 z y^{\prime \prime }+2 \left (1-z \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.210

3436

\[ {}z y^{\prime \prime }-2 y^{\prime }+9 z^{5} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.147

3437

\[ {}f^{\prime \prime }+2 \left (z -1\right ) f^{\prime }+4 f = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.374

3438

\[ {}z^{2} y^{\prime \prime }-\frac {3 z y^{\prime }}{2}+\left (1+z \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.856

3439

\[ {}z y^{\prime \prime }-2 y^{\prime }+y z = 0 \]

[_Lienard]

1.115

3440

\[ {}y^{\prime \prime }-2 z y^{\prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.007

3441

\[ {}z \left (1-z \right ) y^{\prime \prime }+\left (1-z \right ) y^{\prime }+\lambda y = 0 \]

[_Jacobi]

1.408

3442

\[ {}z y^{\prime \prime }+\left (2 z -3\right ) y^{\prime }+\frac {4 y}{z} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.145

3443

\[ {}\left (z^{2}+5 z +6\right ) y^{\prime \prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.072

3444

\[ {}\left (z^{2}+5 z +7\right ) y^{\prime \prime }+2 y = 0 \]

[[_Emden, _Fowler]]

0.372

3445

\[ {}y^{\prime \prime }+\frac {y}{z^{3}} = 0 \]

[[_Emden, _Fowler]]

0.053

3446

\[ {}z y^{\prime \prime }+\left (1-z \right ) y^{\prime }+\lambda y = 0 \]

[_Laguerre]

1.323

3447

\[ {}\left (-z^{2}+1\right ) y^{\prime \prime }-z y^{\prime }+m^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.122

3448

\[ {}y^{\prime } = 2 y x \]

[_separable]

1.595

3449

\[ {}y^{\prime } = \frac {y^{2}}{x^{2}+1} \]

[_separable]

3.218

3450

\[ {}{\mathrm e}^{x +y} y^{\prime }-1 = 0 \]

[_separable]

3.300

3451

\[ {}y^{\prime } = \frac {y}{x \ln \left (x \right )} \]

[_separable]

2.565

3452

\[ {}y-\left (x -2\right ) y^{\prime } = 0 \]

[_separable]

3.161

3453

\[ {}y^{\prime } = \frac {2 x \left (-1+y\right )}{x^{2}+3} \]

[_separable]

1.586

3454

\[ {}y-y^{\prime } x = 3-2 x^{2} y^{\prime } \]

[_separable]

2.393

3455

\[ {}y^{\prime } = \frac {\cos \left (x -y\right )}{\sin \left (x \right ) \sin \left (y\right )}-1 \]

[_separable]

5.289

3456

\[ {}y^{\prime } = \frac {x \left (-1+y^{2}\right )}{2 \left (x -2\right ) \left (x -1\right )} \]

[_separable]

4.128

3457

\[ {}y^{\prime } = \frac {x^{2} y-32}{-x^{2}+16}+32 \]

[_linear]

1.951

3458

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }-y+c = 0 \]

[_separable]

4.441

3459

\[ {}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1 \]
i.c.

[_separable]

4.049

3460

\[ {}\left (-x^{2}+1\right ) y^{\prime }+y x = a x \]
i.c.

[_separable]

4.175

3461

\[ {}y^{\prime } = 1-\frac {\sin \left (x +y\right )}{\sin \left (y\right ) \cos \left (x \right )} \]
i.c.

[_separable]

5.864

3462

\[ {}y^{\prime } = y^{3} \sin \left (x \right ) \]

[_separable]

4.183

3463

\[ {}y^{\prime }-y = {\mathrm e}^{2 x} \]

[[_linear, ‘class A‘]]

2.067

3464

\[ {}x^{2} y^{\prime }-4 y x = x^{7} \sin \left (x \right ) \]

[_linear]

2.681

3465

\[ {}y^{\prime }+2 y x = 2 x^{3} \]

[_linear]

2.312

3466

\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = 4 x \]

[_linear]

2.683

3467

\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = \frac {4}{\left (x^{2}+1\right )^{2}} \]

[_linear]

2.682

3468

\[ {}2 \cos \left (x \right )^{2} y^{\prime }+y \sin \left (2 x \right ) = 4 \cos \left (x \right )^{4} \]

[_linear]

5.435

3469

\[ {}y^{\prime }+\frac {y}{x \ln \left (x \right )} = 9 x^{2} \]

[_linear]

2.684

3470

\[ {}y^{\prime }-y \tan \left (x \right ) = 8 \sin \left (x \right )^{3} \]

[_linear]

3.244

3471

\[ {}t x^{\prime }+2 x = 4 \,{\mathrm e}^{t} \]

[_linear]

2.375

3472

\[ {}y^{\prime } = \sin \left (x \right ) \left (y \sec \left (x \right )-2\right ) \]

[_linear]

3.168

3473

\[ {}1-y \sin \left (x \right )-\cos \left (x \right ) y^{\prime } = 0 \]

[_linear]

3.308

3474

\[ {}y^{\prime }-\frac {y}{x} = 2 x^{2} \ln \left (x \right ) \]

[_linear]

2.227

3475

\[ {}y^{\prime }+\alpha y = {\mathrm e}^{\beta x} \]

[[_linear, ‘class A‘]]

2.578

3476

\[ {}y^{\prime }+\frac {m}{x} = \ln \left (x \right ) \]

[_quadrature]

0.172

3477

\[ {}\left (3 x -y\right ) y^{\prime } = 3 y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.603

3478

\[ {}y^{\prime } = \frac {\left (x +y\right )^{2}}{2 x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3.928

3479

\[ {}\sin \left (\frac {y}{x}\right ) \left (y^{\prime } x -y\right ) = x \cos \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

14.253

3480

\[ {}y^{\prime } x = \sqrt {16 x^{2}-y^{2}}+y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

129.599

3481

\[ {}y^{\prime } x -y = \sqrt {9 x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

11.467

3482

\[ {}x \left (x^{2}-y^{2}\right )-x \left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8.234

3483

\[ {}y^{\prime } x +y \ln \left (x \right ) = y \ln \left (y\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

8.645

3484

\[ {}y^{\prime } = \frac {y^{2}+2 y x -2 x^{2}}{x^{2}-y x +y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19.121

3485

\[ {}2 x y y^{\prime }-x^{2} {\mathrm e}^{-\frac {y^{2}}{x^{2}}}-2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘]]

6.312

3486

\[ {}x^{2} y^{\prime } = y^{2}+3 y x +x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

2.789

3487

\[ {}y y^{\prime } = \sqrt {x^{2}+y^{2}}-x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

14.760

3488

\[ {}2 x \left (y+2 x \right ) y^{\prime } = y \left (4 x -y\right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6.592

3489

\[ {}y^{\prime } x = x \tan \left (\frac {y}{x}\right )+y \]

[[_homogeneous, ‘class A‘], _dAlembert]

7.882

3490

\[ {}y^{\prime } = \frac {x \sqrt {x^{2}+y^{2}}+y^{2}}{y x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

68.953

3491

\[ {}y^{\prime \prime }-25 y = 0 \]

[[_2nd_order, _missing_x]]

3.258

3492

\[ {}y^{\prime \prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

2.002

3493

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

1.269

3494

\[ {}y^{\prime } = -y^{2} \]

[_quadrature]

0.257

3495

\[ {}y^{\prime } = \frac {y}{2 x} \]

[_separable]

2.881

3496

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

1.428

3497

\[ {}y^{\prime \prime }-9 y = 0 \]

[[_2nd_order, _missing_x]]

3.187

3498

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2.122

3499

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.823

3500

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +13 y = 0 \]

[[_Emden, _Fowler]]

4.223