2.3.105 Problems 10401 to 10500

Table 2.741: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

10401

15804

\begin{align*} y^{\prime }&=\frac {1-y^{2}}{y} \\ y \left (0\right ) &= -2 \\ \end{align*}

1.335

10402

5384

\begin{align*} {y^{\prime }}^{2}+a y^{\prime }+b y&=0 \\ \end{align*}

1.336

10403

23229

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

1.336

10404

1120

\begin{align*} -2 y+3 y^{\prime }&={\mathrm e}^{-\frac {\pi t}{2}} \\ y \left (0\right ) &= a \\ \end{align*}

1.337

10405

4526

\begin{align*} y^{\prime \prime }-5 y^{\prime }+6 y&=\delta \left (-2+t \right ) \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

1.337

10406

8668

\begin{align*} \left (1+z^{\prime }\right ) {\mathrm e}^{-z}&=1 \\ \end{align*}

1.338

10407

15619

\begin{align*} y^{\prime }&=y^{3} \\ y \left (-1\right ) &= 0 \\ \end{align*}

1.338

10408

18092

\begin{align*} y^{\prime \prime }&=2 x \ln \left (x \right ) \\ \end{align*}

1.338

10409

6468

\begin{align*} 1+{y^{\prime }}^{2}+2 y y^{\prime \prime }&=0 \\ \end{align*}

1.339

10410

9942

\begin{align*} x \left (x -2\right )^{2} y^{\prime \prime }-2 \left (x -2\right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.339

10411

13415

\begin{align*} y^{\prime }&=y^{2}+m y \cot \left (x \right )+b^{2} \sin \left (x \right )^{2 m} \\ \end{align*}

1.339

10412

14766

\begin{align*} x^{2} y^{\prime \prime }+x^{2} y^{\prime }-\frac {3 y}{4}&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.339

10413

16418

\begin{align*} y^{\prime \prime }&=y^{\prime } \\ y \left (0\right ) &= 8 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

1.339

10414

15906

\begin{align*} -2 y+y^{\prime }&=3 \,{\mathrm e}^{-2 t} \\ y \left (0\right ) &= 10 \\ \end{align*}

1.340

10415

18537

\begin{align*} y^{\prime }+\frac {4 y}{3}&=1-\frac {t}{4} \\ y \left (0\right ) &= y_{0} \\ \end{align*}

1.340

10416

20029

\begin{align*} y&=y^{\prime } x +\sqrt {b^{2}+a^{2} y^{\prime }} \\ \end{align*}

1.340

10417

6431

\begin{align*} y y^{\prime \prime }&=\ln \left (y\right ) y^{2}+{y^{\prime }}^{2} \\ \end{align*}

1.341

10418

13673

\begin{align*} y^{\prime \prime }+a y^{\prime }+\left (b x +c \right ) y&=0 \\ \end{align*}

1.341

10419

14321

\begin{align*} x^{\prime \prime }&=-\frac {x}{t^{2}} \\ \end{align*}

1.341

10420

19522

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \csc \left (x \right ) \\ \end{align*}

1.341

10421

20384

\begin{align*} {y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right )&=y^{2} \\ \end{align*}

1.341

10422

1506

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=\delta \left (t -\pi \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

1.342

10423

8650

\begin{align*} y^{\prime \prime }+4 y^{\prime }+5 y&=\delta \left (t -1\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}
Using Laplace transform method.

1.342

10424

9825

\begin{align*} \left (1+y^{\prime }\right )^{2} \left (-y^{\prime } x +y\right )&=1 \\ \end{align*}

1.342

10425

9914

\begin{align*} \left (1-x \right ) x y^{\prime \prime }-3 y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.342

10426

15893

\begin{align*} y^{\prime }&=y \sin \left (\frac {\pi y}{2}\right ) \\ \end{align*}

1.342

10427

9869

\begin{align*} x \left (4-x \right ) y^{\prime \prime }+\left (-x +2\right ) y^{\prime }+4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.343

10428

21860

\begin{align*} y^{2}-2 y y^{\prime } x +x^{2} {y^{\prime }}^{2}-{y^{\prime }}^{3}&=0 \\ \end{align*}

1.343

10429

24909

\begin{align*} y^{\prime } t&=y \\ \end{align*}

1.343

10430

121

\begin{align*} y^{\prime }&=\left (4 x +y\right )^{2} \\ \end{align*}

1.344

10431

3088

\begin{align*} y^{\prime \prime }&=0 \\ \end{align*}

1.344

10432

9724

\begin{align*} \left (x^{2}+y^{2}\right )^{2} {y^{\prime }}^{2}&=4 y^{2} x^{2} \\ \end{align*}

1.344

10433

15866

\begin{align*} y^{\prime }&=y^{2}-4 y-12 \\ y \left (0\right ) &= 6 \\ \end{align*}

1.344

10434

4406

\begin{align*} y y^{\prime \prime }-y y^{\prime }&={y^{\prime }}^{2} \\ \end{align*}

1.345

10435

15108

\begin{align*} y^{\prime \prime }+y&=\sin \left (3 x \right ) \cos \left (x \right ) \\ \end{align*}

1.345

10436

19751

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}

1.345

10437

7028

\begin{align*} \left (x^{2}-y\right ) y^{\prime }+x&=0 \\ \end{align*}

1.346

10438

9957

\begin{align*} 2 y^{\prime \prime } x +y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.346

10439

9969

\begin{align*} y^{\prime \prime } x +\left (-x +2\right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.346

10440

15230

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=5 \cos \left (t \right ) \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )\right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

1.346

10441

15323

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=\left \{\begin {array}{cc} t & 0\le t \le 3 \\ t +2 & 3<t \end {array}\right . \\ y \left (0\right ) &= -2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

1.346

10442

17709

\begin{align*} 2 y^{\prime \prime } x -5 y^{\prime }-3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.346

10443

19117

\begin{align*} y \left (1+{y^{\prime }}^{2}\right )&=2 \alpha \\ \end{align*}

1.346

10444

14489

\begin{align*} y^{\prime } x +y x +y-1&=0 \\ \end{align*}

1.347

10445

22873

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (4 x^{2}-1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.347

10446

23262

\begin{align*} y^{\prime \prime }&=3 x \\ \end{align*}

1.347

10447

18449

\begin{align*} x^{\prime }&=2 x+y-2 z+2-t \\ y^{\prime }&=1-x \\ z^{\prime }&=x+y-z+1-t \\ \end{align*}

1.348

10448

3259

\begin{align*} y^{\prime \prime }&=y y^{\prime } \\ \end{align*}

1.349

10449

8297

\begin{align*} y^{\prime }&=-y x +1 \\ y \left (0\right ) &= 0 \\ \end{align*}

1.349

10450

22575

\begin{align*} i^{\prime }&=\frac {i t^{2}}{t^{3}-i^{3}} \\ \end{align*}

1.349

10451

23249

\begin{align*} y^{\prime \prime }+y x&=x \\ \end{align*}

1.349

10452

24918

\begin{align*} y^{\prime }&=2 t y \\ \end{align*}

1.351

10453

1189

\begin{align*} y^{\prime }&=y \left (1-y^{2}\right ) \\ \end{align*}

1.352

10454

3144

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ \end{align*}

1.352

10455

4740

\begin{align*} y^{\prime }&=f \left (a +b x +c y\right ) \\ \end{align*}

1.352

10456

8332

\begin{align*} y^{\prime }&=y \left (2-y\right ) \left (4-y\right ) \\ \end{align*}

1.352

10457

10588

\begin{align*} x^{2} \left (2 x +1\right ) y^{\prime \prime }+x \left (3 x^{2}+14 x +5\right ) y^{\prime }+\left (12 x^{2}+18 x +4\right ) y&=0 \\ \end{align*}

1.352

10458

24834

\begin{align*} 4 y {y^{\prime }}^{2}-2 y^{\prime } x +y&=0 \\ \end{align*}

1.352

10459

8299

\begin{align*} y^{\prime }&=-y x +1 \\ y \left (2\right ) &= 2 \\ \end{align*}

1.353

10460

10529

\begin{align*} \left (3 x^{2}+x +1\right ) y^{\prime \prime }+\left (2+15 x \right ) y^{\prime }+12 y&=0 \\ \end{align*}

1.353

10461

9745

\begin{align*} 4 x -2 y y^{\prime }+x {y^{\prime }}^{2}&=0 \\ \end{align*}

1.355

10462

19986

\begin{align*} y&=x \left (1+y^{\prime }\right )+{y^{\prime }}^{2} \\ \end{align*}

1.355

10463

24973

\begin{align*} y^{\prime }&=\frac {y x +2 y}{x} \\ y \left (1\right ) &= {\mathrm e} \\ \end{align*}

1.355

10464

7599

\begin{align*} z^{\prime \prime }-2 z^{\prime }-2 z&=0 \\ z \left (0\right ) &= 0 \\ z^{\prime }\left (0\right ) &= -3 \\ \end{align*}

1.356

10465

21567

\begin{align*} y^{\prime \prime }&=\cos \left (2 x \right ) \\ \end{align*}

1.356

10466

5619

\begin{align*} {y^{\prime }}^{3}+2 y^{\prime } x -y&=0 \\ \end{align*}

1.357

10467

7098

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

1.357

10468

16403

\begin{align*} \sin \left (y\right ) y^{\prime \prime }+\cos \left (y\right ) {y^{\prime }}^{2}&=0 \\ \end{align*}

1.357

10469

22871

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (3 x^{2}-4\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.357

10470

9649

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=\delta \left (t -1\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

1.358

10471

21718

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&=\left \{\begin {array}{cc} 0 & t <6 \\ 1 & 6\le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

1.358

10472

25221

\begin{align*} t^{2} y^{\prime \prime }-2 y^{\prime } t&=0 \\ \end{align*}

1.358

10473

5956

\begin{align*} x^{2} y^{\prime \prime }&=12 y \\ \end{align*}

1.359

10474

11760

\begin{align*} \left (y-2 x \right ) {y^{\prime }}^{2}-2 \left (x -1\right ) y^{\prime }+y-2&=0 \\ \end{align*}

1.359

10475

18007

\begin{align*} y^{{2}/{5}}+{y^{\prime }}^{{2}/{5}}&=a^{{2}/{5}} \\ \end{align*}

1.359

10476

8869

\begin{align*} y+3 y^{\prime }&=2 \,{\mathrm e}^{-x} \\ \end{align*}

1.360

10477

15020

\begin{align*} x^{\prime }+3 x&={\mathrm e}^{2 t} \\ \end{align*}

1.360

10478

7727

\begin{align*} y^{\prime }+y&=x y^{3} \\ \end{align*}

1.361

10479

14539

\begin{align*} y^{\prime }+y&=\left \{\begin {array}{cc} 1 & 0\le x <2 \\ 0 & 0<x \end {array}\right . \\ y \left (0\right ) &= 0 \\ \end{align*}

1.361

10480

1549

\begin{align*} y^{\prime }+\left (\frac {1}{x}-1\right ) y&=-\frac {2}{x} \\ \end{align*}

1.362

10481

2097

\begin{align*} 9 x^{2} y^{\prime \prime }-3 x \left (2 x^{2}+11\right ) y^{\prime }+\left (10 x^{2}+13\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.362

10482

5075

\begin{align*} \left (x^{2}-y\right ) y^{\prime }+x&=0 \\ \end{align*}

1.362

10483

5762

\begin{align*} a \,{\mathrm e}^{b x} y+y^{\prime \prime }&=0 \\ \end{align*}

1.362

10484

9778

\begin{align*} y^{\prime \prime }&=x {y^{\prime }}^{2} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

1.362

10485

16645

\begin{align*} y^{\prime \prime }+y&=6 \cos \left (2 x \right )-3 \sin \left (2 x \right ) \\ \end{align*}

1.362

10486

25605

\begin{align*} -y+y^{\prime }&={\mathrm e}^{t} \\ \end{align*}

1.362

10487

3441

\begin{align*} y^{\prime }&=t -y \\ \end{align*}

1.363

10488

15093

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }-6 y&=1 \\ \end{align*}

1.363

10489

22087

\begin{align*} y^{\prime }-2 y&=y x \\ \end{align*}

1.363

10490

24000

\begin{align*} y^{\left (6\right )}+3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }+y&=\cos \left (x \right ) \\ \end{align*}

1.363

10491

19902

\begin{align*} x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

1.364

10492

24967

\begin{align*} t y y^{\prime }+t^{2}+1&=0 \\ \end{align*}

1.364

10493

5743

\begin{align*} \left (b x +a \right ) y+y^{\prime \prime }&=0 \\ \end{align*}

1.365

10494

9916

\begin{align*} y^{\prime \prime } x +\left (3 x +4\right ) y^{\prime }+3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.365

10495

14106

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right ) \\ \end{align*}

1.365

10496

15773

\begin{align*} x^{\prime }&=3 x-2 y-6 \\ y^{\prime }&=4 x-y+2 \\ \end{align*}

1.365

10497

19195

\begin{align*} y^{\prime \prime }+y&=\sin \left (2 x \right ) \sin \left (x \right ) \\ \end{align*}

1.365

10498

21313

\begin{align*} x^{\prime }&=\lambda x-x^{5} \\ \end{align*}

1.365

10499

8298

\begin{align*} y^{\prime }&=-y x +1 \\ y \left (-1\right ) &= 0 \\ \end{align*}

1.366

10500

16232

\begin{align*} y^{\prime }&={\mathrm e}^{x +y^{2}} \\ \end{align*}

1.366