| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 10901 |
\begin{align*}
2 y y^{\prime \prime }-{y^{\prime }}^{2}+a&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.510 |
|
| 10902 |
\begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{2}+y&=\delta \left (t -1\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.510 |
|
| 10903 |
\begin{align*}
-2 y+y^{\prime }&=3 \,{\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.511 |
|
| 10904 |
\begin{align*}
y^{\prime }&=f \left (\frac {y}{x}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.512 |
|
| 10905 |
\begin{align*}
y^{\prime }+5 y&={\mathrm e}^{-3 x} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.512 |
|
| 10906 |
\begin{align*}
\left (1-t \right ) y^{\prime }&=y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.512 |
|
| 10907 |
\begin{align*}
x^{\prime }&=x+2 y+\sin \left (t \right ) \\
y^{\prime }&=-x+y-\cos \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.513 |
|
| 10908 |
\begin{align*}
y^{\prime \prime }+5 y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.515 |
|
| 10909 |
\begin{align*}
y^{\prime }+\frac {4 y}{x}&=x^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.515 |
|
| 10910 |
\begin{align*}
3 t^{2}+4 t y+\left (2 y+2 t^{2}\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.516 |
|
| 10911 |
\begin{align*}
{y^{\prime }}^{2}-y y^{\prime } x +y^{2} \ln \left (a y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.517 |
|
| 10912 |
\begin{align*}
\left (x +y\right ) \left (-y+y^{\prime } x \right )^{3}+x^{3} y^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
1.517 |
|
| 10913 |
\begin{align*}
y^{\prime \prime }&=y y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.517 |
|
| 10914 |
\begin{align*}
x^{\prime }&=\frac {x \sqrt {6 x-9}}{3} \\
x \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.517 |
|
| 10915 |
\begin{align*}
6 y^{\prime }+6 y^{2}-y-1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.518 |
|
| 10916 |
\begin{align*}
y^{\prime }&=b y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.518 |
|
| 10917 |
\begin{align*}
9 {y^{\prime }}^{2}+12 x y^{4} y^{\prime }+4 y^{5}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.518 |
|
| 10918 |
\begin{align*}
x^{\prime \prime }+9 x&=10 \cos \left (2 t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.519 |
|
| 10919 |
\begin{align*}
y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.519 |
|
| 10920 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime }&=\left (-1+y\right ) x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.519 |
|
| 10921 |
\begin{align*}
y^{\prime }-2 y x&={\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.520 |
|
| 10922 |
\begin{align*}
y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+4 y^{\prime \prime }+3 y^{\prime }+y&=x^{2} {\mathrm e}^{-x}+3 \,{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.520 |
|
| 10923 |
\begin{align*}
y^{\prime \prime }+y&=\left \{\begin {array}{cc} 1 & 0\le t <\frac {\pi }{2} \\ 0 & \frac {\pi }{2}\le t \end {array}\right . \\
y \left (0\right ) &= 5 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.520 |
|
| 10924 |
\begin{align*}
y^{\prime \prime }+y&=\sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.520 |
|
| 10925 |
\begin{align*}
y^{\prime \prime }+5 y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.522 |
|
| 10926 |
\begin{align*}
y^{\prime \prime }+4 y&=\operatorname {Heaviside}\left (t -\pi \right )-\operatorname {Heaviside}\left (t -3 \pi \right ) \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 7 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.522 |
|
| 10927 |
\begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{10}+y&=k \delta \left (t -1\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.522 |
|
| 10928 |
\begin{align*}
y^{\prime }+p \left (x \right ) y&=q \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.523 |
|
| 10929 |
\begin{align*}
x^{\prime \prime }+4 x^{\prime }+8 x&=f \left (t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.523 |
|
| 10930 |
\begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.523 |
|
| 10931 |
\begin{align*}
\left (2 x y^{3}+y x +x^{2}\right ) y^{\prime }-y x +y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.523 |
|
| 10932 |
\begin{align*}
y^{\prime \prime }+y&=\delta \left (t -\frac {\pi }{2}\right )+\delta \left (t -\frac {3 \pi }{2}\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.523 |
|
| 10933 |
\begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +4 x^{4} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.523 |
|
| 10934 |
\begin{align*}
y^{\prime }&=y+t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.523 |
|
| 10935 |
\begin{align*}
-y+y^{\prime }&=1+3 \sin \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.524 |
|
| 10936 |
\begin{align*}
y^{\prime }&={\mathrm e}^{x +y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.524 |
|
| 10937 |
\begin{align*}
y^{\prime \prime } x +3 y^{\prime }+4 x^{3} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.524 |
|
| 10938 |
\begin{align*}
\sqrt {1-x}\, y^{\prime \prime }-4 y&=\sin \left (x \right ) \\
y \left (-2\right ) &= 3 \\
y^{\prime }\left (-2\right ) &= -1 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
1.524 |
|
| 10939 |
\begin{align*}
x^{\prime \prime }+3 x^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.524 |
|
| 10940 |
\begin{align*}
3 y^{\prime \prime }+4 y^{\prime }+y&=\sin \left (t \right ) {\mathrm e}^{-t} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.525 |
|
| 10941 |
\begin{align*}
x_{1}^{\prime }&=-x_{1}+8 x_{2}+9 t \\
x_{2}^{\prime }&=x_{1}+x_{2}+3 \,{\mathrm e}^{-t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.525 |
|
| 10942 |
\begin{align*}
a y+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.525 |
|
| 10943 |
\begin{align*}
x \left (x +1\right ) y^{\prime \prime }+\left (x +5\right ) y^{\prime }-4 y&=0 \\
\end{align*} Series expansion around \(x=-1\). |
✓ |
✓ |
✓ |
✗ |
1.525 |
|
| 10944 |
\begin{align*}
y^{\prime \prime }+\left (a \,x^{2 c}+b \,x^{c -1}\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
1.525 |
|
| 10945 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +8 \left (x^{2}-1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.525 |
|
| 10946 |
\begin{align*}
y^{\prime \prime }&=9 x^{2}+2 x -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.525 |
|
| 10947 |
\begin{align*}
x_{1}^{\prime }&=2 x_{1}-8 x_{3}-3 x_{4} \\
x_{2}^{\prime }&=-18 x_{1}-x_{2} \\
x_{3}^{\prime }&=-9 x_{1}-3 x_{2}-25 x_{3}-9 x_{4} \\
x_{4}^{\prime }&=33 x_{1}+10 x_{2}+90 x_{3}+32 x_{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.526 |
|
| 10948 |
\begin{align*}
y^{\prime \prime } x +3 y^{\prime }+x^{3} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.526 |
|
| 10949 |
\begin{align*}
x^{\prime \prime }+\left (2+x\right ) x^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.526 |
|
| 10950 |
\begin{align*}
-y+y^{\prime }&=8 \,{\mathrm e}^{3 t} \\
y \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.526 |
|
| 10951 |
\begin{align*}
\left (x^{2}-3 y^{2}\right ) y^{\prime }+1+2 y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.527 |
|
| 10952 |
\begin{align*}
y^{\prime }&=\left (x +y\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.527 |
|
| 10953 |
\begin{align*}
x^{2} y^{\prime \prime }-\left (a \,x^{3}+\frac {5}{16}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.527 |
|
| 10954 |
\begin{align*}
y^{\left (6\right )}-y&=x^{10} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.527 |
|
| 10955 |
\begin{align*}
y+y^{\prime }&=8 \,{\mathrm e}^{-3 t} \\
y \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.527 |
|
| 10956 |
\begin{align*}
y^{\prime }&=y \left (1-y\right ) \left (2-y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.527 |
|
| 10957 |
\begin{align*}
y^{\prime }&=\frac {t^{2}}{\left (t^{3}+1\right ) y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.528 |
|
| 10958 |
\begin{align*}
a x^{\prime }&=b c \left (y-z\right ) \\
b y^{\prime }&=c a \left (z-x\right ) \\
c z^{\prime }&=a b \left (x-y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.528 |
|
| 10959 |
\begin{align*}
x^{2} \left (-y^{\prime } x +y\right )&=y {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.528 |
|
| 10960 |
\begin{align*}
-\left (a^{2}-{\mathrm e}^{2 x}\right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.529 |
|
| 10961 |
\begin{align*}
y^{\prime } x +x^{2}-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.529 |
|
| 10962 |
\begin{align*}
y^{\prime }&=y \ln \left (y\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.529 |
|
| 10963 |
\begin{align*}
y^{\prime }&=\left (x +y\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.530 |
|
| 10964 |
\begin{align*}
y^{\prime }&=\left (x +y\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.532 |
|
| 10965 |
\begin{align*}
y^{\prime }&=y \ln \left (y+2\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.533 |
|
| 10966 |
\begin{align*}
\left (1-y^{\prime }\right )^{2}-{\mathrm e}^{-2 y}&={\mathrm e}^{-2 x} {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.533 |
|
| 10967 |
\begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.534 |
|
| 10968 |
\begin{align*}
x^{2} y^{\prime \prime }-6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.534 |
|
| 10969 |
\begin{align*}
x_{1}^{\prime }&=x_{1} \\
x_{2}^{\prime }&=2 x_{1}+x_{2}-2 x_{3} \\
x_{3}^{\prime }&=3 x_{1}+2 x_{2}+x_{3}+{\mathrm e}^{t} \cos \left (2 t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.535 |
|
| 10970 |
\begin{align*}
\left (x^{3}-y^{3}\right ) y^{\prime }+x^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.536 |
|
| 10971 |
\begin{align*}
y^{\prime }&=2 y x +1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.537 |
|
| 10972 |
\begin{align*}
t^{2} y^{\prime \prime }-y^{\prime } t +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.539 |
|
| 10973 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x -1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.539 |
|
| 10974 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }&=8 \,{\mathrm e}^{2 x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.539 |
|
| 10975 |
\begin{align*}
x {y^{\prime }}^{2}+y^{\prime \prime } x&=y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.540 |
|
| 10976 |
\begin{align*}
y^{\prime }&=\frac {2 y^{2}}{x}+\frac {y}{x}-2 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.540 |
|
| 10977 |
\begin{align*}
16 x^{2} y^{\prime \prime }+32 y^{\prime } x +\left (x^{4}-12\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.540 |
|
| 10978 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (a x +b \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.540 |
|
| 10979 |
\begin{align*}
y^{\prime }&=x^{3}+y^{3} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.540 |
|
| 10980 |
\begin{align*}
x^{2} y^{\prime \prime }+x \left (1-2 x \right ) y^{\prime }-\left (x +4\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.541 |
|
| 10981 |
\begin{align*}
y^{\prime \prime }-5 y^{\prime }-6 y&={\mathrm e}^{3 x} \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.541 |
|
| 10982 |
\begin{align*}
16 x^{2} y^{\prime \prime }+32 y^{\prime } x +\left (x^{4}-12\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.541 |
|
| 10983 |
\begin{align*}
y^{\prime }-2 y x&=-1 \\
y \left (0\right ) &= \frac {\sqrt {\pi }}{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.542 |
|
| 10984 |
\begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +4 x^{4} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.542 |
|
| 10985 |
\begin{align*}
y^{\prime }&=y \ln \left (y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.542 |
|
| 10986 |
\begin{align*}
x^{\prime \prime }+x+\frac {x^{2}}{3}&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
1.542 |
|
| 10987 |
\begin{align*}
4 x -2 y y^{\prime }+x {y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.543 |
|
| 10988 |
\begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.544 |
|
| 10989 |
\begin{align*}
y^{\prime \prime }+y&=10 \,{\mathrm e}^{2 x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.544 |
|
| 10990 |
\begin{align*}
y^{\prime }&=\frac {-1-2 y x}{x^{2}+2 y} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.545 |
|
| 10991 |
\begin{align*}
y^{\prime \prime }+\lambda ^{2} y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (\pi \right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.545 |
|
| 10992 |
\begin{align*}
t y^{\prime \prime }+y^{\prime } t +2 y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
1.546 |
|
| 10993 |
\begin{align*}
L y^{\prime }+R y&=E \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.546 |
|
| 10994 |
\begin{align*}
y^{\prime \prime } x +3 y^{\prime }+4 x^{3} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.546 |
|
| 10995 |
\begin{align*}
7 y^{\prime \prime } x +10 y^{\prime }+\left (-x^{2}+1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.546 |
|
| 10996 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+5 y&=\delta \left (t -2 \pi \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.547 |
|
| 10997 |
\begin{align*}
4 x^{3} y^{3}+\frac {1}{x}+\left (3 y^{2} x^{4}-\frac {1}{y}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.548 |
|
| 10998 |
\begin{align*}
y+y^{\prime }&={\mathrm e}^{t} t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.549 |
|
| 10999 |
\begin{align*}
\left (1-a y\right ) {y^{\prime }}^{2}&=a y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.549 |
|
| 11000 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.549 |
|