2.3.110 Problems 10901 to 11000

Table 2.751: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

10901

12948

\begin{align*} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+a&=0 \\ \end{align*}

1.510

10902

18949

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{2}+y&=\delta \left (t -1\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

1.510

10903

18514

\begin{align*} -2 y+y^{\prime }&=3 \,{\mathrm e}^{t} \\ \end{align*}

1.511

10904

13206

\begin{align*} y^{\prime }&=f \left (\frac {y}{x}\right ) \\ \end{align*}

1.512

10905

16278

\begin{align*} y^{\prime }+5 y&={\mathrm e}^{-3 x} \\ y \left (0\right ) &= 0 \\ \end{align*}

1.512

10906

24970

\begin{align*} \left (1-t \right ) y^{\prime }&=y^{2} \\ \end{align*}

1.512

10907

18630

\begin{align*} x^{\prime }&=x+2 y+\sin \left (t \right ) \\ y^{\prime }&=-x+y-\cos \left (t \right ) \\ \end{align*}

1.513

10908

16485

\begin{align*} y^{\prime \prime }+5 y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

1.515

10909

22059

\begin{align*} y^{\prime }+\frac {4 y}{x}&=x^{4} \\ \end{align*}

1.515

10910

2515

\begin{align*} 3 t^{2}+4 t y+\left (2 y+2 t^{2}\right ) y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

1.516

10911

5424

\begin{align*} {y^{\prime }}^{2}-y y^{\prime } x +y^{2} \ln \left (a y\right )&=0 \\ \end{align*}

1.517

10912

6555

\begin{align*} \left (x +y\right ) \left (-y+y^{\prime } x \right )^{3}+x^{3} y^{2} y^{\prime \prime }&=0 \\ \end{align*}

1.517

10913

9038

\begin{align*} y^{\prime \prime }&=y y^{\prime } \\ \end{align*}

1.517

10914

18716

\begin{align*} x^{\prime }&=\frac {x \sqrt {6 x-9}}{3} \\ x \left (0\right ) &= 3 \\ \end{align*}

1.517

10915

1796

\begin{align*} 6 y^{\prime }+6 y^{2}-y-1&=0 \\ \end{align*}

1.518

10916

10268

\begin{align*} y^{\prime }&=b y \\ \end{align*}

1.518

10917

24835

\begin{align*} 9 {y^{\prime }}^{2}+12 x y^{4} y^{\prime }+4 y^{5}&=0 \\ \end{align*}

1.518

10918

908

\begin{align*} x^{\prime \prime }+9 x&=10 \cos \left (2 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

1.519

10919

17379

\begin{align*} y^{\prime \prime }&=0 \\ \end{align*}

1.519

10920

22956

\begin{align*} \left (x^{2}-1\right ) y^{\prime }&=\left (-1+y\right ) x \\ \end{align*}

1.519

10921

8276

\begin{align*} y^{\prime }-2 y x&={\mathrm e}^{x} \\ \end{align*}

1.520

10922

14665

\begin{align*} y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+4 y^{\prime \prime }+3 y^{\prime }+y&=x^{2} {\mathrm e}^{-x}+3 \,{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right ) \\ \end{align*}

1.520

10923

18921

\begin{align*} y^{\prime \prime }+y&=\left \{\begin {array}{cc} 1 & 0\le t <\frac {\pi }{2} \\ 0 & \frac {\pi }{2}\le t \end {array}\right . \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}
Using Laplace transform method.

1.520

10924

24587

\begin{align*} y^{\prime \prime }+y&=\sin \left (2 x \right ) \\ \end{align*}

1.520

10925

18768

\begin{align*} y^{\prime \prime }+5 y^{\prime }&=0 \\ \end{align*}

1.522

10926

18931

\begin{align*} y^{\prime \prime }+4 y&=\operatorname {Heaviside}\left (t -\pi \right )-\operatorname {Heaviside}\left (t -3 \pi \right ) \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 7 \\ \end{align*}
Using Laplace transform method.

1.522

10927

18953

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{10}+y&=k \delta \left (t -1\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

1.522

10928

104

\begin{align*} y^{\prime }+p \left (x \right ) y&=q \left (x \right ) \\ \end{align*}

1.523

10929

575

\begin{align*} x^{\prime \prime }+4 x^{\prime }+8 x&=f \left (t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

1.523

10930

3771

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

1.523

10931

7037

\begin{align*} \left (2 x y^{3}+y x +x^{2}\right ) y^{\prime }-y x +y^{2}&=0 \\ \end{align*}

1.523

10932

9644

\begin{align*} y^{\prime \prime }+y&=\delta \left (t -\frac {\pi }{2}\right )+\delta \left (t -\frac {3 \pi }{2}\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

1.523

10933

11274

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +4 x^{4} y&=0 \\ \end{align*}

1.523

10934

23840

\begin{align*} y^{\prime }&=y+t \\ \end{align*}

1.523

10935

1127

\begin{align*} -y+y^{\prime }&=1+3 \sin \left (t \right ) \\ \end{align*}

1.524

10936

1237

\begin{align*} y^{\prime }&={\mathrm e}^{x +y} \\ \end{align*}

1.524

10937

11242

\begin{align*} y^{\prime \prime } x +3 y^{\prime }+4 x^{3} y&=0 \\ \end{align*}

1.524

10938

15657

\begin{align*} \sqrt {1-x}\, y^{\prime \prime }-4 y&=\sin \left (x \right ) \\ y \left (-2\right ) &= 3 \\ y^{\prime }\left (-2\right ) &= -1 \\ \end{align*}

1.524

10939

19691

\begin{align*} x^{\prime \prime }+3 x^{\prime }&=0 \\ \end{align*}

1.524

10940

2586

\begin{align*} 3 y^{\prime \prime }+4 y^{\prime }+y&=\sin \left (t \right ) {\mathrm e}^{-t} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

1.525

10941

4571

\begin{align*} x_{1}^{\prime }&=-x_{1}+8 x_{2}+9 t \\ x_{2}^{\prime }&=x_{1}+x_{2}+3 \,{\mathrm e}^{-t} \\ \end{align*}

1.525

10942

5957

\begin{align*} a y+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

1.525

10943

9912

\begin{align*} x \left (x +1\right ) y^{\prime \prime }+\left (x +5\right ) y^{\prime }-4 y&=0 \\ \end{align*}
Series expansion around \(x=-1\).

1.525

10944

12296

\begin{align*} y^{\prime \prime }+\left (a \,x^{2 c}+b \,x^{c -1}\right ) y&=0 \\ \end{align*}

1.525

10945

14765

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +8 \left (x^{2}-1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.525

10946

22133

\begin{align*} y^{\prime \prime }&=9 x^{2}+2 x -1 \\ \end{align*}

1.525

10947

1041

\begin{align*} x_{1}^{\prime }&=2 x_{1}-8 x_{3}-3 x_{4} \\ x_{2}^{\prime }&=-18 x_{1}-x_{2} \\ x_{3}^{\prime }&=-9 x_{1}-3 x_{2}-25 x_{3}-9 x_{4} \\ x_{4}^{\prime }&=33 x_{1}+10 x_{2}+90 x_{3}+32 x_{4} \\ \end{align*}

1.526

10948

11218

\begin{align*} y^{\prime \prime } x +3 y^{\prime }+x^{3} y&=0 \\ \end{align*}

1.526

10949

18351

\begin{align*} x^{\prime \prime }+\left (2+x\right ) x^{\prime }&=0 \\ \end{align*}

1.526

10950

25424

\begin{align*} -y+y^{\prime }&=8 \,{\mathrm e}^{3 t} \\ y \left (0\right ) &= 2 \\ \end{align*}

1.526

10951

5240

\begin{align*} \left (x^{2}-3 y^{2}\right ) y^{\prime }+1+2 y x&=0 \\ \end{align*}

1.527

10952

7006

\begin{align*} y^{\prime }&=\left (x +y\right )^{2} \\ \end{align*}

1.527

10953

13777

\begin{align*} x^{2} y^{\prime \prime }-\left (a \,x^{3}+\frac {5}{16}\right ) y&=0 \\ \end{align*}

1.527

10954

19561

\begin{align*} y^{\left (6\right )}-y&=x^{10} \\ \end{align*}

1.527

10955

25425

\begin{align*} y+y^{\prime }&=8 \,{\mathrm e}^{-3 t} \\ y \left (0\right ) &= 2 \\ \end{align*}

1.527

10956

25479

\begin{align*} y^{\prime }&=y \left (1-y\right ) \left (2-y\right ) \\ \end{align*}

1.527

10957

1177

\begin{align*} y^{\prime }&=\frac {t^{2}}{\left (t^{3}+1\right ) y} \\ \end{align*}

1.528

10958

13106

\begin{align*} a x^{\prime }&=b c \left (y-z\right ) \\ b y^{\prime }&=c a \left (z-x\right ) \\ c z^{\prime }&=a b \left (x-y\right ) \\ \end{align*}

1.528

10959

19987

\begin{align*} x^{2} \left (-y^{\prime } x +y\right )&=y {y^{\prime }}^{2} \\ \end{align*}

1.528

10960

5760

\begin{align*} -\left (a^{2}-{\mathrm e}^{2 x}\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

1.529

10961

15604

\begin{align*} y^{\prime } x +x^{2}-y&=0 \\ \end{align*}

1.529

10962

19131

\begin{align*} y^{\prime }&=y \ln \left (y\right )^{2} \\ \end{align*}

1.529

10963

19735

\begin{align*} y^{\prime }&=\left (x +y\right )^{2} \\ \end{align*}

1.530

10964

22394

\begin{align*} y^{\prime }&=\left (x +y\right )^{2} \\ \end{align*}

1.532

10965

8333

\begin{align*} y^{\prime }&=y \ln \left (y+2\right ) \\ \end{align*}

1.533

10966

20472

\begin{align*} \left (1-y^{\prime }\right )^{2}-{\mathrm e}^{-2 y}&={\mathrm e}^{-2 x} {y^{\prime }}^{2} \\ \end{align*}

1.533

10967

12434

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x&=0 \\ \end{align*}

1.534

10968

23380

\begin{align*} x^{2} y^{\prime \prime }-6 y&=0 \\ \end{align*}

1.534

10969

2757

\begin{align*} x_{1}^{\prime }&=x_{1} \\ x_{2}^{\prime }&=2 x_{1}+x_{2}-2 x_{3} \\ x_{3}^{\prime }&=3 x_{1}+2 x_{2}+x_{3}+{\mathrm e}^{t} \cos \left (2 t \right ) \\ \end{align*}

1.535

10970

5289

\begin{align*} \left (x^{3}-y^{3}\right ) y^{\prime }+x^{2} y&=0 \\ \end{align*}

1.536

10971

9078

\begin{align*} y^{\prime }&=2 y x +1 \\ \end{align*}

1.537

10972

2435

\begin{align*} t^{2} y^{\prime \prime }-y^{\prime } t +y&=0 \\ \end{align*}

1.539

10973

14763

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.539

10974

16419

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=8 \,{\mathrm e}^{2 x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

1.539

10975

6380

\begin{align*} x {y^{\prime }}^{2}+y^{\prime \prime } x&=y^{\prime } \\ \end{align*}

1.540

10976

7257

\begin{align*} y^{\prime }&=\frac {2 y^{2}}{x}+\frac {y}{x}-2 x \\ \end{align*}

1.540

10977

10791

\begin{align*} 16 x^{2} y^{\prime \prime }+32 y^{\prime } x +\left (x^{4}-12\right ) y&=0 \\ \end{align*}

1.540

10978

12415

\begin{align*} x^{2} y^{\prime \prime }+\left (a x +b \right ) y&=0 \\ \end{align*}

1.540

10979

15540

\begin{align*} y^{\prime }&=x^{3}+y^{3} \\ \end{align*}

1.540

10980

2077

\begin{align*} x^{2} y^{\prime \prime }+x \left (1-2 x \right ) y^{\prime }-\left (x +4\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.541

10981

7094

\begin{align*} y^{\prime \prime }-5 y^{\prime }-6 y&={\mathrm e}^{3 x} \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

1.541

10982

11220

\begin{align*} 16 x^{2} y^{\prime \prime }+32 y^{\prime } x +\left (x^{4}-12\right ) y&=0 \\ \end{align*}

1.541

10983

8463

\begin{align*} y^{\prime }-2 y x&=-1 \\ y \left (0\right ) &= \frac {\sqrt {\pi }}{2} \\ \end{align*}

1.542

10984

10846

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +4 x^{4} y&=0 \\ \end{align*}

1.542

10985

19130

\begin{align*} y^{\prime }&=y \ln \left (y\right ) \\ \end{align*}

1.542

10986

21262

\begin{align*} x^{\prime \prime }+x+\frac {x^{2}}{3}&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

1.542

10987

7959

\begin{align*} 4 x -2 y y^{\prime }+x {y^{\prime }}^{2}&=0 \\ \end{align*}

1.543

10988

22660

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

1.544

10989

24561

\begin{align*} y^{\prime \prime }+y&=10 \,{\mathrm e}^{2 x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

1.544

10990

1226

\begin{align*} y^{\prime }&=\frac {-1-2 y x}{x^{2}+2 y} \\ \end{align*}

1.545

10991

18365

\begin{align*} y^{\prime \prime }+\lambda ^{2} y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (\pi \right ) &= 0 \\ \end{align*}

1.545

10992

2460

\begin{align*} t y^{\prime \prime }+y^{\prime } t +2 y&=0 \\ \end{align*}
Series expansion around \(t=0\).

1.546

10993

8872

\begin{align*} L y^{\prime }+R y&=E \\ y \left (0\right ) &= 0 \\ \end{align*}

1.546

10994

10813

\begin{align*} y^{\prime \prime } x +3 y^{\prime }+4 x^{3} y&=0 \\ \end{align*}

1.546

10995

17712

\begin{align*} 7 y^{\prime \prime } x +10 y^{\prime }+\left (-x^{2}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.546

10996

9648

\begin{align*} y^{\prime \prime }+4 y^{\prime }+5 y&=\delta \left (t -2 \pi \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

1.547

10997

7885

\begin{align*} 4 x^{3} y^{3}+\frac {1}{x}+\left (3 y^{2} x^{4}-\frac {1}{y}\right ) y^{\prime }&=0 \\ \end{align*}

1.548

10998

2301

\begin{align*} y+y^{\prime }&={\mathrm e}^{t} t \\ \end{align*}

1.549

10999

5559

\begin{align*} \left (1-a y\right ) {y^{\prime }}^{2}&=a y \\ \end{align*}

1.549

11000

15487

\begin{align*} x^{2} y^{\prime \prime }-2 y&=0 \\ \end{align*}

1.549