2.3.111 Problems 11001 to 11100

Table 2.753: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

11001

24824

\begin{align*} 5 {y^{\prime }}^{2}+6 y^{\prime } x -2 y&=0 \\ \end{align*}

1.549

11002

1157

\begin{align*} y^{\prime }&=\frac {a y+b}{d +c y} \\ \end{align*}

1.550

11003

3432

\begin{align*} y^{\prime }&=y^{2}-y \\ \end{align*}

1.550

11004

6153

\begin{align*} 4 x^{2} y^{\prime \prime }+y&=\sqrt {x} \\ \end{align*}

1.550

11005

7038

\begin{align*} \left (2 y^{3}+y\right ) y^{\prime }-2 x^{3}-x&=0 \\ \end{align*}

1.550

11006

14702

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +4 y&=0 \\ \end{align*}

1.550

11007

24827

\begin{align*} {y^{\prime }}^{2}+3 y^{\prime } x -y&=0 \\ \end{align*}

1.550

11008

12937

\begin{align*} y y^{\prime \prime }+a \left (1+{y^{\prime }}^{2}\right )&=0 \\ \end{align*}

1.551

11009

18350

\begin{align*} x^{\prime \prime }+x {x^{\prime }}^{2}&=0 \\ \end{align*}

1.552

11010

12412

\begin{align*} x^{2} y^{\prime \prime }-6 y&=0 \\ \end{align*}

1.553

11011

25426

\begin{align*} -2 y+y^{\prime }&={\mathrm e}^{\frac {201 t}{100}} \\ y \left (0\right ) &= 1 \\ \end{align*}

1.553

11012

35

\begin{align*} y^{\prime }&=\ln \left (1+y^{2}\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

1.554

11013

24987

\begin{align*} t \left (1+t \right ) y^{\prime }&=2+y \\ \end{align*}

1.554

11014

2470

\begin{align*} t y^{\prime \prime }+3 y^{\prime }-3 y&=0 \\ \end{align*}
Series expansion around \(t=0\).

1.555

11015

14373

\begin{align*} x^{\prime \prime }+4 x&=\frac {\operatorname {Heaviside}\left (t -5\right ) \left (t -5\right )}{5}+\left (2-\frac {t}{5}\right ) \operatorname {Heaviside}\left (t -10\right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

1.555

11016

1253

\begin{align*} y^{\prime \prime }+5 y^{\prime }&=0 \\ \end{align*}

1.556

11017

2707

\begin{align*} x^{\prime }&=2 x-5 y+\sin \left (t \right ) \\ y^{\prime }&=x-2 y+\tan \left (t \right ) \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ \end{align*}

1.557

11018

3973

\begin{align*} -2 y+y^{\prime }&=\delta \left (-2+t \right ) \\ y \left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

1.557

11019

16797

\begin{align*} y^{\prime \prime }+9 y&=\operatorname {Heaviside}\left (t -10\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

1.557

11020

17845

\begin{align*} y^{\prime }&=1-\cot \left (y\right ) \\ \end{align*}

1.557

11021

21441

\begin{align*} y^{\prime }+y&=\sin \left (x \right ) \\ \end{align*}

1.557

11022

5505

\begin{align*} x^{2} {y^{\prime }}^{2}-x \left (x -2 y\right ) y^{\prime }+y^{2}&=0 \\ \end{align*}

1.558

11023

9938

\begin{align*} 2 \left (1-x \right ) x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+\left (2+x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.558

11024

18619

\begin{align*} y^{\prime } x +\left (x +1\right ) y&=x \\ \end{align*}

1.558

11025

19419

\begin{align*} x^{\prime }+x \cot \left (y \right )&=\sec \left (y \right ) \\ \end{align*}

1.558

11026

23836

\begin{align*} y^{\prime }&=x -y \\ \end{align*}

1.558

11027

4216

\begin{align*} y^{\prime }&=x \sec \left (y\right ) \\ \end{align*}

1.559

11028

14764

\begin{align*} x^{2} y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }-3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.559

11029

20136

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}&=\ln \left (y\right ) y^{2} \\ \end{align*}

1.559

11030

199

\begin{align*} \left (x^{2}-1\right ) y^{\prime }+\left (x -1\right ) y&=1 \\ \end{align*}

1.560

11031

20373

\begin{align*} y^{\left (6\right )}-2 y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+3 y^{\prime \prime }-2 y^{\prime }+y&=\sin \left (\frac {x}{2}\right )^{2}+{\mathrm e}^{x} \\ \end{align*}

1.560

11032

22948

\begin{align*} \left (x +1\right ) y^{\prime }&=1+y \\ \end{align*}

1.560

11033

24764

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \tan \left (x \right )^{2} \\ \end{align*}

1.560

11034

17070

\begin{align*} y^{\prime }&=\frac {1+y^{2}}{y} \\ \end{align*}

1.561

11035

9391

\begin{align*} x^{3} y^{\prime \prime }+\sin \left (x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.562

11036

3

\begin{align*} y^{\prime }&=\sqrt {x} \\ y \left (4\right ) &= 0 \\ \end{align*}

1.563

11037

8750

\begin{align*} \frac {y}{x}+\left (y^{3}+\ln \left (x \right )\right ) y^{\prime }&=0 \\ \end{align*}

1.563

11038

9751

\begin{align*} x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1&=0 \\ \end{align*}

1.563

11039

17358

\begin{align*} y^{\prime \prime }+y&=2 \cos \left (t \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

1.563

11040

19159

\begin{align*} \left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2}+\left (1-\ln \left (y\right )\right ) y y^{\prime \prime }&=0 \\ \end{align*}

1.564

11041

5504

\begin{align*} x^{2} {y^{\prime }}^{2}-\left (a +2 y x \right ) y^{\prime }+y^{2}&=0 \\ \end{align*}

1.565

11042

24960

\begin{align*} y^{4} y^{\prime }&=t +2 \\ \end{align*}

1.566

11043

25045

\begin{align*} y^{\prime }&=y^{3}-y \\ y \left (0\right ) &= 1 \\ \end{align*}

1.566

11044

25660

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right ) \\ \end{align*}

1.566

11045

10094

\begin{align*} y^{\prime \prime }-y^{\prime }-y x -x^{2}-1&=0 \\ \end{align*}

1.567

11046

20409

\begin{align*} \left (2 x -b \right ) y^{\prime }&=y-a y {y^{\prime }}^{2} \\ \end{align*}

1.567

11047

10100

\begin{align*} y^{\prime \prime }-y^{\prime }-y x -x^{3}+2&=0 \\ \end{align*}

1.568

11048

22288

\begin{align*} y^{\prime \prime }+y&=x \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

1.570

11049

13779

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y&=0 \\ \end{align*}

1.571

11050

22561

\begin{align*} u^{\prime }&=-a \left (u-100 t \right ) \\ u \left (0\right ) &= 0 \\ \end{align*}

1.571

11051

25530

\begin{align*} y^{\prime \prime }&={\mathrm e}^{i \omega t} \\ \end{align*}

1.571

11052

8456

\begin{align*} 2 y+y^{\prime }&=\left \{\begin {array}{cc} 1 & 0\le x \le 3 \\ 0 & 3<x \end {array}\right . \\ y \left (0\right ) &= 0 \\ \end{align*}

1.572

11053

9270

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right ) \\ \end{align*}

1.572

11054

15284

\begin{align*} x^{\prime }&=2 x+6 y-2 z+50 \,{\mathrm e}^{t} \\ y^{\prime }&=6 x+2 y-2 z+21 \,{\mathrm e}^{-t} \\ z^{\prime }&=-x+6 y+z+9 \\ \end{align*}

1.572

11055

17609

\begin{align*} t^{2} \ln \left (t \right ) y^{\prime \prime \prime }-t y^{\prime \prime }+y^{\prime }&=1 \\ \end{align*}

1.572

11056

1792

\begin{align*} y^{\prime }+y^{2}-3 y+2&=0 \\ \end{align*}

1.573

11057

3917

\begin{align*} x_{1}^{\prime }&=2 x_{1}-4 x_{2}+3 x_{3}+{\mathrm e}^{6 t} \\ x_{2}^{\prime }&=-9 x_{1}-3 x_{2}-9 x_{3}+1 \\ x_{3}^{\prime }&=4 x_{1}+4 x_{2}+3 x_{3} \\ \end{align*}

1.573

11058

999

\begin{align*} x_{1}^{\prime }&=13 x_{1}-42 x_{2}+106 x_{3}+139 x_{4} \\ x_{2}^{\prime }&=2 x_{1}-16 x_{2}+52 x_{3}+70 x_{4} \\ x_{3}^{\prime }&=x_{1}+6 x_{2}-20 x_{3}-31 x_{4} \\ x_{4}^{\prime }&=-x_{1}-6 x_{2}+22 x_{3}+33 x_{4} \\ \end{align*}

1.574

11059

12022

\begin{align*} y^{\prime }&=\frac {x +y^{4}-2 y^{2} x^{2}+x^{4}}{y} \\ \end{align*}

1.574

11060

22960

\begin{align*} y^{\prime } x -1+y&=0 \\ y \left (1\right ) &= 2 \\ \end{align*}

1.574

11061

23366

\begin{align*} y^{\prime \prime }-2 r y^{\prime }+\left (r^{2}-\frac {\alpha ^{2}}{4}\right ) y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

1.574

11062

15942

\begin{align*} y^{\prime }&=\sin \left (y\right )^{2} \\ \end{align*}

1.575

11063

25439

\begin{align*} y^{\prime }&=y+\cos \left (t \right ) \\ \end{align*}

1.575

11064

11706

\begin{align*} x {y^{\prime }}^{2}-y y^{\prime }+a&=0 \\ \end{align*}

1.576

11065

18267

\begin{align*} y^{\prime \prime }+y^{\prime }&={\mathrm e}^{-x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

1.576

11066

25020

\begin{align*} y^{\prime }&=\frac {1}{2 t -2 y+1} \\ \end{align*}

1.576

11067

14256

\begin{align*} R^{\prime }+\frac {R}{t}&=\frac {2}{t^{2}+1} \\ R \left (1\right ) &= 3 \ln \left (2\right ) \\ \end{align*}

1.577

11068

1254

\begin{align*} 4 y^{\prime \prime }-9 y&=0 \\ \end{align*}

1.578

11069

21949

\begin{align*} y^{\prime \prime \prime }-5 y^{\prime } x&={\mathrm e}^{x}+1 \\ \end{align*}

1.578

11070

16404

\begin{align*} y^{\prime \prime }&=y^{\prime } \\ \end{align*}

1.579

11071

18045

\begin{align*} 3 x y^{2}-x^{2}+\left (3 x^{2} y-6 y^{2}-1\right ) y^{\prime }&=0 \\ \end{align*}

1.579

11072

20583

\begin{align*} x {y^{\prime }}^{2}+x y y^{\prime \prime }&=3 y y^{\prime } \\ \end{align*}

1.579

11073

21664

\begin{align*} \cos \left (x \right ) u^{\prime \prime }+\sin \left (x \right ) u^{\prime }+\left (\cos \left (x \right )+\sin \left (x \right )\right ) u&=0 \\ u \left (\frac {\pi }{4}\right ) &= 2 \\ u^{\prime }\left (\frac {\pi }{4}\right ) &= 0 \\ \end{align*}
Series expansion around \(x=\frac {\pi }{4}\).

1.579

11074

22281

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=9 x \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}

1.579

11075

22583

\begin{align*} r^{3} r^{\prime }&=\sqrt {a^{8}-r^{8}} \\ \end{align*}

1.579

11076

22073

\begin{align*} y^{\prime }+2 y x&=2 x^{3} \\ y \left (0\right ) &= 1 \\ \end{align*}

1.580

11077

1614

\begin{align*} y^{\prime }&=\ln \left (1+x^{2}+y^{2}\right ) \\ \end{align*}

1.581

11078

586

\begin{align*} 10 x_{1}^{\prime }&=-x_{1}+x_{3} \\ 10 x_{2}^{\prime }&=x_{1}-x_{2} \\ 10 x_{3}^{\prime }&=x_{2}-x_{3} \\ \end{align*}

1.582

11079

2318

\begin{align*} y^{\prime }&=\left (1+t \right ) \left (1+y\right ) \\ \end{align*}

1.582

11080

16815

\begin{align*} y^{\prime \prime }+4 y^{\prime }-12 y&=\delta \left (t -3\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

1.582

11081

20437

\begin{align*} \left ({y^{\prime }}^{2}-\frac {1}{a^{2}-x^{2}}\right ) \left (y^{\prime }-\sqrt {\frac {y}{x}}\right )&=0 \\ \end{align*}

1.582

11082

14252

\begin{align*} \theta ^{\prime }&=-a \theta +{\mathrm e}^{b t} \\ \end{align*}

1.583

11083

16860

\begin{align*} y^{\prime \prime }+\frac {\left ({\mathrm e}^{x}+1\right ) y}{1-{\mathrm e}^{x}}&=0 \\ \end{align*}
Series expansion around \(x=3\).

1.584

11084

22490

\begin{align*} y^{\prime \prime }&=\left (1+y\right ) y^{\prime } \\ \end{align*}

1.584

11085

13686

\begin{align*} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+a y&=0 \\ \end{align*}

1.585

11086

14197

\begin{align*} x^{\prime }+2 x&=t^{2}+4 t +7 \\ \end{align*}

1.585

11087

22577

\begin{align*} r^{\prime }&={\mathrm e}^{t}-3 r \\ r \left (0\right ) &= 1 \\ \end{align*}

1.585

11088

23203

\begin{align*} y^{\prime } x +y&=3 \\ \end{align*}

1.585

11089

4611

\begin{align*} y^{\prime }&=a +b x +c y \\ \end{align*}

1.586

11090

6877

\begin{align*} {y^{\prime }}^{2}+\frac {2 x y^{\prime }}{y}-1&=0 \\ \end{align*}

1.586

11091

15586

\begin{align*} y^{\prime }&=y^{2}-2 y \\ y \left (0\right ) &= 1 \\ \end{align*}

1.586

11092

16957

\begin{align*} {y^{\prime }}^{2}+y&=0 \\ \end{align*}

1.586

11093

2544

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

1.587

11094

21127

\begin{align*} x^{\prime \prime }-2 x^{\prime }+5 x&=0 \\ x \left (0\right ) &= 0 \\ x \left (\frac {\pi }{4}\right ) &= 0 \\ \end{align*}

1.588

11095

14507

\begin{align*} y^{\prime }+y&=\left \{\begin {array}{cc} 2 & 0\le x <1 \\ 0 & 1\le x \end {array}\right . \\ y \left (0\right ) &= 0 \\ \end{align*}

1.589

11096

18894

\begin{align*} y^{\prime \prime }+16 y&=\left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \\ y \left (0\right ) &= 9 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

1.589

11097

25571

\begin{align*} y^{\prime \prime }+2 z y^{\prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

1.589

11098

7643

\begin{align*} y^{\prime \prime }-\tan \left (x \right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=1\).

1.590

11099

8224

\begin{align*} y^{\prime }&=y^{{2}/{3}} \\ \end{align*}

1.590

11100

8448

\begin{align*} L i^{\prime }+R i&=E \\ i \left (0\right ) &= i_{0} \\ \end{align*}

1.590