| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 11101 |
\begin{align*}
4 y^{\prime \prime }+4 y^{\prime }+17 y&=g \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.590 |
|
| 11102 |
\begin{align*}
y^{\prime \prime }+p \left (x \right ) y^{\prime }+q \left (x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
1.590 |
|
| 11103 |
\begin{align*}
y^{\prime }+y&={\mathrm e}^{x} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.591 |
|
| 11104 |
\begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 2 \\
y \left (\pi \right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.591 |
|
| 11105 |
\begin{align*}
y^{\prime }&=\frac {x}{x^{2}+y+y^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.592 |
|
| 11106 |
\begin{align*}
y^{\prime }-2 t y&=t \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.592 |
|
| 11107 |
\begin{align*}
y^{\prime }&=2 y \\
y \left (\ln \left (3\right )\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.594 |
|
| 11108 |
\begin{align*}
y^{\prime }&=x^{2}-2 y x +y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.595 |
|
| 11109 |
\begin{align*}
t^{2} y^{\prime \prime }+3 y^{\prime } t -3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.595 |
|
| 11110 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }-y x -x^{3}+2&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.595 |
|
| 11111 |
\begin{align*}
y^{\prime \prime }-\left (4 a^{2} b^{2} x^{2} {\mathrm e}^{2 b \,x^{2}}-1\right ) y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.595 |
|
| 11112 |
\begin{align*}
y^{\prime \prime } x +4 y^{\prime }&=18 x^{2} \\
y \left (1\right ) &= 8 \\
y^{\prime }\left (1\right ) &= -3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.595 |
|
| 11113 |
\begin{align*}
t^{2} y+y^{\prime }&=t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.596 |
|
| 11114 |
\begin{align*}
x^{2} y^{\prime \prime }+4 \left (a +x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
1.596 |
|
| 11115 |
\begin{align*}
y^{\prime }&=\frac {3 x^{2}}{-4+3 y^{2}} \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.597 |
|
| 11116 |
\begin{align*}
y^{\prime }+y&=x +1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.597 |
|
| 11117 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }-10 y&=0 \\
y \left (0\right ) &= 0 \\
y \left (2\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.597 |
|
| 11118 |
\begin{align*}
y+y^{\prime }&=\frac {1}{t^{2}+1} \\
y \left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.598 |
|
| 11119 |
\begin{align*}
{y^{\prime }}^{2}+x^{2}&=4 y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.598 |
|
| 11120 |
\begin{align*}
\left (y^{2}-x \right ) y^{\prime }-y+x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.598 |
|
| 11121 |
\begin{align*}
y^{\prime }&=\frac {1}{x^{2}+y^{2}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
1.598 |
|
| 11122 |
\begin{align*}
y^{\prime }&=\frac {x^{3}+2 y}{x^{3}+x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.598 |
|
| 11123 |
\begin{align*}
2 y^{\prime \prime }-3 y^{\prime }+y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.599 |
|
| 11124 |
\begin{align*}
y^{\prime }&=\frac {3 t^{2}+4 t +2}{-2+2 y} \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.599 |
|
| 11125 |
\begin{align*}
y^{3} y^{\prime \prime }&=a^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.599 |
|
| 11126 |
\begin{align*}
y \left (3-4 y\right )^{2} {y^{\prime }}^{2}&=4-4 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.599 |
|
| 11127 |
\begin{align*}
y^{\prime \prime }&=-\frac {4}{y^{3}} \\
y \left (2\right ) &= 4 \\
y^{\prime }\left (2\right ) &= 0 \\
\end{align*} |
✓ |
✗ |
✓ |
✗ |
1.599 |
|
| 11128 |
\begin{align*}
4 x -2 y y^{\prime }+x {y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.600 |
|
| 11129 |
\begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x -12 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.602 |
|
| 11130 |
\begin{align*}
{y^{\prime }}^{3}+2 y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
1.602 |
|
| 11131 |
\begin{align*}
y^{\prime }-y^{2}-3 y+4&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.602 |
|
| 11132 |
\begin{align*}
y^{\prime } x +y&=x y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.602 |
|
| 11133 |
\begin{align*}
y^{\prime }&=\frac {1}{x^{2}-y^{2}} \\
y \left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
1.602 |
|
| 11134 |
\begin{align*}
y {y^{\prime }}^{2}+x^{3} y^{\prime }-x^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.603 |
|
| 11135 |
\begin{align*}
x^{2}+1+\frac {y^{\prime }}{y}&=0 \\
y \left (-1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.603 |
|
| 11136 |
\begin{align*}
f^{\prime \prime }+8 f^{\prime }+12 f&=12 \,{\mathrm e}^{-4 t} \\
f \left (0\right ) &= 0 \\
f^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.604 |
|
| 11137 |
\begin{align*}
y^{\prime }&=\left (x -y\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.604 |
|
| 11138 |
\begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=a^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.604 |
|
| 11139 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x&=1 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.604 |
|
| 11140 |
\begin{align*}
y^{\prime \prime } x +3 y^{\prime }+4 x^{3} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.604 |
|
| 11141 |
\begin{align*}
2 y^{\prime }+2 y+w^{\prime }-w&=x +1 \\
y^{\prime }+3 y+w^{\prime }+w&=4 x +14 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.604 |
|
| 11142 |
\begin{align*}
x^{\prime }+y^{\prime }-x+5 y&=t^{2} \\
x^{\prime }+2 y^{\prime }-2 x+4 y&=2 t +1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.605 |
|
| 11143 |
\begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.605 |
|
| 11144 |
\begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x -12 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.607 |
|
| 11145 |
\begin{align*}
y-\left (x^{2}+y^{2}+x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.607 |
|
| 11146 |
\begin{align*}
y^{\prime \prime } x +\left (-x^{3}+x \right ) y^{\prime }+\sin \left (x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.609 |
|
| 11147 |
\begin{align*}
y^{\prime \prime }+a x y^{\prime }+b x y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
1.609 |
|
| 11148 |
\begin{align*}
{\mathrm e}^{x} y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.609 |
|
| 11149 |
\begin{align*}
y+y^{\prime }&=\delta \left (t -5\right ) \\
y \left (0\right ) &= 3 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.610 |
|
| 11150 |
\begin{align*}
y^{\prime }-2 y&=\left \{\begin {array}{cc} 1 & x \le 1 \\ 0 & 1<x \end {array}\right . \\
y \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.611 |
|
| 11151 |
\begin{align*}
y^{\prime \prime }+y&=\cosh \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.611 |
|
| 11152 |
\begin{align*}
2 y y^{\prime }+2 x +x^{2}+y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.611 |
|
| 11153 |
\begin{align*}
y {y^{\prime }}^{2}+2 y^{\prime } x&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.611 |
|
| 11154 |
\begin{align*}
x^{2} y^{\prime \prime }&=\ln \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.611 |
|
| 11155 |
\begin{align*}
5 {y^{\prime }}^{2}+3 y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.611 |
|
| 11156 |
\begin{align*}
y^{\prime \prime }+\left (1+4 i\right ) y^{\prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.612 |
|
| 11157 |
\begin{align*}
t \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right )+y y^{\prime }&=1 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
1.612 |
|
| 11158 |
\begin{align*}
y^{\prime \prime }-8 y^{\prime }+15 y&=9 x \,{\mathrm e}^{2 x} \\
y \left (0\right ) &= 5 \\
y^{\prime }\left (0\right ) &= 10 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.613 |
|
| 11159 |
\begin{align*}
y&=y^{\prime } x -\tan \left (y^{\prime }\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.613 |
|
| 11160 |
\begin{align*}
x^{\prime }&=-14 x+39 y+78 \sinh \left (t \right ) \\
y^{\prime }&=-6 x+16 y+6 \cosh \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.614 |
|
| 11161 |
\begin{align*}
y^{\prime \prime }+2 h y^{\prime }+n^{2} y&=0 \\
y \left (0\right ) &= a \\
y^{\prime }\left (0\right ) &= c \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.614 |
|
| 11162 |
\begin{align*}
x^{2} y^{\prime \prime }-\left (x^{2}+4 x \right ) y^{\prime }+4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.616 |
|
| 11163 |
\begin{align*}
x_{1}^{\prime }&=x_{1}+\sqrt {3}\, x_{2}+{\mathrm e}^{t} \\
x_{2}^{\prime }&=\sqrt {3}\, x_{1}-x_{2}+\sqrt {3}\, {\mathrm e}^{-t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.617 |
|
| 11164 |
\begin{align*}
x \left (x +1\right ) y^{\prime \prime }+y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.617 |
|
| 11165 |
\begin{align*}
4 x^{2} y^{\prime \prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.617 |
|
| 11166 |
\begin{align*}
y^{\prime }-2 y x&=1 \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.617 |
|
| 11167 |
\begin{align*}
y^{\prime }&=\frac {t^{2}+1}{3 y-y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.618 |
|
| 11168 |
\begin{align*}
{y^{\prime }}^{2}+\left (1+2 y\right ) y^{\prime }+y \left (-1+y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.618 |
|
| 11169 |
\begin{align*}
y^{\prime }&=\ln \left (x \right ) \\
y \left ({\mathrm e}\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.618 |
|
| 11170 |
\begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.619 |
|
| 11171 |
\begin{align*}
y+y^{\prime \prime }+y^{\prime \prime \prime \prime }&={\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.619 |
|
| 11172 |
\begin{align*}
1-y^{\prime }&=x +y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.621 |
|
| 11173 |
\begin{align*}
y x -2 y^{2}-\left (x^{2}-3 y x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.621 |
|
| 11174 |
\begin{align*}
y^{\prime }+2 y&=\left \{\begin {array}{cc} 1 & 0\le t \le 1 \\ 0 & 1<t \end {array}\right . \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.621 |
|
| 11175 |
\begin{align*}
y^{\prime \prime }&=x \,{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.621 |
|
| 11176 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }-y x -x^{3}+2&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.622 |
|
| 11177 |
\begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.622 |
|
| 11178 |
\begin{align*}
4 y+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.623 |
|
| 11179 |
\begin{align*}
y^{\prime }&=a \left (t \right ) y+q \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.623 |
|
| 11180 |
\begin{align*}
a y+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.624 |
|
| 11181 |
\begin{align*}
y^{\prime }&=y^{2} \\
y \left (-1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.624 |
|
| 11182 |
\begin{align*}
y^{\prime }+\frac {x y}{x^{2}+1}&=\frac {1}{x \left (x^{2}+1\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.624 |
|
| 11183 |
\begin{align*}
y^{\prime }+\tan \left (x \right ) y&=\sec \left (x \right ) \\
y \left (0\right ) &= 5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.624 |
|
| 11184 |
\begin{align*}
\left (1+t \right ) y+y^{\prime } t&={\mathrm e}^{2 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.625 |
|
| 11185 |
\begin{align*}
y^{\prime \prime } x +3 y^{\prime }+x^{3} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.625 |
|
| 11186 |
\begin{align*}
y^{\prime }&=y-t^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.625 |
|
| 11187 |
\begin{align*}
y^{\prime \prime }&=x \,{\mathrm e}^{x} \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.626 |
|
| 11188 |
\begin{align*}
{y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right )^{2} \left (y-b \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.626 |
|
| 11189 |
\begin{align*}
x^{2}-y+\left (y^{2} x^{2}+x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.626 |
|
| 11190 |
\begin{align*}
{\mathrm e}^{-y} y^{\prime }&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.626 |
|
| 11191 |
\begin{align*}
n^{\prime }&=-a n \\
n \left (0\right ) &= n_{0} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.626 |
|
| 11192 |
\begin{align*}
4 x^{2} y^{\prime \prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.627 |
|
| 11193 |
\begin{align*}
y^{\prime }&=\frac {t y}{1+y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.627 |
|
| 11194 |
\begin{align*}
t^{2} y^{\prime \prime }-y^{\prime } t +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.628 |
|
| 11195 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.628 |
|
| 11196 |
\begin{align*}
t +x+3+x^{\prime }&=0 \\
x \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.629 |
|
| 11197 |
\begin{align*}
y^{\prime \prime }+y&=x^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.629 |
|
| 11198 |
\begin{align*}
y^{\prime }&=y-y^{2} \\
y \left (-1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.629 |
|
| 11199 |
\begin{align*}
{y^{\prime }}^{2}+2 x y^{3} y^{\prime }+y^{4}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.630 |
|
| 11200 |
\begin{align*}
\left (x^{2}+1\right ) \tan \left (y\right ) y^{\prime }&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.631 |
|