| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 13201 |
\begin{align*}
2 y+x +\left (x^{2}-1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.381 |
|
| 13202 |
\begin{align*}
{\mathrm e}^{x} \left (x +1\right )&=\left (x \,{\mathrm e}^{x}-{\mathrm e}^{y} y\right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.382 |
|
| 13203 |
\begin{align*}
y^{\prime }&=y x -3 x -2 y+6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.382 |
|
| 13204 |
\begin{align*}
x^{\prime \prime }&=\frac {1}{\left (1+t \right )^{3}} \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.383 |
|
| 13205 |
\begin{align*}
y^{\prime }&=y \left (y-1\right ) \left (y-3\right ) \\
y \left (0\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
2.383 |
|
| 13206 |
\begin{align*}
{y^{\prime }}^{2}-4 y^{\prime } x +2 y+2 x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
2.383 |
|
| 13207 |
\begin{align*}
y y^{\prime \prime }&=1+y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.383 |
|
| 13208 |
\begin{align*}
y^{\prime }&=\frac {1+\sqrt {x -y}}{1-\sqrt {x -y}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.383 |
|
| 13209 |
\begin{align*}
{y^{\prime }}^{3}-2 y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
2.383 |
|
| 13210 |
\begin{align*}
\left (t^{2}+1\right ) y^{\prime }&=1+y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.384 |
|
| 13211 |
\begin{align*}
y-x y^{2}+y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.384 |
|
| 13212 |
\begin{align*}
y^{\prime }+\cot \left (x \right ) y&=\cos \left (x \right ) \\
y \left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.385 |
|
| 13213 |
\begin{align*}
y^{\prime \prime } x -y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
2.385 |
|
| 13214 |
\begin{align*}
\left (1-2 y\right ) {y^{\prime }}^{2}+\left (1+y^{2}\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.385 |
|
| 13215 |
\begin{align*}
y^{\prime \prime }+\left (a \,{\mathrm e}^{2 \lambda x} \left (b \,{\mathrm e}^{\lambda x}+c \right )^{n}-\frac {\lambda ^{2}}{4}\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
2.385 |
|
| 13216 |
\begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x -8 y&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.385 |
|
| 13217 |
\begin{align*}
y^{\prime }-5 y&={\mathrm e}^{x} x^{3}-x \,{\mathrm e}^{5 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.387 |
|
| 13218 |
\begin{align*}
t^{2} y^{\prime \prime }+3 y^{\prime } t +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.388 |
|
| 13219 |
\begin{align*}
y-\frac {1}{\sqrt {1+{y^{\prime }}^{2}}}&=x +\frac {y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.388 |
|
| 13220 |
\begin{align*}
y^{\prime } \sin \left (y\right )&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.388 |
|
| 13221 |
\begin{align*}
\frac {x y^{\prime \prime }}{1-x}+y&=\cos \left (x \right ) \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
2.388 |
|
| 13222 |
\begin{align*}
3 y^{\prime } t&=y \cos \left (t \right ) \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.389 |
|
| 13223 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime }&=\left (x^{2}+1\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.389 |
|
| 13224 |
\begin{align*}
{y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right ) \left (y-b \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.389 |
|
| 13225 |
\begin{align*}
\left (x +1\right ) {y^{\prime }}^{2}&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.389 |
|
| 13226 |
\begin{align*}
2 x y^{2}-y+\left (y^{2}+x +y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.389 |
|
| 13227 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\
y \left (-1\right ) &= 1 \\
y^{\prime }\left (-1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.389 |
|
| 13228 |
\begin{align*}
y^{2}+1-y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.390 |
|
| 13229 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime } x +4 x^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.390 |
|
| 13230 |
\begin{align*}
4 y+y^{\prime \prime }&=12 \cos \left (x \right )^{2} \\
y \left (\frac {\pi }{2}\right ) &= 0 \\
y^{\prime }\left (\frac {\pi }{2}\right ) &= \frac {\pi }{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.391 |
|
| 13231 |
\begin{align*}
y^{\prime }+\cos \left (x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.391 |
|
| 13232 |
\begin{align*}
\left (a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime \prime }-a \,\lambda ^{2} {\mathrm e}^{\lambda x} y&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
2.391 |
|
| 13233 |
\begin{align*}
y^{\prime }&=1-\left (x -y\right )^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.391 |
|
| 13234 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.392 |
|
| 13235 |
\begin{align*}
y^{\prime \prime }+y&=4 x \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.392 |
|
| 13236 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.392 |
|
| 13237 |
\begin{align*}
9 x^{2} y^{\prime \prime }+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.392 |
|
| 13238 |
\begin{align*}
y-x +y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.392 |
|
| 13239 |
\begin{align*}
y^{\prime }&=a \cos \left (b x +c \right )+k y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.393 |
|
| 13240 |
\begin{align*}
y y^{\prime \prime }-{y^{\prime }}^{2}+1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.393 |
|
| 13241 |
\begin{align*}
2 y+y^{\prime } t&=\frac {\sin \left (t \right )}{t} \\
y \left (-\frac {\pi }{2}\right ) &= a \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.393 |
|
| 13242 |
\begin{align*}
x^{\prime }&=\frac {t \,{\mathrm e}^{-t -2 x}}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.394 |
|
| 13243 |
\begin{align*}
y^{\prime }&=\frac {y^{3}-3 x y^{2} \ln \left (x \right )+3 x^{2} \ln \left (x \right )^{2} y-x^{3} \ln \left (x \right )^{3}+x^{2}+y x}{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.394 |
|
| 13244 |
\begin{align*}
x +y \,{\mathrm e}^{y x}+x \,{\mathrm e}^{y x} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.394 |
|
| 13245 |
\begin{align*}
y^{\prime }+\cot \left (x \right ) y&=\sec \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.395 |
|
| 13246 |
\begin{align*}
y^{\prime }&=\frac {y}{-x^{2}+1}+\sqrt {x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.395 |
|
| 13247 |
\begin{align*}
y^{\prime }+\sin \left (x \right ) y&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.396 |
|
| 13248 |
\begin{align*}
x \left (1-y\right ) y^{\prime }+\left (x +1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.397 |
|
| 13249 |
\begin{align*}
\left (-1+y^{2}\right ) y^{\prime }&=4 y x \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.397 |
|
| 13250 |
\begin{align*}
y^{\prime }&=\cos \left (x \right ) \sin \left (x \right )-\cos \left (x \right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.398 |
|
| 13251 |
\begin{align*}
x -2 y x +{\mathrm e}^{y}+\left (x \,{\mathrm e}^{y}+y-x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.398 |
|
| 13252 |
\begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (-1\right ) &= 5 \\
y^{\prime }\left (-1\right ) &= -5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.398 |
|
| 13253 |
\begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x -30 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.398 |
|
| 13254 |
\begin{align*}
x {y^{\prime }}^{2}+4 y^{\prime }-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.399 |
|
| 13255 |
\begin{align*}
y^{\prime }&={\mathrm e}^{4 x +3 y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.399 |
|
| 13256 |
\begin{align*}
y^{\prime \prime } x -y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
2.400 |
|
| 13257 |
\begin{align*}
x^{\prime } {\mathrm e}^{3 t}+3 x \,{\mathrm e}^{3 t}&={\mathrm e}^{-t} \\
x \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.400 |
|
| 13258 |
\begin{align*}
y^{\prime }+\tan \left (x \right ) y&=\cos \left (x \right )^{2} \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.401 |
|
| 13259 |
\begin{align*}
y^{\prime } x&=a y^{2}+b y+c \,x^{2 b} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.401 |
|
| 13260 |
\begin{align*}
x \left (1-2 y\right )+\left (-x^{2}+y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.401 |
|
| 13261 |
\begin{align*}
2 x^{2}-x y^{2}-2 y+3-\left (x^{2} y+2 x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.402 |
|
| 13262 |
\begin{align*}
\frac {2 y}{t}+y^{\prime }&=\frac {\cos \left (t \right )}{t^{2}} \\
y \left (\pi \right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.402 |
|
| 13263 |
\begin{align*}
y^{\prime \prime }&=y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.402 |
|
| 13264 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x -y x -x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.403 |
|
| 13265 |
\begin{align*}
\left (1+u \right ) v+\left (1-v\right ) u v^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.403 |
|
| 13266 |
\begin{align*}
a y \left (1+{y^{\prime }}^{2}\right )^{2}+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.404 |
|
| 13267 |
\begin{align*}
y^{\prime }+\frac {y}{x}&=3 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.405 |
|
| 13268 |
\begin{align*}
2 x +y+\left (x -3\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.405 |
|
| 13269 |
\begin{align*}
t y^{\prime \prime }+y^{\prime } t +2 y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
2.406 |
|
| 13270 |
\begin{align*}
y^{\prime }&=\cos \left (x \right )+\frac {y}{x} \\
y \left (-1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.406 |
|
| 13271 |
\begin{align*}
y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.406 |
|
| 13272 |
\begin{align*}
y^{\prime }-4 y&=\left \{\begin {array}{cc} 12 \,{\mathrm e}^{t} & 0\le t <1 \\ 12 \,{\mathrm e} & 1\le t \end {array}\right . \\
y \left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
2.406 |
|
| 13273 |
\begin{align*}
u^{\prime \prime }+\frac {4 u^{\prime }}{x}+a^{2} u&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.407 |
|
| 13274 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }+3 x^{3} y&=6 x \,{\mathrm e}^{-\frac {3 x^{2}}{2}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.408 |
|
| 13275 |
\begin{align*}
y^{\prime }&=y+\frac {1}{1-t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.408 |
|
| 13276 |
\begin{align*}
y^{\prime \prime }-2 \left (r +\beta \right ) y^{\prime }+r^{2} y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.408 |
|
| 13277 |
\begin{align*}
y+3 y^{2} x^{4}+\left (x +2 x^{2} y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.410 |
|
| 13278 |
\begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y&=10 x^{2} \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= -6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.410 |
|
| 13279 |
\begin{align*}
y^{\prime }+\frac {y}{x}&=\sin \left (x \right ) \\
y \left (\frac {\pi }{2}\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.412 |
|
| 13280 |
\begin{align*}
x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } x&=0 \\
y \left (2\right ) &= 5 \\
y^{\prime }\left (2\right ) &= -4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.412 |
|
| 13281 |
\begin{align*}
3 z^{2} z^{\prime }-a z^{3}&=x +1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.413 |
|
| 13282 |
\begin{align*}
y^{\prime \prime } x +y^{\prime }&=4 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.413 |
|
| 13283 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-y x -x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.413 |
|
| 13284 |
\begin{align*}
2 x^{2} y y^{\prime }&=x^{2} \left (2 x +1\right )-y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.414 |
|
| 13285 |
\begin{align*}
y^{\prime \prime } x -2 y^{\prime }+y&=\cos \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
2.414 |
|
| 13286 |
\begin{align*}
T^{\prime }&=-k \left (T-\mu -a \cos \left (\omega \left (t -\phi \right )\right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.414 |
|
| 13287 |
\begin{align*}
y^{\prime }&=x^{3} \left (1-y\right ) \\
y \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.415 |
|
| 13288 |
\begin{align*}
y^{\prime \prime }-x^{2} y^{\prime }-\left (x +1\right )^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.415 |
|
| 13289 |
\begin{align*}
x^{3} y^{2}-y+\left (x^{2} y^{4}-x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.415 |
|
| 13290 |
\begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.415 |
|
| 13291 |
\begin{align*}
t^{2} y^{\prime \prime }+y^{\prime } t +4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.415 |
|
| 13292 |
\begin{align*}
y^{\prime }+y&=\frac {{\mathrm e}^{x}}{y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.416 |
|
| 13293 |
\begin{align*}
3 y^{\prime } x -2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.416 |
|
| 13294 |
\begin{align*}
y^{\prime \prime }+6 y^{\prime }+8 y&=\cos \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.416 |
|
| 13295 |
\begin{align*}
y^{\prime \prime }+9 y&=\cos \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.416 |
|
| 13296 |
\begin{align*}
\tan \left (t \right ) y+y^{\prime }&=\sin \left (t \right ) \\
y \left (\pi \right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.416 |
|
| 13297 |
\begin{align*}
t y^{\prime \prime }+3 y^{\prime }-3 y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
2.418 |
|
| 13298 |
\begin{align*}
y^{\prime }&=x^{2}+3 \cosh \left (x \right )+2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.418 |
|
| 13299 |
\begin{align*}
\left (3-x +2 y x \right ) y^{\prime }+3 x^{2}-y+y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.418 |
|
| 13300 |
\begin{align*}
y^{\prime \prime } x -5 y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
2.418 |
|