2.3.133 Problems 13201 to 13300

Table 2.797: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

13201

21080

\begin{align*} 2 y+x +\left (x^{2}-1\right ) y^{\prime }&=0 \\ \end{align*}

2.381

13202

4293

\begin{align*} {\mathrm e}^{x} \left (x +1\right )&=\left (x \,{\mathrm e}^{x}-{\mathrm e}^{y} y\right ) y^{\prime } \\ \end{align*}

2.382

13203

16215

\begin{align*} y^{\prime }&=y x -3 x -2 y+6 \\ \end{align*}

2.382

13204

17

\begin{align*} x^{\prime \prime }&=\frac {1}{\left (1+t \right )^{3}} \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

2.383

13205

15851

\begin{align*} y^{\prime }&=y \left (y-1\right ) \left (y-3\right ) \\ y \left (0\right ) &= 4 \\ \end{align*}

2.383

13206

17998

\begin{align*} {y^{\prime }}^{2}-4 y^{\prime } x +2 y+2 x^{2}&=0 \\ \end{align*}

2.383

13207

21953

\begin{align*} y y^{\prime \prime }&=1+y^{2} \\ \end{align*}

2.383

13208

22402

\begin{align*} y^{\prime }&=\frac {1+\sqrt {x -y}}{1-\sqrt {x -y}} \\ \end{align*}

2.383

13209

24858

\begin{align*} {y^{\prime }}^{3}-2 y^{\prime } x +y&=0 \\ \end{align*}

2.383

13210

2488

\begin{align*} \left (t^{2}+1\right ) y^{\prime }&=1+y^{2} \\ \end{align*}

2.384

13211

21399

\begin{align*} y-x y^{2}+y^{\prime } x&=0 \\ \end{align*}

2.384

13212

1564

\begin{align*} y^{\prime }+\cot \left (x \right ) y&=\cos \left (x \right ) \\ y \left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}

2.385

13213

8546

\begin{align*} y^{\prime \prime } x -y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

2.385

13214

12996

\begin{align*} \left (1-2 y\right ) {y^{\prime }}^{2}+\left (1+y^{2}\right ) y^{\prime \prime }&=0 \\ \end{align*}

2.385

13215

13931

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{2 \lambda x} \left (b \,{\mathrm e}^{\lambda x}+c \right )^{n}-\frac {\lambda ^{2}}{4}\right ) y&=0 \\ \end{align*}

2.385

13216

19854

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x -8 y&=x \\ \end{align*}

2.385

13217

21512

\begin{align*} y^{\prime }-5 y&={\mathrm e}^{x} x^{3}-x \,{\mathrm e}^{5 x} \\ \end{align*}

2.387

13218

2630

\begin{align*} t^{2} y^{\prime \prime }+3 y^{\prime } t +y&=0 \\ \end{align*}

2.388

13219

6892

\begin{align*} y-\frac {1}{\sqrt {1+{y^{\prime }}^{2}}}&=x +\frac {y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}} \\ \end{align*}

2.388

13220

9088

\begin{align*} y^{\prime } \sin \left (y\right )&=x^{2} \\ \end{align*}

2.388

13221

10229

\begin{align*} \frac {x y^{\prime \prime }}{1-x}+y&=\cos \left (x \right ) \\ \end{align*}

2.388

13222

2499

\begin{align*} 3 y^{\prime } t&=y \cos \left (t \right ) \\ y \left (1\right ) &= 0 \\ \end{align*}

2.389

13223

4233

\begin{align*} \left (x^{2}-1\right ) y^{\prime }&=\left (x^{2}+1\right ) y \\ \end{align*}

2.389

13224

5371

\begin{align*} {y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right ) \left (y-b \right )&=0 \\ \end{align*}

2.389

13225

5480

\begin{align*} \left (x +1\right ) {y^{\prime }}^{2}&=y \\ \end{align*}

2.389

13226

19104

\begin{align*} 2 x y^{2}-y+\left (y^{2}+x +y\right ) y^{\prime }&=0 \\ \end{align*}

2.389

13227

23383

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ y \left (-1\right ) &= 1 \\ y^{\prime }\left (-1\right ) &= 0 \\ \end{align*}

2.389

13228

16360

\begin{align*} y^{2}+1-y^{\prime }&=0 \\ \end{align*}

2.390

13229

20192

\begin{align*} y^{\prime \prime }+4 y^{\prime } x +4 x^{2} y&=0 \\ \end{align*}

2.390

13230

3137

\begin{align*} 4 y+y^{\prime \prime }&=12 \cos \left (x \right )^{2} \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= \frac {\pi }{2} \\ \end{align*}

2.391

13231

8858

\begin{align*} y^{\prime }+\cos \left (x \right ) y&=0 \\ \end{align*}

2.391

13232

13961

\begin{align*} \left (a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime \prime }-a \,\lambda ^{2} {\mathrm e}^{\lambda x} y&=0 \\ \end{align*}

2.391

13233

22591

\begin{align*} y^{\prime }&=1-\left (x -y\right )^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

2.391

13234

5990

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

2.392

13235

7106

\begin{align*} y^{\prime \prime }+y&=4 x \sin \left (x \right ) \\ \end{align*}

2.392

13236

7150

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

2.392

13237

9882

\begin{align*} 9 x^{2} y^{\prime \prime }+2 y&=0 \\ \end{align*}

2.392

13238

17321

\begin{align*} y-x +y^{\prime }&=0 \\ \end{align*}

2.392

13239

4612

\begin{align*} y^{\prime }&=a \cos \left (b x +c \right )+k y \\ \end{align*}

2.393

13240

12922

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}+1&=0 \\ \end{align*}

2.393

13241

18534

\begin{align*} 2 y+y^{\prime } t&=\frac {\sin \left (t \right )}{t} \\ y \left (-\frac {\pi }{2}\right ) &= a \\ \end{align*}

2.393

13242

7388

\begin{align*} x^{\prime }&=\frac {t \,{\mathrm e}^{-t -2 x}}{x} \\ \end{align*}

2.394

13243

12266

\begin{align*} y^{\prime }&=\frac {y^{3}-3 x y^{2} \ln \left (x \right )+3 x^{2} \ln \left (x \right )^{2} y-x^{3} \ln \left (x \right )^{3}+x^{2}+y x}{x^{2}} \\ \end{align*}

2.394

13244

16370

\begin{align*} x +y \,{\mathrm e}^{y x}+x \,{\mathrm e}^{y x} y^{\prime }&=0 \\ \end{align*}

2.394

13245

13987

\begin{align*} y^{\prime }+\cot \left (x \right ) y&=\sec \left (x \right ) \\ \end{align*}

2.395

13246

15613

\begin{align*} y^{\prime }&=\frac {y}{-x^{2}+1}+\sqrt {x} \\ \end{align*}

2.395

13247

25753

\begin{align*} y^{\prime }+\sin \left (x \right ) y&=x \\ \end{align*}

2.396

13248

6824

\begin{align*} x \left (1-y\right ) y^{\prime }+\left (x +1\right ) y&=0 \\ \end{align*}

2.397

13249

16255

\begin{align*} \left (-1+y^{2}\right ) y^{\prime }&=4 y x \\ y \left (0\right ) &= 1 \\ \end{align*}

2.397

13250

4620

\begin{align*} y^{\prime }&=\cos \left (x \right ) \sin \left (x \right )-\cos \left (x \right ) y \\ \end{align*}

2.398

13251

6928

\begin{align*} x -2 y x +{\mathrm e}^{y}+\left (x \,{\mathrm e}^{y}+y-x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

2.398

13252

8220

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (-1\right ) &= 5 \\ y^{\prime }\left (-1\right ) &= -5 \\ \end{align*}

2.398

13253

16726

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -30 y&=0 \\ \end{align*}

2.398

13254

5454

\begin{align*} x {y^{\prime }}^{2}+4 y^{\prime }-2 y&=0 \\ \end{align*}

2.399

13255

16376

\begin{align*} y^{\prime }&={\mathrm e}^{4 x +3 y} \\ \end{align*}

2.399

13256

8525

\begin{align*} y^{\prime \prime } x -y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

2.400

13257

14880

\begin{align*} x^{\prime } {\mathrm e}^{3 t}+3 x \,{\mathrm e}^{3 t}&={\mathrm e}^{-t} \\ x \left (0\right ) &= 3 \\ \end{align*}

2.400

13258

8455

\begin{align*} y^{\prime }+\tan \left (x \right ) y&=\cos \left (x \right )^{2} \\ y \left (0\right ) &= -1 \\ \end{align*}

2.401

13259

13237

\begin{align*} y^{\prime } x&=a y^{2}+b y+c \,x^{2 b} \\ \end{align*}

2.401

13260

16380

\begin{align*} x \left (1-2 y\right )+\left (-x^{2}+y\right ) y^{\prime }&=0 \\ \end{align*}

2.401

13261

4326

\begin{align*} 2 x^{2}-x y^{2}-2 y+3-\left (x^{2} y+2 x \right ) y^{\prime }&=0 \\ \end{align*}

2.402

13262

18525

\begin{align*} \frac {2 y}{t}+y^{\prime }&=\frac {\cos \left (t \right )}{t^{2}} \\ y \left (\pi \right ) &= 0 \\ \end{align*}

2.402

13263

25741

\begin{align*} y^{\prime \prime }&=y^{\prime } \\ \end{align*}

2.402

13264

10087

\begin{align*} y^{\prime \prime }-y^{\prime } x -y x -x^{2}&=0 \\ \end{align*}

2.403

13265

15336

\begin{align*} \left (1+u \right ) v+\left (1-v\right ) u v^{\prime }&=0 \\ \end{align*}

2.403

13266

6353

\begin{align*} a y \left (1+{y^{\prime }}^{2}\right )^{2}+y^{\prime \prime }&=0 \\ \end{align*}

2.404

13267

21438

\begin{align*} y^{\prime }+\frac {y}{x}&=3 x \\ \end{align*}

2.405

13268

22295

\begin{align*} 2 x +y+\left (x -3\right ) y^{\prime }&=0 \\ \end{align*}

2.405

13269

2657

\begin{align*} t y^{\prime \prime }+y^{\prime } t +2 y&=0 \\ \end{align*}
Series expansion around \(t=0\).

2.406

13270

15563

\begin{align*} y^{\prime }&=\cos \left (x \right )+\frac {y}{x} \\ y \left (-1\right ) &= 0 \\ \end{align*}

2.406

13271

23102

\begin{align*} y^{\prime }+y&=0 \\ \end{align*}

2.406

13272

25298

\begin{align*} y^{\prime }-4 y&=\left \{\begin {array}{cc} 12 \,{\mathrm e}^{t} & 0\le t <1 \\ 12 \,{\mathrm e} & 1\le t \end {array}\right . \\ y \left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

2.406

13273

7205

\begin{align*} u^{\prime \prime }+\frac {4 u^{\prime }}{x}+a^{2} u&=0 \\ \end{align*}

2.407

13274

97

\begin{align*} \left (x^{2}+1\right ) y^{\prime }+3 x^{3} y&=6 x \,{\mathrm e}^{-\frac {3 x^{2}}{2}} \\ y \left (0\right ) &= 1 \\ \end{align*}

2.408

13275

17036

\begin{align*} y^{\prime }&=y+\frac {1}{1-t} \\ \end{align*}

2.408

13276

23367

\begin{align*} y^{\prime \prime }-2 \left (r +\beta \right ) y^{\prime }+r^{2} y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

2.408

13277

4414

\begin{align*} y+3 y^{2} x^{4}+\left (x +2 x^{2} y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

2.410

13278

14722

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y&=10 x^{2} \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= -6 \\ \end{align*}

2.410

13279

7747

\begin{align*} y^{\prime }+\frac {y}{x}&=\sin \left (x \right ) \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ \end{align*}

2.412

13280

9764

\begin{align*} x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } x&=0 \\ y \left (2\right ) &= 5 \\ y^{\prime }\left (2\right ) &= -4 \\ \end{align*}

2.412

13281

6843

\begin{align*} 3 z^{2} z^{\prime }-a z^{3}&=x +1 \\ \end{align*}

2.413

13282

7343

\begin{align*} y^{\prime \prime } x +y^{\prime }&=4 x \\ \end{align*}

2.413

13283

10093

\begin{align*} y^{\prime \prime }-y^{\prime }-y x -x^{2}&=0 \\ \end{align*}

2.413

13284

5190

\begin{align*} 2 x^{2} y y^{\prime }&=x^{2} \left (2 x +1\right )-y^{2} \\ \end{align*}

2.414

13285

8119

\begin{align*} y^{\prime \prime } x -2 y^{\prime }+y&=\cos \left (x \right ) \\ \end{align*}
Series expansion around \(x=0\).

2.414

13286

14906

\begin{align*} T^{\prime }&=-k \left (T-\mu -a \cos \left (\omega \left (t -\phi \right )\right )\right ) \\ \end{align*}

2.414

13287

7397

\begin{align*} y^{\prime }&=x^{3} \left (1-y\right ) \\ y \left (0\right ) &= 3 \\ \end{align*}

2.415

13288

12332

\begin{align*} y^{\prime \prime }-x^{2} y^{\prime }-\left (x +1\right )^{2} y&=0 \\ \end{align*}

2.415

13289

22055

\begin{align*} x^{3} y^{2}-y+\left (x^{2} y^{4}-x \right ) y^{\prime }&=0 \\ \end{align*}

2.415

13290

22634

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -3 \\ \end{align*}

2.415

13291

25220

\begin{align*} t^{2} y^{\prime \prime }+y^{\prime } t +4 y&=0 \\ \end{align*}

2.415

13292

7514

\begin{align*} y^{\prime }+y&=\frac {{\mathrm e}^{x}}{y^{2}} \\ \end{align*}

2.416

13293

8265

\begin{align*} 3 y^{\prime } x -2 y&=0 \\ \end{align*}

2.416

13294

16120

\begin{align*} y^{\prime \prime }+6 y^{\prime }+8 y&=\cos \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

2.416

13295

16127

\begin{align*} y^{\prime \prime }+9 y&=\cos \left (t \right ) \\ \end{align*}

2.416

13296

18547

\begin{align*} \tan \left (t \right ) y+y^{\prime }&=\sin \left (t \right ) \\ y \left (\pi \right ) &= 0 \\ \end{align*}

2.416

13297

2668

\begin{align*} t y^{\prime \prime }+3 y^{\prime }-3 y&=0 \\ \end{align*}
Series expansion around \(t=0\).

2.418

13298

4609

\begin{align*} y^{\prime }&=x^{2}+3 \cosh \left (x \right )+2 y \\ \end{align*}

2.418

13299

5164

\begin{align*} \left (3-x +2 y x \right ) y^{\prime }+3 x^{2}-y+y^{2}&=0 \\ \end{align*}

2.418

13300

8547

\begin{align*} y^{\prime \prime } x -5 y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

2.418