2.2.40 Problems 3901 to 4000

Table 2.81: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

3901

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}-5 x_{2}+x_{3} \\ x_{2}^{\prime }=4 x_{1}-9 x_{2}-x_{3} \\ x_{3}^{\prime }=3 x_{3} \end {array}\right ] \]

system_of_ODEs

0.615

3902

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-4 x_{1} \\ x_{2}^{\prime }=2 x_{1}+5 x_{2}-9 x_{3} \\ x_{3}^{\prime }=5 x_{2}-x_{3} \end {array}\right ] \]

system_of_ODEs

0.641

3903

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-2 x_{2}+x_{3} \\ x_{2}^{\prime }=x_{1}-4 x_{2}+x_{3} \\ x_{3}^{\prime }=2 x_{1}+2 x_{2}-3 x_{3} \end {array}\right ] \]

system_of_ODEs

0.544

3904

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-4 x_{2}+3 x_{3} \\ x_{2}^{\prime }=-9 x_{1}-3 x_{2}-9 x_{3} \\ x_{3}^{\prime }=4 x_{1}+4 x_{2}+3 x_{3} \end {array}\right ] \]

system_of_ODEs

0.515

3905

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-17 x_{1}-42 x_{3} \\ x_{2}^{\prime }=-7 x_{1}+4 x_{2}-14 x_{3} \\ x_{3}^{\prime }=7 x_{1}+18 x_{3} \end {array}\right ] \]

system_of_ODEs

0.460

3906

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-16 x_{1}+30 x_{2}-18 x_{3} \\ x_{2}^{\prime }=-8 x_{1}+8 x_{2}+16 x_{3} \\ x_{3}^{\prime }=8 x_{1}-15 x_{2}+9 x_{3} \end {array}\right ] \]

system_of_ODEs

1.382

3907

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-7 x_{1}-6 x_{2}-7 x_{3} \\ x_{2}^{\prime }=-3 x_{1}-3 x_{2}-3 x_{3} \\ x_{3}^{\prime }=7 x_{1}+6 x_{2}+7 x_{3} \end {array}\right ] \]

system_of_ODEs

0.441

3908

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-x_{2}-2 x_{3} \\ x_{2}^{\prime }=x_{1}+6 x_{2}+x_{3} \\ x_{3}^{\prime }=x_{1}+6 x_{3} \end {array}\right ] \]

system_of_ODEs

0.441

3909

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}-4 x_{2}-2 x_{3} \\ x_{2}^{\prime }=-4 x_{1}-5 x_{2}-6 x_{3} \\ x_{3}^{\prime }=4 x_{1}+8 x_{2}+7 x_{3} \end {array}\right ] \]

system_of_ODEs

0.759

3910

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=7 x_{1}-2 x_{2}+2 x_{3} \\ x_{2}^{\prime }=4 x_{2}-x_{3} \\ x_{3}^{\prime }=-x_{1}+x_{2}+4 x_{3} \end {array}\right ] \]

system_of_ODEs

0.440

3911

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}-x_{2}-2 x_{3} \\ x_{2}^{\prime }=x_{1}+x_{3} \\ x_{3}^{\prime }=x_{1} \end {array}\right ] \]

system_of_ODEs

0.450

3912

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-2 x_{1}-x_{3} \\ x_{2}^{\prime }=-x_{2} \\ x_{3}^{\prime }=x_{1} \end {array}\right ] \]

system_of_ODEs

0.325

3913

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}+13 x_{2} \\ x_{2}^{\prime }=-x_{1}-2 x_{2} \\ x_{3}^{\prime }=2 x_{3}+4 x_{4} \\ x_{4}^{\prime }=2 x_{4} \end {array}\right ] \]

system_of_ODEs

0.643

3914

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=7 x_{1}-x_{4} \\ x_{2}^{\prime }=6 x_{2} \\ x_{3}^{\prime }=-x_{3} \\ x_{4}^{\prime }=2 x_{1}+5 x_{4} \end {array}\right ] \]

system_of_ODEs

0.654

3915

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-6 x_{1}+x_{2}+1 \\ x_{2}^{\prime }=6 x_{1}-5 x_{2}+{\mathrm e}^{-t} \end {array}\right ] \]

system_of_ODEs

0.550

3916

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=9 x_{1}-2 x_{2}+9 t \\ x_{2}^{\prime }=5 x_{1}-2 x_{2} \end {array}\right ] \]

system_of_ODEs

0.524

3917

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=10 x_{1}-4 x_{2} \\ x_{2}^{\prime }=4 x_{1}+2 x_{2}+\frac {{\mathrm e}^{6 t}}{t} \end {array}\right ] \]

system_of_ODEs

0.520

3918

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-4 x_{2}+3 x_{3}+{\mathrm e}^{6 t} \\ x_{2}^{\prime }=-9 x_{1}-3 x_{2}-9 x_{3}+1 \\ x_{3}^{\prime }=4 x_{1}+4 x_{2}+3 x_{3} \end {array}\right ] \]

system_of_ODEs

0.840

3919

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-2 x_{2}+x_{3}+t \\ x_{2}^{\prime }=x_{1}-4 x_{2}+x_{3} \\ x_{3}^{\prime }=2 x_{1}+2 x_{2}-3 x_{3}+1 \end {array}\right ] \]

system_of_ODEs

0.885

3920

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}+4 x_{2} \\ x_{2}^{\prime }=8 x_{1}+x_{2} \end {array}\right ] \]

system_of_ODEs

0.454

3921

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-6 x_{2} \\ x_{2}^{\prime }=x_{1}-5 x_{2} \end {array}\right ] \]

system_of_ODEs

0.431

3922

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=5 x_{1}+9 x_{2} \\ x_{2}^{\prime }=-2 x_{1}-x_{2} \end {array}\right ] \]

system_of_ODEs

0.588

3923

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-4 x_{1} \\ x_{2}^{\prime }=-4 x_{2} \end {array}\right ] \]

system_of_ODEs

0.326

3924

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=7 x_{1}-2 x_{2} \\ x_{2}^{\prime }=x_{1}+4 x_{2} \end {array}\right ] \]

system_of_ODEs

0.411

3925

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}-5 x_{2} \\ x_{2}^{\prime }=x_{1}-7 x_{2} \end {array}\right ] \]

system_of_ODEs

0.499

3926

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-2 x_{1}-x_{2} \\ x_{2}^{\prime }=x_{1}-4 x_{2} \end {array}\right ] \]

system_of_ODEs

0.385

3927

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=10 x_{1}-8 x_{2} \\ x_{2}^{\prime }=2 x_{1}+2 x_{2} \end {array}\right ] \]

system_of_ODEs

0.399

3928

\[ {}y^{\prime }-2 y = 6 \,{\mathrm e}^{5 t} \]
i.c.

[[_linear, ‘class A‘]]

0.399

3929

\[ {}y^{\prime }+y = 8 \,{\mathrm e}^{3 t} \]
i.c.

[[_linear, ‘class A‘]]

0.381

3930

\[ {}y^{\prime }+3 y = 2 \,{\mathrm e}^{-t} \]
i.c.

[[_linear, ‘class A‘]]

0.393

3931

\[ {}y^{\prime }+2 y = 4 t \]
i.c.

[[_linear, ‘class A‘]]

0.388

3932

\[ {}y^{\prime }-y = 6 \cos \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.450

3933

\[ {}y^{\prime }-y = 5 \sin \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.466

3934

\[ {}y^{\prime }+y = 5 \,{\mathrm e}^{t} \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.478

3935

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.255

3936

\[ {}y^{\prime \prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.292

3937

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 4 \]
i.c.

[[_2nd_order, _missing_x]]

0.252

3938

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 36 \]
i.c.

[[_2nd_order, _missing_x]]

0.242

3939

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 10 \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.288

3940

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 4 \,{\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.273

3941

\[ {}y^{\prime \prime }-2 y^{\prime } = 30 \,{\mathrm e}^{-3 t} \]
i.c.

[[_2nd_order, _missing_y]]

0.268

3942

\[ {}y^{\prime \prime }-y = 12 \,{\mathrm e}^{2 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.276

3943

\[ {}y^{\prime \prime }+4 y = 10 \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.331

3944

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 12-6 \,{\mathrm e}^{t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.290

3945

\[ {}y^{\prime \prime }-y = 6 \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.306

3946

\[ {}y^{\prime \prime }-9 y = 13 \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.311

3947

\[ {}y^{\prime \prime }-y = 8 \sin \left (t \right )-6 \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.329

3948

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 10 \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.391

3949

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = 20 \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.384

3950

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = 20 \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.321

3951

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 3 \cos \left (t \right )+\sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.333

3952

\[ {}y^{\prime \prime }+4 y = 9 \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.341

3953

\[ {}y^{\prime \prime }+y = 6 \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.328

3954

\[ {}y^{\prime \prime }+9 y = 7 \sin \left (4 t \right )+14 \cos \left (4 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.447

3955

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.201

3956

\[ {}y^{\prime }+2 y = 2 \operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.576

3957

\[ {}y^{\prime }-2 y = \operatorname {Heaviside}\left (t -2\right ) {\mathrm e}^{t -2} \]
i.c.

[[_linear, ‘class A‘]]

0.557

3958

\[ {}y^{\prime }-y = 4 \operatorname {Heaviside}\left (t -\frac {\pi }{4}\right ) \sin \left (t +\frac {\pi }{4}\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.747

3959

\[ {}y^{\prime }+2 y = \operatorname {Heaviside}\left (t -\pi \right ) \sin \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.837

3960

\[ {}y^{\prime }+3 y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.671

3961

\[ {}y^{\prime }-3 y = \left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\frac {\pi }{2} \\ 1 & \frac {\pi }{2}\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.932

3962

\[ {}y^{\prime }-3 y = -10 \,{\mathrm e}^{-t +a} \sin \left (-2 t +2 a \right ) \operatorname {Heaviside}\left (t -a \right ) \]
i.c.

[[_linear, ‘class A‘]]

11.243

3963

\[ {}y^{\prime \prime }-y = \operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.515

3964

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 1-3 \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.740

3965

\[ {}y^{\prime \prime }-4 y = \operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.187

3966

\[ {}y^{\prime \prime }+y = t -\operatorname {Heaviside}\left (t -1\right ) \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.537

3967

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = -10 \operatorname {Heaviside}\left (t -\frac {\pi }{4}\right ) \cos \left (t +\frac {\pi }{4}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.284

3968

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 30 \operatorname {Heaviside}\left (t -1\right ) {\mathrm e}^{-t +1} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.777

3969

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 5 \operatorname {Heaviside}\left (t -3\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.158

3970

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 2 \sin \left (t \right )+\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right ) \left (1+\cos \left (t \right )\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.277

3971

\[ {}y^{\prime }-y = \left \{\begin {array}{cc} 2 & 0\le t <1 \\ -1 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.654

3972

\[ {}y^{\prime }-y = \left \{\begin {array}{cc} 2 & 0\le t <1 \\ -1 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.660

3973

\[ {}y^{\prime }+y = \delta \left (t -5\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.491

3974

\[ {}y^{\prime }-2 y = \delta \left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.559

3975

\[ {}y^{\prime }+4 y = 3 \delta \left (t -1\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.571

3976

\[ {}y^{\prime }-5 y = 2 \,{\mathrm e}^{-t}+\delta \left (t -3\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.640

3977

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.521

3978

\[ {}y^{\prime \prime }-4 y = \delta \left (t -3\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.512

3979

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = \delta \left (t -\frac {\pi }{2}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.653

3980

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = \delta \left (t -\frac {\pi }{4}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.796

3981

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = \delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.617

3982

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = \delta \left (t -\frac {\pi }{4}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.864

3983

\[ {}y^{\prime \prime }+9 y = 15 \sin \left (2 t \right )+\delta \left (t -\frac {\pi }{6}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.671

3984

\[ {}y^{\prime \prime }+16 y = 4 \cos \left (3 t \right )+\delta \left (t -\frac {\pi }{3}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.033

3985

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \sin \left (t \right )+\delta \left (t -\frac {\pi }{6}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.499

3986

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

0.584

3987

\[ {}y^{\prime \prime }+2 y^{\prime } x +4 y = 0 \]

[_erf]

0.524

3988

\[ {}y^{\prime \prime }-2 y^{\prime } x -2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.565

3989

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-2 x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.519

3990

\[ {}y^{\prime \prime }+x y = 0 \]

[[_Emden, _Fowler]]

0.472

3991

\[ {}y^{\prime \prime }+y^{\prime } x +3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.562

3992

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-3 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.518

3993

\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+2 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.520

3994

\[ {}\left (x^{2}-3\right ) y^{\prime \prime }-3 y^{\prime } x -5 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.600

3995

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.613

3996

\[ {}\left (-4 x^{2}+1\right ) y^{\prime \prime }-20 y^{\prime } x -16 y = 0 \]

[_Gegenbauer]

0.629

3997

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 y^{\prime } x +12 y = 0 \]

[_Gegenbauer]

0.518

3998

\[ {}y^{\prime \prime }+2 y^{\prime }+4 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.593

3999

\[ {}y^{\prime \prime }+y^{\prime } x +\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.603

4000

\[ {}y^{\prime \prime }-y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.640