2.2.40 Problems 3901 to 4000

Table 2.81: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

3901

[x1=x15x2+x3x2=4x19x2x3x3=3x3]

system_of_ODEs

3902

[x1=4x1x2=2x1+5x29x3x3=5x2x3]

system_of_ODEs

3903

[x1=2x12x2+x3x2=x14x2+x3x3=2x1+2x23x3]

system_of_ODEs

3904

[x1=2x14x2+3x3x2=9x13x29x3x3=4x1+4x2+3x3]

system_of_ODEs

3905

[x1=17x142x3x2=7x1+4x214x3x3=7x1+18x3]

system_of_ODEs

3906

[x1=16x1+30x218x3x2=8x1+8x2+16x3x3=8x115x2+9x3]

system_of_ODEs

3907

[x1=7x16x27x3x2=3x13x23x3x3=7x1+6x2+7x3]

system_of_ODEs

3908

[x1=3x1x22x3x2=x1+6x2+x3x3=x1+6x3]

system_of_ODEs

3909

[x1=x14x22x3x2=4x15x26x3x3=4x1+8x2+7x3]

system_of_ODEs

3910

[x1=7x12x2+2x3x2=4x2x3x3=x1+x2+4x3]

system_of_ODEs

3911

[x1=3x1x22x3x2=x1+x3x3=x1]

system_of_ODEs

3912

[x1=2x1x3x2=x2x3=x1]

system_of_ODEs

3913

[x1=2x1+13x2x2=x12x2x3=2x3+4x4x4=2x4]

system_of_ODEs

3914

[x1=7x1x4x2=6x2x3=x3x4=2x1+5x4]

system_of_ODEs

3915

[x1=6x1+x2+1x2=6x15x2+et]

system_of_ODEs

3916

[x1=9x12x2+9tx2=5x12x2]

system_of_ODEs

3917

[x1=10x14x2x2=4x1+2x2+e6tt]

system_of_ODEs

3918

[x1=2x14x2+3x3+e6tx2=9x13x29x3+1x3=4x1+4x2+3x3]

system_of_ODEs

3919

[x1=2x12x2+x3+tx2=x14x2+x3x3=2x1+2x23x3+1]

system_of_ODEs

3920

[x1=3x1+4x2x2=8x1+x2]

system_of_ODEs

3921

[x1=6x2x2=x15x2]

system_of_ODEs

3922

[x1=5x1+9x2x2=2x1x2]

system_of_ODEs

3923

[x1=4x1x2=4x2]

system_of_ODEs

3924

[x1=7x12x2x2=x1+4x2]

system_of_ODEs

3925

[x1=3x15x2x2=x17x2]

system_of_ODEs

3926

[x1=2x1x2x2=x14x2]

system_of_ODEs

3927

[x1=10x18x2x2=2x1+2x2]

system_of_ODEs

3928

2y+y=6e5t
i.c.

[[_linear, ‘class A‘]]

3929

y+y=8e3t
i.c.

[[_linear, ‘class A‘]]

3930

3y+y=2et
i.c.

[[_linear, ‘class A‘]]

3931

y+2y=4t
i.c.

[[_linear, ‘class A‘]]

3932

y+y=6cos(t)
i.c.

[[_linear, ‘class A‘]]

3933

y+y=5sin(2t)
i.c.

[[_linear, ‘class A‘]]

3934

y+y=5etsin(t)
i.c.

[[_linear, ‘class A‘]]

3935

y+y2y=0
i.c.

[[_2nd_order, _missing_x]]

3936

y+4y=0
i.c.

[[_2nd_order, _missing_x]]

3937

y3y+2y=4
i.c.

[[_2nd_order, _missing_x]]

3938

yy12y=36
i.c.

[[_2nd_order, _missing_x]]

3939

y+y2y=10et
i.c.

[[_2nd_order, _with_linear_symmetries]]

3940

y3y+2y=4e3t
i.c.

[[_2nd_order, _with_linear_symmetries]]

3941

y2y=30e3t
i.c.

[[_2nd_order, _missing_y]]

3942

yy=12e2t
i.c.

[[_2nd_order, _with_linear_symmetries]]

3943

y+4y=10et
i.c.

[[_2nd_order, _with_linear_symmetries]]

3944

yy6y=126et
i.c.

[[_2nd_order, _with_linear_symmetries]]

3945

yy=6cos(t)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3946

y9y=13sin(2t)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3947

yy=8sin(t)6cos(t)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3948

yy2y=10cos(t)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3949

y+5y+4y=20sin(2t)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3950

y+5y+4y=20sin(2t)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3951

y3y+2y=3cos(t)+sin(t)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3952

y+4y=9sin(t)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3953

y+y=6cos(2t)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3954

y+9y=7sin(4t)+14cos(4t)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3955

yy=0
i.c.

[[_2nd_order, _missing_x]]

3956

y+2y=2Heaviside(t1)
i.c.

[[_linear, ‘class A‘]]

3957

2y+y=Heaviside(t2)et2
i.c.

[[_linear, ‘class A‘]]

3958

y+y=4Heaviside(tπ4)sin(t+π4)
i.c.

[[_linear, ‘class A‘]]

3959

y+2y=Heaviside(tπ)sin(2t)
i.c.

[[_linear, ‘class A‘]]

3960

3y+y={10t<101t
i.c.

[[_linear, ‘class A‘]]

3961

y3y={sin(t)0t<π21π2t
i.c.

[[_linear, ‘class A‘]]

3962

y3y=10et+asin(2t+2a)Heaviside(ta)
i.c.

[[_linear, ‘class A‘]]

3963

yy=Heaviside(t1)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3964

yy2y=13Heaviside(t2)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3965

y4y=Heaviside(t1)Heaviside(t2)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3966

y+y=tHeaviside(t1)(t1)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3967

y+3y+2y=10Heaviside(tπ4)cos(t+π4)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3968

y+y6y=30Heaviside(t1)e1t
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3969

y+4y+5y=5Heaviside(3+t)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3970

y2y+5y=2sin(t)+Heaviside(tπ2)(1+cos(t))
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3971

y+y={20t<111t
i.c.

[[_linear, ‘class A‘]]

3972

y+y={20t<111t
i.c.

[[_linear, ‘class A‘]]

3973

y+y=δ(t5)
i.c.

[[_linear, ‘class A‘]]

3974

2y+y=δ(t2)
i.c.

[[_linear, ‘class A‘]]

3975

y+4y=3δ(t1)
i.c.

[[_linear, ‘class A‘]]

3976

y5y=2et+δ(3+t)
i.c.

[[_linear, ‘class A‘]]

3977

y3y+2y=δ(t1)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3978

y4y=δ(3+t)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3979

y+2y+5y=δ(tπ2)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3980

y4y+13y=δ(tπ4)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3981

y+4y+3y=δ(t2)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3982

y+6y+13y=δ(tπ4)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3983

y+9y=15sin(2t)+δ(tπ6)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3984

y+16y=4cos(3t)+δ(tπ3)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3985

y+2y+5y=4sin(t)+δ(tπ6)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3986

yy=0

[[_2nd_order, _missing_x]]

3987

y+2yx+4y=0

[_erf]

3988

y2yx2y=0

[[_2nd_order, _exact, _linear, _homogeneous]]

3989

yx2y2xy=0

[[_2nd_order, _exact, _linear, _homogeneous]]

3990

y+xy=0

[[_Emden, _Fowler]]

3991

y+yx+3y=0

[[_2nd_order, _with_linear_symmetries]]

3992

yx2y3xy=0

[[_2nd_order, _with_linear_symmetries]]

3993

y+2x2y+2xy=0

[[_2nd_order, _with_linear_symmetries]]

3994

(x23)y3yx5y=0

[[_2nd_order, _exact, _linear, _homogeneous]]

3995

(x2+1)y+4yx+2y=0

[[_2nd_order, _exact, _linear, _homogeneous]]

3996

(4x2+1)y20yx16y=0

[_Gegenbauer]

3997

(x21)y6yx+12y=0

[_Gegenbauer]

3998

y+2y+4xy=0

[[_2nd_order, _with_linear_symmetries]]

3999

y+yx+(x+2)y=0

[[_2nd_order, _with_linear_symmetries]]

4000

yyex=0

[[_2nd_order, _with_linear_symmetries]]