# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}-5 x_{2}+x_{3} \\ x_{2}^{\prime }=4 x_{1}-9 x_{2}-x_{3} \\ x_{3}^{\prime }=3 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.615 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=-4 x_{1} \\ x_{2}^{\prime }=2 x_{1}+5 x_{2}-9 x_{3} \\ x_{3}^{\prime }=5 x_{2}-x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.641 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-2 x_{2}+x_{3} \\ x_{2}^{\prime }=x_{1}-4 x_{2}+x_{3} \\ x_{3}^{\prime }=2 x_{1}+2 x_{2}-3 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.544 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-4 x_{2}+3 x_{3} \\ x_{2}^{\prime }=-9 x_{1}-3 x_{2}-9 x_{3} \\ x_{3}^{\prime }=4 x_{1}+4 x_{2}+3 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.515 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=-17 x_{1}-42 x_{3} \\ x_{2}^{\prime }=-7 x_{1}+4 x_{2}-14 x_{3} \\ x_{3}^{\prime }=7 x_{1}+18 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.460 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=-16 x_{1}+30 x_{2}-18 x_{3} \\ x_{2}^{\prime }=-8 x_{1}+8 x_{2}+16 x_{3} \\ x_{3}^{\prime }=8 x_{1}-15 x_{2}+9 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
1.382 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=-7 x_{1}-6 x_{2}-7 x_{3} \\ x_{2}^{\prime }=-3 x_{1}-3 x_{2}-3 x_{3} \\ x_{3}^{\prime }=7 x_{1}+6 x_{2}+7 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.441 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-x_{2}-2 x_{3} \\ x_{2}^{\prime }=x_{1}+6 x_{2}+x_{3} \\ x_{3}^{\prime }=x_{1}+6 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.441 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}-4 x_{2}-2 x_{3} \\ x_{2}^{\prime }=-4 x_{1}-5 x_{2}-6 x_{3} \\ x_{3}^{\prime }=4 x_{1}+8 x_{2}+7 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.759 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=7 x_{1}-2 x_{2}+2 x_{3} \\ x_{2}^{\prime }=4 x_{2}-x_{3} \\ x_{3}^{\prime }=-x_{1}+x_{2}+4 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.440 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}-x_{2}-2 x_{3} \\ x_{2}^{\prime }=x_{1}+x_{3} \\ x_{3}^{\prime }=x_{1} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.450 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=-2 x_{1}-x_{3} \\ x_{2}^{\prime }=-x_{2} \\ x_{3}^{\prime }=x_{1} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.325 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}+13 x_{2} \\ x_{2}^{\prime }=-x_{1}-2 x_{2} \\ x_{3}^{\prime }=2 x_{3}+4 x_{4} \\ x_{4}^{\prime }=2 x_{4} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.643 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=7 x_{1}-x_{4} \\ x_{2}^{\prime }=6 x_{2} \\ x_{3}^{\prime }=-x_{3} \\ x_{4}^{\prime }=2 x_{1}+5 x_{4} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.654 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=-6 x_{1}+x_{2}+1 \\ x_{2}^{\prime }=6 x_{1}-5 x_{2}+{\mathrm e}^{-t} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.550 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=9 x_{1}-2 x_{2}+9 t \\ x_{2}^{\prime }=5 x_{1}-2 x_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.524 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=10 x_{1}-4 x_{2} \\ x_{2}^{\prime }=4 x_{1}+2 x_{2}+\frac {{\mathrm e}^{6 t}}{t} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.520 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-4 x_{2}+3 x_{3}+{\mathrm e}^{6 t} \\ x_{2}^{\prime }=-9 x_{1}-3 x_{2}-9 x_{3}+1 \\ x_{3}^{\prime }=4 x_{1}+4 x_{2}+3 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.840 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-2 x_{2}+x_{3}+t \\ x_{2}^{\prime }=x_{1}-4 x_{2}+x_{3} \\ x_{3}^{\prime }=2 x_{1}+2 x_{2}-3 x_{3}+1 \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.885 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}+4 x_{2} \\ x_{2}^{\prime }=8 x_{1}+x_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.454 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=-6 x_{2} \\ x_{2}^{\prime }=x_{1}-5 x_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.431 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=5 x_{1}+9 x_{2} \\ x_{2}^{\prime }=-2 x_{1}-x_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.588 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=-4 x_{1} \\ x_{2}^{\prime }=-4 x_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.326 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=7 x_{1}-2 x_{2} \\ x_{2}^{\prime }=x_{1}+4 x_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.411 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}-5 x_{2} \\ x_{2}^{\prime }=x_{1}-7 x_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.499 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=-2 x_{1}-x_{2} \\ x_{2}^{\prime }=x_{1}-4 x_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.385 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=10 x_{1}-8 x_{2} \\ x_{2}^{\prime }=2 x_{1}+2 x_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.399 |
|
\[
{}y^{\prime }-2 y = 6 \,{\mathrm e}^{5 t}
\] |
[[_linear, ‘class A‘]] |
✓ |
0.399 |
|
\[
{}y^{\prime }+y = 8 \,{\mathrm e}^{3 t}
\] |
[[_linear, ‘class A‘]] |
✓ |
0.381 |
|
\[
{}y^{\prime }+3 y = 2 \,{\mathrm e}^{-t}
\] |
[[_linear, ‘class A‘]] |
✓ |
0.393 |
|
\[
{}y^{\prime }+2 y = 4 t
\] |
[[_linear, ‘class A‘]] |
✓ |
0.388 |
|
\[
{}y^{\prime }-y = 6 \cos \left (t \right )
\] |
[[_linear, ‘class A‘]] |
✓ |
0.450 |
|
\[
{}y^{\prime }-y = 5 \sin \left (2 t \right )
\] |
[[_linear, ‘class A‘]] |
✓ |
0.466 |
|
\[
{}y^{\prime }+y = 5 \,{\mathrm e}^{t} \sin \left (t \right )
\] |
[[_linear, ‘class A‘]] |
✓ |
0.478 |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.255 |
|
\[
{}y^{\prime \prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.292 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 4
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.252 |
|
\[
{}y^{\prime \prime }-y^{\prime }-12 y = 36
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.242 |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = 10 \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.288 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 4 \,{\mathrm e}^{3 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.273 |
|
\[
{}y^{\prime \prime }-2 y^{\prime } = 30 \,{\mathrm e}^{-3 t}
\] |
[[_2nd_order, _missing_y]] |
✓ |
0.268 |
|
\[
{}y^{\prime \prime }-y = 12 \,{\mathrm e}^{2 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.276 |
|
\[
{}y^{\prime \prime }+4 y = 10 \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.331 |
|
\[
{}y^{\prime \prime }-y^{\prime }-6 y = 12-6 \,{\mathrm e}^{t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.290 |
|
\[
{}y^{\prime \prime }-y = 6 \cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.306 |
|
\[
{}y^{\prime \prime }-9 y = 13 \sin \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.311 |
|
\[
{}y^{\prime \prime }-y = 8 \sin \left (t \right )-6 \cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.329 |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 10 \cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.391 |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+4 y = 20 \sin \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.384 |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+4 y = 20 \sin \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.321 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 3 \cos \left (t \right )+\sin \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.333 |
|
\[
{}y^{\prime \prime }+4 y = 9 \sin \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.341 |
|
\[
{}y^{\prime \prime }+y = 6 \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.328 |
|
\[
{}y^{\prime \prime }+9 y = 7 \sin \left (4 t \right )+14 \cos \left (4 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.447 |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.201 |
|
\[
{}y^{\prime }+2 y = 2 \operatorname {Heaviside}\left (t -1\right )
\] |
[[_linear, ‘class A‘]] |
✓ |
0.576 |
|
\[
{}y^{\prime }-2 y = \operatorname {Heaviside}\left (t -2\right ) {\mathrm e}^{t -2}
\] |
[[_linear, ‘class A‘]] |
✓ |
0.557 |
|
\[
{}y^{\prime }-y = 4 \operatorname {Heaviside}\left (t -\frac {\pi }{4}\right ) \sin \left (t +\frac {\pi }{4}\right )
\] |
[[_linear, ‘class A‘]] |
✓ |
0.747 |
|
\[
{}y^{\prime }+2 y = \operatorname {Heaviside}\left (t -\pi \right ) \sin \left (2 t \right )
\] |
[[_linear, ‘class A‘]] |
✓ |
0.837 |
|
\[
{}y^{\prime }+3 y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ 0 & 1\le t \end {array}\right .
\] |
[[_linear, ‘class A‘]] |
✓ |
0.671 |
|
\[
{}y^{\prime }-3 y = \left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\frac {\pi }{2} \\ 1 & \frac {\pi }{2}\le t \end {array}\right .
\] |
[[_linear, ‘class A‘]] |
✓ |
0.932 |
|
\[
{}y^{\prime }-3 y = -10 \,{\mathrm e}^{-t +a} \sin \left (-2 t +2 a \right ) \operatorname {Heaviside}\left (t -a \right )
\] |
[[_linear, ‘class A‘]] |
✓ |
11.243 |
|
\[
{}y^{\prime \prime }-y = \operatorname {Heaviside}\left (t -1\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.515 |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 1-3 \operatorname {Heaviside}\left (t -2\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.740 |
|
\[
{}y^{\prime \prime }-4 y = \operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.187 |
|
\[
{}y^{\prime \prime }+y = t -\operatorname {Heaviside}\left (t -1\right ) \left (t -1\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.537 |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = -10 \operatorname {Heaviside}\left (t -\frac {\pi }{4}\right ) \cos \left (t +\frac {\pi }{4}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.284 |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 30 \operatorname {Heaviside}\left (t -1\right ) {\mathrm e}^{-t +1}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.777 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = 5 \operatorname {Heaviside}\left (t -3\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.158 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = 2 \sin \left (t \right )+\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right ) \left (1+\cos \left (t \right )\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.277 |
|
\[
{}y^{\prime }-y = \left \{\begin {array}{cc} 2 & 0\le t <1 \\ -1 & 1\le t \end {array}\right .
\] |
[[_linear, ‘class A‘]] |
✓ |
0.654 |
|
\[
{}y^{\prime }-y = \left \{\begin {array}{cc} 2 & 0\le t <1 \\ -1 & 1\le t \end {array}\right .
\] |
[[_linear, ‘class A‘]] |
✓ |
0.660 |
|
\[
{}y^{\prime }+y = \delta \left (t -5\right )
\] |
[[_linear, ‘class A‘]] |
✓ |
0.491 |
|
\[
{}y^{\prime }-2 y = \delta \left (t -2\right )
\] |
[[_linear, ‘class A‘]] |
✓ |
0.559 |
|
\[
{}y^{\prime }+4 y = 3 \delta \left (t -1\right )
\] |
[[_linear, ‘class A‘]] |
✓ |
0.571 |
|
\[
{}y^{\prime }-5 y = 2 \,{\mathrm e}^{-t}+\delta \left (t -3\right )
\] |
[[_linear, ‘class A‘]] |
✓ |
0.640 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = \delta \left (t -1\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.521 |
|
\[
{}y^{\prime \prime }-4 y = \delta \left (t -3\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.512 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = \delta \left (t -\frac {\pi }{2}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.653 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+13 y = \delta \left (t -\frac {\pi }{4}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.796 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+3 y = \delta \left (t -2\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.617 |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+13 y = \delta \left (t -\frac {\pi }{4}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.864 |
|
\[
{}y^{\prime \prime }+9 y = 15 \sin \left (2 t \right )+\delta \left (t -\frac {\pi }{6}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.671 |
|
\[
{}y^{\prime \prime }+16 y = 4 \cos \left (3 t \right )+\delta \left (t -\frac {\pi }{3}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.033 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \sin \left (t \right )+\delta \left (t -\frac {\pi }{6}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.499 |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.584 |
|
\[
{}y^{\prime \prime }+2 y^{\prime } x +4 y = 0
\] |
[_erf] |
✓ |
0.524 |
|
\[
{}y^{\prime \prime }-2 y^{\prime } x -2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.565 |
|
\[
{}y^{\prime \prime }-x^{2} y^{\prime }-2 x y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.519 |
|
\[
{}y^{\prime \prime }+x y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.472 |
|
\[
{}y^{\prime \prime }+y^{\prime } x +3 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.562 |
|
\[
{}y^{\prime \prime }-x^{2} y^{\prime }-3 x y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.518 |
|
\[
{}y^{\prime \prime }+2 x^{2} y^{\prime }+2 x y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.520 |
|
\[
{}\left (x^{2}-3\right ) y^{\prime \prime }-3 y^{\prime } x -5 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.600 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.613 |
|
\[
{}\left (-4 x^{2}+1\right ) y^{\prime \prime }-20 y^{\prime } x -16 y = 0
\] |
[_Gegenbauer] |
✓ |
0.629 |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }-6 y^{\prime } x +12 y = 0
\] |
[_Gegenbauer] |
✓ |
0.518 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+4 x y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.593 |
|
\[
{}y^{\prime \prime }+y^{\prime } x +\left (x +2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.603 |
|
\[
{}y^{\prime \prime }-y \,{\mathrm e}^{x} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.640 |
|