| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
4 z y^{\prime \prime }+2 \left (1-z \right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(z=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.823 |
|
| \begin{align*}
z y^{\prime \prime }-2 y^{\prime }+9 z^{5} y&=0 \\
\end{align*} Series expansion around \(z=0\). |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.741 |
|
| \begin{align*}
f^{\prime \prime }+2 \left (z -1\right ) f^{\prime }+4 f&=0 \\
\end{align*} Series expansion around \(z=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.504 |
|
| \begin{align*}
z^{2} y^{\prime \prime }-\frac {3 z y^{\prime }}{2}+\left (z +1\right ) y&=0 \\
\end{align*} Series expansion around \(z=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.724 |
|
| \begin{align*}
z y^{\prime \prime }-2 y^{\prime }+y z&=0 \\
\end{align*} Series expansion around \(z=0\). |
[_Lienard] |
✓ |
✓ |
✓ |
✓ |
0.633 |
|
| \begin{align*}
y^{\prime \prime }-2 z y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(z=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.415 |
|
| \begin{align*}
z \left (1-z \right ) y^{\prime \prime }+\left (1-z \right ) y^{\prime }+\lambda y&=0 \\
\end{align*} Series expansion around \(z=0\). |
[_Jacobi] |
✓ |
✓ |
✓ |
✓ |
0.925 |
|
| \begin{align*}
z y^{\prime \prime }+\left (2 z -3\right ) y^{\prime }+\frac {4 y}{z}&=0 \\
\end{align*} Series expansion around \(z=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.630 |
|
| \begin{align*}
\left (z^{2}+5 z +6\right ) y^{\prime \prime }+2 y&=0 \\
\end{align*} Series expansion around \(z=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.500 |
|
| \begin{align*}
\left (z^{2}+5 z +7\right ) y^{\prime \prime }+2 y&=0 \\
\end{align*} Series expansion around \(z=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.510 |
|
| \begin{align*}
y^{\prime \prime }+\frac {y}{z^{3}}&=0 \\
\end{align*} Series expansion around \(z=0\). |
[[_Emden, _Fowler]] |
✗ |
✗ |
✓ |
✗ |
0.112 |
|
| \begin{align*}
z y^{\prime \prime }+\left (1-z \right ) y^{\prime }+\lambda y&=0 \\
\end{align*} Series expansion around \(z=0\). |
[_Laguerre] |
✓ |
✓ |
✓ |
✓ |
0.857 |
|
| \begin{align*}
\left (-z^{2}+1\right ) y^{\prime \prime }-z y^{\prime }+m^{2} y&=0 \\
\end{align*} Series expansion around \(z=0\). |
[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.543 |
|
| \begin{align*}
y^{\prime }&=2 y x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.948 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}}{x^{2}+1} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.730 |
|
| \begin{align*}
{\mathrm e}^{x +y} y^{\prime }-1&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.542 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x \ln \left (x \right )} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.946 |
|
| \begin{align*}
y-\left (x -2\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.200 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x \left (-1+y\right )}{x^{2}+3} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.898 |
|
| \begin{align*}
-y^{\prime } x +y&=3-2 x^{2} y^{\prime } \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.885 |
|
| \begin{align*}
y^{\prime }&=\frac {\cos \left (x -y\right )}{\sin \left (x \right ) \sin \left (y\right )}-1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.825 |
|
| \begin{align*}
y^{\prime }&=\frac {x \left (-1+y^{2}\right )}{2 \left (x -2\right ) \left (x -1\right )} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.194 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2} y-32}{-x^{2}+16}+32 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✗ |
2.187 |
|
| \begin{align*}
\left (x -a \right ) \left (x -b \right ) y^{\prime }-y+c&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.968 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime }+y^{2}&=-1 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.938 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime }+y x&=a x \\
y \left (0\right ) &= 2 a \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.956 |
|
| \begin{align*}
y^{\prime }&=1-\frac {\sin \left (x +y\right )}{\cos \left (x \right ) \sin \left (y\right )} \\
y \left (\frac {\pi }{4}\right ) &= \frac {\pi }{4} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.603 |
|
| \begin{align*}
y^{\prime }&=y^{3} \sin \left (x \right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.927 |
|
| \begin{align*}
y^{\prime }-y&={\mathrm e}^{2 x} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.691 |
|
| \begin{align*}
x^{2} y^{\prime }-4 y x&=x^{7} \sin \left (x \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.582 |
|
| \begin{align*}
y^{\prime }+2 y x&=2 x^{3} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.575 |
|
| \begin{align*}
y^{\prime }+\frac {2 x y}{x^{2}+1}&=4 x \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.785 |
|
| \begin{align*}
y^{\prime }+\frac {2 x y}{x^{2}+1}&=\frac {4}{\left (x^{2}+1\right )^{2}} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.934 |
|
| \begin{align*}
2 \cos \left (x \right )^{2} y^{\prime }+y \sin \left (2 x \right )&=4 \cos \left (x \right )^{4} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
4.000 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x \ln \left (x \right )}&=9 x^{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.913 |
|
| \begin{align*}
y^{\prime }-\tan \left (x \right ) y&=8 \sin \left (x \right )^{3} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.783 |
|
| \begin{align*}
t x^{\prime }+2 x&=4 \,{\mathrm e}^{t} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.576 |
|
| \begin{align*}
y^{\prime }&=\sin \left (x \right ) \left (y \sec \left (x \right )-2\right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.566 |
|
| \begin{align*}
1-\sin \left (x \right ) y-\cos \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.459 |
|
| \begin{align*}
y^{\prime }-\frac {y}{x}&=2 x^{2} \ln \left (x \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.042 |
|
| \begin{align*}
y^{\prime }+\alpha y&={\mathrm e}^{\beta x} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.650 |
|
| \begin{align*}
y^{\prime }+\frac {m}{x}&=\ln \left (x \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.477 |
|
| \begin{align*}
\left (3 x -y\right ) y^{\prime }&=3 y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
16.247 |
|
| \begin{align*}
y^{\prime }&=\frac {\left (x +y\right )^{2}}{2 x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
4.901 |
|
| \begin{align*}
\sin \left (\frac {y}{x}\right ) \left (-y+y^{\prime } x \right )&=x \cos \left (\frac {y}{x}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
6.029 |
|
| \begin{align*}
y^{\prime } x&=\sqrt {16 x^{2}-y^{2}}+y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
57.819 |
|
| \begin{align*}
-y+y^{\prime } x&=\sqrt {9 x^{2}+y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
21.099 |
|
| \begin{align*}
x \left (x^{2}-y^{2}\right )-x \left (x^{2}+y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
16.788 |
|
| \begin{align*}
y^{\prime } x +y \ln \left (x \right )&=y \ln \left (y\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
19.199 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}+2 y x -2 x^{2}}{x^{2}-y x +y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
2.698 |
|
| \begin{align*}
2 y y^{\prime } x -2 y^{2}-x^{2} {\mathrm e}^{-\frac {y^{2}}{x^{2}}}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
6.096 |
|
| \begin{align*}
x^{2} y^{\prime }&=y^{2}+3 y x +x^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
5.344 |
|
| \begin{align*}
y y^{\prime }&=\sqrt {x^{2}+y^{2}}-x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
24.755 |
|
| \begin{align*}
2 x \left (2 x +y\right ) y^{\prime }&=y \left (4 x -y\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
19.179 |
|
| \begin{align*}
y^{\prime } x&=x \tan \left (\frac {y}{x}\right )+y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
7.382 |
|
| \begin{align*}
y^{\prime }&=\frac {x \sqrt {x^{2}+y^{2}}+y^{2}}{y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
40.113 |
|
| \begin{align*}
y^{\prime \prime }-25 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
4.250 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.352 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
4.634 |
|
| \begin{align*}
y^{\prime }&=-y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.220 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{2 x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.589 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
4.549 |
|
| \begin{align*}
y^{\prime \prime }-9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.845 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+5 y^{\prime } x +3 y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
6.478 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
2.576 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +13 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
4.942 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }-y^{\prime } x +y&=9 x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
6.941 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x^{4} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
8.375 |
|
| \begin{align*}
y^{\prime \prime }-\left (a +b \right ) y^{\prime }+a b y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
6.479 |
|
| \begin{align*}
y^{\prime \prime }-2 a y^{\prime }+a^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
5.820 |
|
| \begin{align*}
y^{\prime \prime }-2 a y^{\prime }+\left (a^{2}+b^{2}\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
11.278 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-6 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
4.925 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
5.407 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
3.192 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
4.836 |
|
| \begin{align*}
y^{\prime }&=\frac {{\mathrm e}^{x}-\sin \left (y\right )}{x \cos \left (y\right )} \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✓ |
✓ |
✓ |
✓ |
3.951 |
|
| \begin{align*}
y^{\prime }&=\frac {1-y^{2}}{2 y x +2} \\
\end{align*} |
[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
3.650 |
|
| \begin{align*}
y^{\prime }&=\frac {\left (1-y \,{\mathrm e}^{y x}\right ) {\mathrm e}^{-y x}}{x} \\
y \left (1\right ) &= 0 \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]] |
✓ |
✓ |
✓ |
✗ |
2.753 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2} \left (1-y^{2}\right )+y \,{\mathrm e}^{\frac {y}{x}}}{x \left ({\mathrm e}^{\frac {y}{x}}+2 x^{2} y\right )} \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✓ |
✓ |
✓ |
✗ |
135.153 |
|
| \begin{align*}
y^{\prime }&=\frac {\cos \left (x \right )-2 x y^{2}}{2 x^{2} y} \\
y \left (\pi \right ) &= \frac {1}{\pi } \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
44.291 |
|
| \begin{align*}
y^{\prime }&=\sin \left (x \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.328 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{x^{{2}/{3}}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.458 |
|
| \begin{align*}
y^{\prime \prime }&=x \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.891 |
|
| \begin{align*}
y^{\prime \prime }&=x^{n} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
2.809 |
|
| \begin{align*}
y^{\prime }&=x^{2} \ln \left (x \right ) \\
y \left (1\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.574 |
|
| \begin{align*}
y^{\prime \prime }&=\cos \left (x \right ) \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.956 |
|
| \begin{align*}
y^{\prime \prime \prime }&=6 x \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
y^{\prime \prime }\left (0\right ) &= -4 \\
\end{align*} |
[[_3rd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.172 |
|
| \begin{align*}
y^{\prime \prime }&=x \,{\mathrm e}^{x} \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.626 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
5.182 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x -8 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
2.226 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=x^{2} \ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
4.750 |
|
| \begin{align*}
y^{\prime }&=2 y x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.367 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}}{x^{2}+1} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.164 |
|
| \begin{align*}
{\mathrm e}^{x +y} y^{\prime }-1&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.609 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x \ln \left (x \right )} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.035 |
|
| \begin{align*}
y-\left (x -1\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.683 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x \left (-1+y\right )}{x^{2}+3} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.280 |
|
| \begin{align*}
-y^{\prime } x +y&=3-2 x^{2} y^{\prime } \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.300 |
|
| \begin{align*}
y^{\prime }&=\frac {\cos \left (x -y\right )}{\sin \left (x \right ) \sin \left (y\right )}-1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.262 |
|
| \begin{align*}
y^{\prime }&=\frac {x \left (-1+y^{2}\right )}{2 \left (x -2\right ) \left (x -1\right )} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.919 |
|