2.2.43 Problems 4201 to 4300

Table 2.87: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

4201

\[ {}y^{\prime } = 2+2 \sec \left (2 x \right )+2 y \tan \left (2 x \right ) \]

[_linear]

22.519

4202

\[ {}y^{\prime } = \csc \left (x \right )+3 y \tan \left (x \right ) \]

[_linear]

4.928

4203

\[ {}y^{\prime } = \left (a +\cos \left (\ln \left (x \right )\right )+\sin \left (\ln \left (x \right )\right )\right ) y \]

[_separable]

14.214

4204

\[ {}y^{\prime } = 6 \,{\mathrm e}^{2 x}-y \tanh \left (x \right ) \]

[_linear]

4.577

4205

\[ {}y^{\prime } = f \left (x \right ) f^{\prime }\left (x \right )+f^{\prime }\left (x \right ) y \]

[_linear]

10.483

4206

\[ {}y^{\prime } = f \left (x \right )+g \left (x \right ) y \]

[_linear]

3.233

4207

\[ {}y^{\prime } = x^{2}-y^{2} \]

[_Riccati]

2.010

4208

\[ {}y^{\prime }+f \left (x \right )^{2} = f^{\prime }\left (x \right )+y^{2} \]

[_Riccati]

2.734

4209

\[ {}y^{\prime }+1-x = y \left (x +y\right ) \]

[_Riccati]

10.964

4210

\[ {}y^{\prime } = \left (x +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

2.194

4211

\[ {}y^{\prime } = \left (x -y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

5.769

4212

\[ {}y^{\prime } = 3-3 x +3 y+\left (x -y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

19.809

4213

\[ {}y^{\prime } = 2 x -\left (x^{2}+1\right ) y+y^{2} \]

[_Riccati]

11.079

4214

\[ {}y^{\prime } = x \left (x^{3}+2\right )-\left (2 x^{2}-y\right ) y \]

[[_1st_order, _with_linear_symmetries], _Riccati]

2.008

4215

\[ {}y^{\prime } = 1+x \left (-x^{3}+2\right )+\left (2 x^{2}-y\right ) y \]

[[_1st_order, _with_linear_symmetries], _Riccati]

5.166

4216

\[ {}y^{\prime } = \cos \left (x \right )-\left (\sin \left (x \right )-y\right ) y \]

[_Riccati]

13.834

4217

\[ {}y^{\prime } = \cos \left (2 x \right )+\left (\sin \left (2 x \right )+y\right ) y \]

[_Riccati]

29.244

4218

\[ {}y^{\prime } = f \left (x \right )+x f \left (x \right ) y+y^{2} \]

[_Riccati]

4.132

4219

\[ {}y^{\prime } = \left (3+x -4 y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

21.865

4220

\[ {}y^{\prime } = \left (1+4 x +9 y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

67.198

4221

\[ {}y^{\prime } = 3 a +3 b x +3 b y^{2} \]

[_Riccati]

12.402

4222

\[ {}y^{\prime } = a +b y^{2} \]

[_quadrature]

3.592

4223

\[ {}y^{\prime } = a x +b y^{2} \]

[[_Riccati, _special]]

2.296

4224

\[ {}y^{\prime } = a +b x +c y^{2} \]

[_Riccati]

2.923

4225

\[ {}y^{\prime } = a \,x^{n -1}+b \,x^{2 n}+c y^{2} \]

[_Riccati]

225.848

4226

\[ {}y^{\prime } = a \,x^{2}+b y^{2} \]

[[_Riccati, _special]]

4.509

4227

\[ {}y^{\prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2} \]

[_quadrature]

3.756

4228

\[ {}y^{\prime } = f \left (x \right )+a y+b y^{2} \]

[_Riccati]

0.594

4229

\[ {}y^{\prime } = 1+a \left (x -y\right ) y \]

[_Riccati]

2.774

4230

\[ {}y^{\prime } = f \left (x \right )+g \left (x \right ) y+a y^{2} \]

[_Riccati]

0.798

4231

\[ {}y^{\prime } = x y \left (3+y\right ) \]

[_separable]

13.559

4232

\[ {}y^{\prime } = 1-x -x^{3}+\left (2 x^{2}+1\right ) y-x y^{2} \]

[_Riccati]

6.257

4233

\[ {}y^{\prime } = x \left (2+x^{2} y-y^{2}\right ) \]

[_Riccati]

10.733

4234

\[ {}y^{\prime } = x +\left (1-2 x \right ) y-\left (1-x \right ) y^{2} \]

[_Riccati]

5.753

4235

\[ {}y^{\prime } = a x y^{2} \]

[_separable]

13.816

4236

\[ {}y^{\prime } = x^{n} \left (a +b y^{2}\right ) \]

[_separable]

13.764

4237

\[ {}y^{\prime } = a \,x^{m}+b \,x^{n} y^{2} \]

[_Riccati]

6.076

4238

\[ {}y^{\prime } = \left (a +b y \cos \left (k x \right )\right ) y \]

[_Bernoulli]

16.068

4239

\[ {}y^{\prime } = \sin \left (x \right ) \left (2 \sec \left (x \right )^{2}-y\right ) \]

[_linear]

14.747

4240

\[ {}y^{\prime }+4 \csc \left (x \right ) = \left (3-\cot \left (x \right )\right ) y+y^{2} \sin \left (x \right ) \]

[_Riccati]

23.470

4241

\[ {}y^{\prime } = y \sec \left (x \right )+\left (\sin \left (x \right )-1\right )^{2} \]

[_linear]

6.542

4242

\[ {}y^{\prime }+\tan \left (x \right ) \left (1-y^{2}\right ) = 0 \]

[_separable]

12.138

4243

\[ {}y^{\prime } = f \left (x \right )+g \left (x \right ) y+h \left (x \right ) y^{2} \]

[_Riccati]

1.212

4244

\[ {}y^{\prime } = \left (a +b y+c y^{2}\right ) f \left (x \right ) \]

[_separable]

18.895

4245

\[ {}y^{\prime }+\left (a x +y\right ) y^{2} = 0 \]

[_Abel]

0.523

4246

\[ {}y^{\prime } = \left (a \,{\mathrm e}^{x}+y\right ) y^{2} \]

[_Abel]

0.756

4247

\[ {}y^{\prime }+3 a \left (y+2 x \right ) y^{2} = 0 \]

[_Abel]

0.515

4248

\[ {}y^{\prime } = y \left (a +b y^{2}\right ) \]

[_quadrature]

11.074

4249

\[ {}y^{\prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2}+\operatorname {a3} y^{3} \]

[_quadrature]

1.509

4250

\[ {}y^{\prime } = x y^{3} \]

[_separable]

16.944

4251

\[ {}y^{\prime }+y \left (1-x y^{2}\right ) = 0 \]

[_Bernoulli]

15.030

4252

\[ {}y^{\prime } = \left (a +b x y\right ) y^{2} \]

[[_homogeneous, ‘class G‘], _Abel]

18.023

4253

\[ {}y^{\prime }+2 x y \left (1+a x y^{2}\right ) = 0 \]

[_Bernoulli]

2.495

4254

\[ {}y^{\prime }+\left (\tan \left (x \right )+y^{2} \sec \left (x \right )\right ) y = 0 \]

[_Bernoulli]

14.170

4255

\[ {}y^{\prime }+y^{3} \sec \left (x \right ) \tan \left (x \right ) = 0 \]

[_separable]

5.586

4256

\[ {}y^{\prime } = \operatorname {f0} \left (x \right )+\operatorname {f1} \left (x \right ) y+\operatorname {f2} \left (x \right ) y^{2}+\operatorname {f3} \left (x \right ) y^{3} \]

[_Abel]

13.404

4257

\[ {}y^{\prime } = a \,x^{\frac {n}{-n +1}}+b y^{n} \]

[[_homogeneous, ‘class G‘], _Chini]

8.132

4258

\[ {}y^{\prime } = f \left (x \right ) y+g \left (x \right ) y^{k} \]

[_Bernoulli]

13.414

4259

\[ {}y^{\prime } = f \left (x \right )+g \left (x \right ) y+h \left (x \right ) y^{n} \]

[_Chini]

6.286

4260

\[ {}y^{\prime } = \sqrt {{| y|}} \]

[_quadrature]

19.313

4261

\[ {}y^{\prime } = a +b y+\sqrt {\operatorname {A0} +\operatorname {B0} y} \]

[_quadrature]

20.490

4262

\[ {}y^{\prime } = a x +b \sqrt {y} \]

[[_homogeneous, ‘class G‘], _Chini]

49.561

4263

\[ {}y^{\prime }+x^{3} = x \sqrt {x^{4}+4 y} \]

[[_1st_order, _with_linear_symmetries]]

22.698

4264

\[ {}y^{\prime }+2 y \left (1-x \sqrt {y}\right ) = 0 \]

[_Bernoulli]

10.804

4265

\[ {}y^{\prime } = \sqrt {a +b y^{2}} \]

[_quadrature]

2.793

4266

\[ {}y^{\prime } = y \sqrt {a +b y} \]

[_quadrature]

25.668

4267

\[ {}y^{\prime }+\left (f \left (x \right )-y\right ) g \left (x \right ) \sqrt {\left (y-a \right ) \left (y-b \right )} = 0 \]

[‘y=_G(x,y’)‘]

15.477

4268

\[ {}y^{\prime } = \sqrt {X Y} \]

[_quadrature]

1.246

4269

\[ {}y^{\prime } = \cos \left (x \right )^{2} \cos \left (y\right ) \]

[_separable]

5.066

4270

\[ {}y^{\prime } = \sec \left (x \right )^{2} \cot \left (y\right ) \cos \left (y\right ) \]

[_separable]

6.770

4271

\[ {}y^{\prime } = a +b \cos \left (A x +B y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

52.403

4272

\[ {}y^{\prime }+f \left (x \right )+g \left (x \right ) \sin \left (a y\right )+h \left (x \right ) \cos \left (a y\right ) = 0 \]

[‘y=_G(x,y’)‘]

15.351

4273

\[ {}y^{\prime } = a +b \cos \left (y\right ) \]

[_quadrature]

1.777

4274

\[ {}y^{\prime }+x \left (\sin \left (2 y\right )-x^{2} \cos \left (y\right )^{2}\right ) = 0 \]

[‘y=_G(x,y’)‘]

2.337

4275

\[ {}y^{\prime }+\tan \left (x \right ) \sec \left (x \right ) \cos \left (y\right )^{2} = 0 \]

[_separable]

6.685

4276

\[ {}y^{\prime } = \cot \left (x \right ) \cot \left (y\right ) \]

[_separable]

12.309

4277

\[ {}y^{\prime }+\cot \left (x \right ) \cot \left (y\right ) = 0 \]

[_separable]

3.921

4278

\[ {}y^{\prime } = \sin \left (x \right ) \left (\csc \left (y\right )-\cot \left (y\right )\right ) \]

[_separable]

15.895

4279

\[ {}y^{\prime } = \tan \left (x \right ) \cot \left (y\right ) \]

[_separable]

4.027

4280

\[ {}y^{\prime }+\tan \left (x \right ) \cot \left (y\right ) = 0 \]

[_separable]

3.489

4281

\[ {}y^{\prime }+\sin \left (2 x \right ) \csc \left (2 y\right ) = 0 \]

[_separable]

62.507

4282

\[ {}y^{\prime } = \tan \left (x \right ) \left (\tan \left (y\right )+\sec \left (x \right ) \sec \left (y\right )\right ) \]

[‘y=_G(x,y’)‘]

4.300

4283

\[ {}y^{\prime } = \cos \left (x \right ) \sec \left (y\right )^{2} \]

[_separable]

14.066

4284

\[ {}y^{\prime } = \sec \left (x \right )^{2} \sec \left (y\right )^{3} \]

[_separable]

13.908

4285

\[ {}y^{\prime } = a +b \sin \left (y\right ) \]

[_quadrature]

2.069

4286

\[ {}y^{\prime } = \left (1+\cos \left (x \right ) \sin \left (y\right )\right ) \tan \left (y\right ) \]

unknown

8.109

4287

\[ {}y^{\prime }+\csc \left (2 x \right ) \sin \left (2 y\right ) = 0 \]

[_separable]

32.871

4288

\[ {}y^{\prime }+f \left (x \right )+g \left (x \right ) \tan \left (y\right ) = 0 \]

[‘y=_G(x,y’)‘]

3.967

4289

\[ {}y^{\prime } = \sqrt {a +b \cos \left (y\right )} \]

[_quadrature]

8.102

4290

\[ {}y^{\prime } = {\mathrm e}^{y}+x \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

2.412

4291

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

8.086

4292

\[ {}y^{\prime } = {\mathrm e}^{x} \left (a +b \,{\mathrm e}^{-y}\right ) \]

[_separable]

15.269

4293

\[ {}y^{\prime }+y \ln \left (x \right ) \ln \left (y\right ) = 0 \]

[_separable]

15.189

4294

\[ {}y^{\prime } = x^{m -1} y^{-n +1} f \left (a \,x^{m}+b y^{n}\right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2.008

4295

\[ {}y^{\prime } = a f \left (y\right ) \]

[_quadrature]

0.665

4296

\[ {}y^{\prime } = f \left (a +b x +c y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

16.474

4297

\[ {}y^{\prime } = f \left (x \right ) g \left (y\right ) \]

[_separable]

3.342

4298

\[ {}y^{\prime } = \sec \left (x \right )^{2}+y \sec \left (x \right ) \operatorname {Csx} \left (x \right ) \]

[_linear]

13.478

4299

\[ {}2 y^{\prime } = 2 \sin \left (y\right )^{2} \tan \left (y\right )-x \sin \left (2 y\right ) \]

[‘y=_G(x,y’)‘]

112.213

4300

\[ {}2 y^{\prime }+a x = \sqrt {a^{2} x^{2}-4 b \,x^{2}-4 c y} \]

[[_homogeneous, ‘class G‘]]

75.711