2.3.160 Problems 15901 to 16000

Table 2.851: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

15901

20109

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{m} \\ \end{align*}

3.684

15902

24892

\begin{align*} {y^{\prime }}^{2}+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

3.684

15903

1522

\begin{align*} 2 y^{\prime }+x \left (-1+y^{2}\right )&=0 \\ \end{align*}

3.685

15904

11582

\begin{align*} \left (1-3 x^{2} y+6 y^{2}\right ) y^{\prime }-3 x y^{2}+x&=0 \\ \end{align*}

3.685

15905

12258

\begin{align*} y^{\prime }&=\frac {y \left (y^{2}+y x +x^{2}+x \right )}{x^{2}} \\ \end{align*}

3.686

15906

16349

\begin{align*} y^{\prime }&=\frac {3 y}{x +1}-y^{2} \\ \end{align*}

3.687

15907

9974

\begin{align*} t x^{\prime }+2 x&=4 \,{\mathrm e}^{t} \\ \end{align*}

3.688

15908

20092

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=2 \ln \left (x \right ) \\ \end{align*}

3.688

15909

20503

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=x \\ \end{align*}

3.688

15910

2386

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\ \end{align*}

3.689

15911

4822

\begin{align*} y^{\prime } x +\tan \left (y\right )&=0 \\ \end{align*}

3.689

15912

19411

\begin{align*} 3 y x +y^{2}+\left (3 y x +x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

3.689

15913

1672

\begin{align*} y^{\prime }&=y^{2} {\mathrm e}^{-x}+4 y+2 \,{\mathrm e}^{x} \\ \end{align*}

3.690

15914

5339

\begin{align*} \left (y+\sqrt {1+y^{2}}\right ) \left (x^{2}+1\right )^{{3}/{2}} y^{\prime }&=1+y^{2} \\ \end{align*}

3.690

15915

12261

\begin{align*} y^{\prime }&=\frac {a^{3} x^{3} y^{3}+3 y^{2} a^{2} x^{2}+3 a x y+1+a^{2} x}{x^{3} a^{3}} \\ \end{align*}

3.690

15916

5087

\begin{align*} \left (3+2 x -2 y\right ) y^{\prime }&=1+6 x -2 y \\ \end{align*}

3.691

15917

5789

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ \end{align*}

3.691

15918

17381

\begin{align*} y^{\prime \prime }+y^{\prime }&=0 \\ \end{align*}

3.691

15919

2845

\begin{align*} x y^{2}+x +\left (x^{2} y-y\right ) y^{\prime }&=0 \\ \end{align*}

3.692

15920

9121

\begin{align*} -y^{\prime } x +y&=y^{\prime } y^{2} {\mathrm e}^{y} \\ \end{align*}

3.692

15921

13218

\begin{align*} x^{2} y^{\prime }&=a \,x^{2} y^{2}+b \\ \end{align*}

3.692

15922

9629

\begin{align*} y^{\prime \prime }+y&=\left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 1 & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

3.693

15923

2545

\begin{align*} 6 y^{\prime \prime }-7 y^{\prime }+y&=0 \\ \end{align*}

3.694

15924

12380

\begin{align*} y^{\prime \prime } x -2 \left (x -1\right ) y^{\prime }-y&=0 \\ \end{align*}

3.696

15925

17084

\begin{align*} \sin \left (t \right )^{2}&=\cos \left (y\right )^{2} y^{\prime } \\ \end{align*}

3.696

15926

21802

\begin{align*} r^{\prime }&=r \tan \left (t \right ) \\ r \left (0\right ) &= 1 \\ \end{align*}

3.696

15927

15612

\begin{align*} y^{\prime }&=\frac {y}{-x^{2}+1}+\sqrt {x} \\ y \left (\frac {1}{2}\right ) &= 1 \\ \end{align*}

3.697

15928

24110

\begin{align*} y^{\prime \prime } x +2 y^{\prime }-3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

3.697

15929

5949

\begin{align*} \left (b x +a \right ) y+8 y^{\prime }+16 y^{\prime \prime } x&=0 \\ \end{align*}

3.698

15930

19127

\begin{align*} y^{\prime }&=\sqrt {-x +y} \\ \end{align*}

3.699

15931

21049

\begin{align*} x^{\prime }&=x^{2}+1 \\ \end{align*}

3.699

15932

5058

\begin{align*} \left (x +y\right ) y^{\prime }+\tan \left (y\right )&=0 \\ \end{align*}

3.700

15933

19364

\begin{align*} y^{\prime \prime } x +y^{\prime }&=4 x \\ \end{align*}

3.701

15934

9207

\begin{align*} \frac {1}{y}-\frac {x y^{\prime }}{y^{2}}&=0 \\ \end{align*}

3.702

15935

7203

\begin{align*} u^{\prime \prime }+\frac {2 u^{\prime }}{x}+a^{2} u&=0 \\ \end{align*}

3.703

15936

696

\begin{align*} 2 y y^{\prime }&=\frac {x}{\sqrt {x^{2}-16}} \\ y \left (5\right ) &= 2 \\ \end{align*}

3.704

15937

19251

\begin{align*} y^{\prime } x&=\left (-2 x^{2}+1\right ) \tan \left (y\right ) \\ \end{align*}

3.704

15938

7926

\begin{align*} y \left (1+y^{2}\right )&=2 \left (1-2 x y^{2}\right ) y^{\prime } \\ \end{align*}

3.705

15939

14717

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x -10 y&=0 \\ y \left (1\right ) &= 5 \\ y^{\prime }\left (1\right ) &= 4 \\ \end{align*}

3.705

15940

19334

\begin{align*} y-x y^{2}+\left (y^{2} x^{2}+x \right ) y^{\prime }&=0 \\ \end{align*}

3.705

15941

4765

\begin{align*} y^{\prime } x&=a +b \,x^{n}+c y \\ \end{align*}

3.707

15942

5652

\begin{align*} x^{2} {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+y^{2} y^{\prime }+1&=0 \\ \end{align*}

3.707

15943

1214

\begin{align*} {\mathrm e}^{x}+\left ({\mathrm e}^{x} \cot \left (y\right )+2 \csc \left (y\right ) y\right ) y^{\prime }&=0 \\ \end{align*}

3.708

15944

5799

\begin{align*} 12 y-7 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

3.708

15945

20238

\begin{align*} y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime }&=0 \\ \end{align*}

3.708

15946

6790

\begin{align*} y^{\prime \prime \prime }&=y^{\prime } \left (1+y^{\prime }\right ) \\ \end{align*}

3.710

15947

13876

\begin{align*} x^{2} \left (x -a \right )^{2} y^{\prime \prime }+b y&=0 \\ \end{align*}

3.710

15948

126

\begin{align*} x^{2} y^{\prime }+2 y x&=5 y^{4} \\ \end{align*}

3.711

15949

20187

\begin{align*} y^{\prime \prime }+\frac {2 y^{\prime }}{x}+n^{2} y&=0 \\ \end{align*}

3.711

15950

23940

\begin{align*} y^{\prime }&=f \left (x \right )+a y+b z \\ z^{\prime }&=g \left (x \right )+c y+d z \\ \end{align*}

3.711

15951

17739

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\ \end{align*}

3.712

15952

23253

\begin{align*} y^{\prime \prime }+5 y^{\prime }-6 y&=0 \\ \end{align*}

3.712

15953

23720

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-4\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

3.712

15954

4442

\begin{align*} x y^{3}-1+x^{2} y^{2} y^{\prime }&=0 \\ \end{align*}

3.713

15955

9049

\begin{align*} y^{\prime } x&=2 y \\ \end{align*}

3.713

15956

13697

\begin{align*} y^{\prime \prime }+\left (2 x^{2}+a \right ) y^{\prime }+\left (x^{4}+a \,x^{2}+b +2 x \right ) y&=0 \\ \end{align*}

3.713

15957

21601

\begin{align*} y^{\prime \prime }+2 y^{\prime }+\left (1-\frac {2}{\left (1+3 x \right )^{2}}\right ) y&=0 \\ \end{align*}

3.713

15958

5883

\begin{align*} 4 y^{\prime \prime }&=\left (x^{2}+a \right ) y \\ \end{align*}

3.714

15959

11472

\begin{align*} x^{3} y^{\prime }-x^{6} y^{2}-\left (2 x -3\right ) x^{2} y+3&=0 \\ \end{align*}

3.716

15960

14933

\begin{align*} x^{\prime \prime }-4 x^{\prime }&=t^{2} \\ \end{align*}

3.716

15961

23230

\begin{align*} y^{\prime \prime } x +y^{\prime }&=3 \\ \end{align*}

3.716

15962

7829

\begin{align*} y^{\prime \prime }+5 y^{\prime }-3 y&=\operatorname {Heaviside}\left (x -4\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

3.717

15963

22093

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=0 \\ \end{align*}

3.717

15964

7941

\begin{align*} y+{\mathrm e}^{y}-{\mathrm e}^{-x}+\left (1+{\mathrm e}^{y}\right ) y^{\prime }&=0 \\ \end{align*}

3.718

15965

22370

\begin{align*} y+\left (x^{3}+x^{3} y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

3.718

15966

4938

\begin{align*} x \left (1-x \right ) y^{\prime }&=a +2 \left (-x +2\right ) y \\ \end{align*}

3.719

15967

14017

\begin{align*} y^{\prime }-x^{2} y&=x^{5} \\ \end{align*}

3.719

15968

20627

\begin{align*} y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-3\right ) y&={\mathrm e}^{x^{2}} \\ \end{align*}

3.719

15969

11391

\begin{align*} y^{\prime } x -y-\frac {x}{\ln \left (x \right )}&=0 \\ \end{align*}

3.720

15970

6840

\begin{align*} y^{\prime }+\cos \left (x \right ) y&=\frac {\sin \left (2 x \right )}{2} \\ \end{align*}

3.721

15971

19319

\begin{align*} \left (2+x \right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime }&=0 \\ \end{align*}

3.721

15972

21009

\begin{align*} x^{\prime }+\frac {x}{t^{2}-1}&=0 \\ x \left (-2\right ) &= 1 \\ \end{align*}

3.721

15973

21973

\begin{align*} y^{\prime }&=x \sin \left (y\right )+{\mathrm e}^{x} \\ \end{align*}

3.722

15974

19390

\begin{align*} \left (x^{2}+1\right ) y^{\prime }+2 y x&=4 x^{3} \\ \end{align*}

3.723

15975

24889

\begin{align*} y^{\prime \prime }&={y^{\prime }}^{2} \\ \end{align*}

3.723

15976

2834

\begin{align*} y^{\prime \prime }+\lambda y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (L \right ) &= 0 \\ \end{align*}

3.724

15977

4645

\begin{align*} y^{\prime }&=2+2 \sec \left (2 x \right )+2 y \tan \left (2 x \right ) \\ \end{align*}

3.724

15978

5070

\begin{align*} \left (2-3 x +y\right ) y^{\prime }+5-2 x -3 y&=0 \\ \end{align*}

3.724

15979

7982

\begin{align*} y^{\prime \prime }+25 y&=0 \\ \end{align*}

3.724

15980

11583

\begin{align*} \left (6 y-x \right )^{2} y^{\prime }-6 y^{2}+2 y x +a&=0 \\ \end{align*}

3.724

15981

15252

\begin{align*} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y&=12 \operatorname {Heaviside}\left (t \right )-12 \operatorname {Heaviside}\left (t -1\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

3.724

15982

25092

\begin{align*} y^{\prime \prime }-7 y^{\prime }+10 y&=0 \\ \end{align*}

3.724

15983

25218

\begin{align*} \left (t -1\right ) y^{\prime \prime }-y^{\prime } t +y&=0 \\ \end{align*}

3.724

15984

5837

\begin{align*} -4 y x +x^{2} y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

3.725

15985

13727

\begin{align*} y^{\prime \prime } x +\left (1-3 n \right ) y^{\prime }-a^{2} n^{2} x^{2 n -1} y&=0 \\ \end{align*}

3.725

15986

23375

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +5 y&=0 \\ \end{align*}

3.725

15987

906

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=\ln \left (x \right ) \\ \end{align*}

3.726

15988

21275

\begin{align*} t^{2} x^{\prime \prime }+t x^{\prime }+t^{2} x&=0 \\ x^{\prime }\left (0\right ) &= a \\ \end{align*}

3.726

15989

1251

\begin{align*} 6 y^{\prime \prime }-y^{\prime }-y&=0 \\ \end{align*}

3.727

15990

8267

\begin{align*} y^{\prime } x +y&=2 x \\ y \left (x_{0} \right ) &= 1 \\ \end{align*}

3.727

15991

7704

\begin{align*} y^{\prime } x -2 y&=\cos \left (x \right ) x^{3} \\ \end{align*}

3.728

15992

1669

\begin{align*} 3 y^{\prime } y^{2} x&=y^{3}+x \\ \end{align*}

3.731

15993

21980

\begin{align*} \sin \left (x \right )+y^{2} y^{\prime }&=0 \\ \end{align*}

3.733

15994

4700

\begin{align*} y^{\prime }+\left (\tan \left (x \right )+y^{2} \sec \left (x \right )\right ) y&=0 \\ \end{align*}

3.734

15995

19414

\begin{align*} \frac {\cos \left (y\right )}{x +3}-\left (\sin \left (y\right ) \ln \left (5 x +15\right )-\frac {1}{y}\right ) y^{\prime }&=0 \\ \end{align*}

3.734

15996

725

\begin{align*} y^{\prime }&=2 y x +3 x^{2} {\mathrm e}^{x^{2}} \\ y \left (0\right ) &= 5 \\ \end{align*}

3.735

15997

4278

\begin{align*} x^{2} y^{3}+y&=\left (x^{3} y^{2}-x \right ) y^{\prime } \\ \end{align*}

3.735

15998

4969

\begin{align*} x^{3} y^{\prime }&=x^{4}+y^{2} \\ \end{align*}

3.735

15999

17083

\begin{align*} y^{\prime }&={\mathrm e}^{3 y+2 t} \\ \end{align*}

3.735

16000

13989

\begin{align*} y^{\prime }-\frac {2 y}{x +1}&=\left (x +1\right )^{3} \\ \end{align*}

3.736