2.3.159 Problems 15801 to 15900

Table 2.849: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

15801

19895

\begin{align*} y^{\prime \prime }-k^{2} y&=0 \\ \end{align*}

3.628

15802

6018

\begin{align*} \operatorname {a2} y+\operatorname {a1} x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

3.632

15803

12406

\begin{align*} a x y^{\prime \prime }+b y^{\prime }+c y&=0 \\ \end{align*}

3.632

15804

19525

\begin{align*} \left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y&=\left (1-x \right )^{2} \\ \end{align*}

3.632

15805

11838

\begin{align*} {y^{\prime }}^{n}-f \left (x \right ) g \left (y\right )&=0 \\ \end{align*}

3.634

15806

15802

\begin{align*} y^{\prime }&=t y^{2}+2 y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

3.634

15807

13712

\begin{align*} y^{\prime \prime }+\left (a \,x^{n}+2 b \right ) y^{\prime }+\left (a b \,x^{n}-a \,x^{n -1}+b^{2}\right ) y&=0 \\ \end{align*}

3.635

15808

14459

\begin{align*} 2 r \left (s^{2}+1\right )+\left (r^{4}+1\right ) s^{\prime }&=0 \\ \end{align*}

3.635

15809

24375

\begin{align*} 3 x^{2}+3 y^{2}+x \left (x^{2}+3 y^{2}+6 y\right ) y^{\prime }&=0 \\ \end{align*}

3.635

15810

18488

\begin{align*} r^{\prime }&=\frac {r^{2}}{\theta } \\ r \left (1\right ) &= 2 \\ \end{align*}

3.636

15811

24477

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= y_{0} \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

3.636

15812

4395

\begin{align*} x y^{2} \left (y^{\prime } x +y\right )&=1 \\ \end{align*}

3.637

15813

12265

\begin{align*} y^{\prime }&=\frac {\left (y x +1\right ) \left (y^{2} x^{2}+x^{2} y+2 y x +1+x +x^{2}\right )}{x^{5}} \\ \end{align*}

3.637

15814

16371

\begin{align*} y^{2}-y^{2} \cos \left (x \right )+y^{\prime }&=0 \\ \end{align*}

3.637

15815

2968

\begin{align*} x^{2} y^{\prime }+y-2 y x -2 x^{2}&=0 \\ \end{align*}

3.638

15816

5610

\begin{align*} {y^{\prime }}^{3}&=\left (a +b y+c y^{2}\right ) f \left (x \right ) \\ \end{align*}

3.638

15817

19252

\begin{align*} y^{\prime }&=2 y x \\ \end{align*}

3.638

15818

21680

\begin{align*} x^{2} y^{\prime \prime }+\left (x^{2}-2 x \right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

3.638

15819

23849

\begin{align*} 2 y^{\prime } x +y&=0 \\ \end{align*}

3.639

15820

4846

\begin{align*} \left (a +x \right ) y^{\prime }&=-b -c y \\ \end{align*}

3.640

15821

6448

\begin{align*} y y^{\prime \prime }&=y^{2}-3 y y^{\prime }+3 {y^{\prime }}^{2} \\ \end{align*}

3.640

15822

10112

\begin{align*} y^{\prime \prime }-y x -x^{6}-x^{3}+42&=0 \\ \end{align*}

3.641

15823

20217

\begin{align*} \left (y x +1\right ) y-y^{\prime } x&=0 \\ \end{align*}

3.641

15824

20782

\begin{align*} y^{\prime \prime } x -\left (2 x -1\right ) y^{\prime }+\left (x -1\right ) y&=0 \\ \end{align*}

3.641

15825

23861

\begin{align*} y^{\prime }&=3 x^{2} y-3 x^{4}+2 x^{2}-2 y+2 x \\ \end{align*}

3.641

15826

4686

\begin{align*} y^{\prime }&=y \sec \left (x \right )+\left (\sin \left (x \right )-1\right )^{2} \\ \end{align*}

3.642

15827

19328

\begin{align*} y^{\prime } x&=x^{5}+x^{3} y^{2}+y \\ \end{align*}

3.644

15828

1534

\begin{align*} y^{\prime }&=a y^{\frac {-1+a}{a}} \\ \end{align*}

3.645

15829

8168

\begin{align*} 2 y^{\prime }&=y^{3} \cos \left (x \right ) \\ \end{align*}

3.645

15830

16257

\begin{align*} y^{2} y^{\prime }+3 x^{2} y&=\sin \left (x \right ) \\ \end{align*}

3.645

15831

19420

\begin{align*} -y^{\prime }+y^{\prime \prime } x&=3 x^{2} \\ \end{align*}

3.645

15832

18533

\begin{align*} \left (1+t \right ) y+y^{\prime } t&=2 t \,{\mathrm e}^{-t} \\ y \left (1\right ) &= a \\ \end{align*}

3.646

15833

19740

\begin{align*} y^{\prime }&=x \left (a y^{2}+b \right ) \\ \end{align*}

3.646

15834

2960

\begin{align*} y^{\prime }&=y+3 \,{\mathrm e}^{x} x^{2} \\ \end{align*}

3.649

15835

17387

\begin{align*} y^{\prime \prime }+16 y&=0 \\ \end{align*}

3.649

15836

3577

\begin{align*} y^{\prime }&=\frac {1-y^{2}}{2 y x +2} \\ \end{align*}

3.650

15837

2540

\begin{align*} y^{\prime }&={\mathrm e}^{t} y^{2}-2 y \\ y \left (0\right ) &= 1 \\ \end{align*}

3.651

15838

23728

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

3.652

15839

1733

\begin{align*} 3 y x +2 y^{2}+y+\left (x^{2}+2 y x +x +2 y\right ) y^{\prime }&=0 \\ \end{align*}

3.653

15840

4737

\begin{align*} y \ln \left (x \right ) \ln \left (y\right )+y^{\prime }&=0 \\ \end{align*}

3.653

15841

6358

\begin{align*} y^{\prime \prime }&=a \sqrt {b y^{2}+{y^{\prime }}^{2}} \\ \end{align*}

3.653

15842

6886

\begin{align*} y&=y^{\prime } x +\sqrt {b^{2}-a^{2} {y^{\prime }}^{2}} \\ \end{align*}

3.653

15843

4117

\begin{align*} y^{\prime \prime }+8 y^{\prime }+15 y&=0 \\ \end{align*}

3.654

15844

14278

\begin{align*} t \cot \left (x\right ) x^{\prime }&=-2 \\ \end{align*}

3.654

15845

4271

\begin{align*} y^{\prime }+y&=2 x \,{\mathrm e}^{-x}+x^{2} \\ \end{align*}

3.655

15846

6575

\begin{align*} \operatorname {f5} y^{2}+\operatorname {f4} y y^{\prime }+\operatorname {f3} {y^{\prime }}^{2}+\operatorname {f2} y y^{\prime \prime }+\operatorname {f1} y^{\prime } y^{\prime \prime }&=0 \\ \end{align*}

3.655

15847

18788

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

3.655

15848

22527

\begin{align*} y^{\prime } \left (2 x +y^{2}\right )&=y \\ \end{align*}

3.655

15849

22076

\begin{align*} y^{\prime }+\frac {2 y}{x}&=-x^{9} y^{5} \\ y \left (-1\right ) &= 2 \\ \end{align*}

3.656

15850

23075

\begin{align*} y^{\prime \prime }+2 y&=7 \cos \left (3 x \right ) \\ \end{align*}

3.656

15851

2975

\begin{align*} y^{2}+1+\left (2 y x -y^{2}\right ) y^{\prime }&=0 \\ y \left (0\right ) &= -1 \\ \end{align*}

3.657

15852

1616

\begin{align*} y^{\prime }&=\sqrt {x^{2}+y^{2}} \\ \end{align*}

3.658

15853

3680

\begin{align*} \frac {y^{\prime }}{y}+p \left (x \right ) \ln \left (y\right )&=q \left (x \right ) \\ \end{align*}

3.658

15854

8365

\begin{align*} \left (x^{4}+1\right ) y^{\prime }+x \left (1+4 y^{2}\right )&=0 \\ y \left (1\right ) &= 0 \\ \end{align*}

3.658

15855

19017

\begin{align*} x_{1}^{\prime }&=-3 x_{1}-5 x_{2}+8 x_{3}+14 x_{4} \\ x_{2}^{\prime }&=-6 x_{1}-8 x_{2}+11 x_{3}+27 x_{4} \\ x_{3}^{\prime }&=-6 x_{1}-4 x_{2}+7 x_{3}+17 x_{4} \\ x_{4}^{\prime }&=-2 x_{2}+2 x_{3}+4 x_{4} \\ \end{align*}

3.659

15856

22313

\begin{align*} y^{\prime \prime }+3 y^{\prime }-4 y&=0 \\ \end{align*}

3.659

15857

2504

\begin{align*} y^{\prime }&=\frac {y+t}{t -y} \\ \end{align*}

3.661

15858

5797

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=0 \\ \end{align*}

3.661

15859

7268

\begin{align*} 2 y^{\prime \prime }+y^{\prime }-y&=0 \\ \end{align*}

3.661

15860

8460

\begin{align*} y^{\prime }+\left (\left \{\begin {array}{cc} 2 & 0\le x \le 1 \\ -\frac {2}{x} & 1<x \end {array}\right .\right ) y&=4 x \\ y \left (0\right ) &= 3 \\ \end{align*}

3.661

15861

689

\begin{align*} y^{\prime }&=\frac {1+\sqrt {x}}{1+\sqrt {y}} \\ \end{align*}

3.662

15862

4997

\begin{align*} x \left (-x^{3}+1\right ) y^{\prime }&=x^{2}+\left (1-2 y x \right ) y \\ \end{align*}

3.662

15863

9360

\begin{align*} y^{\prime } x&=y \\ \end{align*}

3.662

15864

22448

\begin{align*} y^{\prime }+\frac {y}{x}&=1 \\ \end{align*}

3.662

15865

24306

\begin{align*} y^{\prime }&=\cos \left (x \right )-y \sec \left (x \right ) \\ y \left (0\right ) &= 1 \\ \end{align*}

3.662

15866

9085

\begin{align*} 1+y^{2}+\left (x^{2}+1\right ) y^{\prime }&=0 \\ \end{align*}

3.663

15867

19688

\begin{align*} x^{\prime \prime }-5 x^{\prime }+6 x&=0 \\ \end{align*}

3.665

15868

20977

\begin{align*} \cos \left (x +y^{2}\right )+3 y+\left (2 y \cos \left (x +y^{2}\right )+3 x \right ) y^{\prime }&=0 \\ \end{align*}

3.665

15869

23857

\begin{align*} \left (x^{3}+1\right ) y^{\prime }+x y^{2}&=0 \\ \end{align*}

3.666

15870

8687

\begin{align*} y^{\prime }+\sin \left (x +y\right )^{2}&=0 \\ \end{align*}

3.667

15871

14236

\begin{align*} x^{\prime }&=6 t \left (x-1\right )^{{2}/{3}} \\ \end{align*}

3.667

15872

14545

\begin{align*} 2 x y^{2}+y+\left (2 y^{3}-x \right ) y^{\prime }&=0 \\ \end{align*}

3.667

15873

6035

\begin{align*} x^{2} y^{\prime \prime }-x \left (2+x \right ) y^{\prime }+\left (2+x \right ) y&=x^{3} \\ \end{align*}

3.668

15874

5751

\begin{align*} \left (a +b \cos \left (2 x \right )\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

3.669

15875

25802

\begin{align*} y^{\prime }&=y-y^{3} \\ \end{align*}

3.669

15876

1540

\begin{align*} y^{\prime } x +3 y&=0 \\ \end{align*}

3.670

15877

2509

\begin{align*} 2 t \sin \left (y\right )+{\mathrm e}^{t} y^{3}+\left (\cos \left (y\right ) t^{2}+3 \,{\mathrm e}^{t} y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

3.670

15878

20241

\begin{align*} -y^{\prime } x +y&=a \left (y^{\prime }+y^{2}\right ) \\ \end{align*}

3.670

15879

23063

\begin{align*} r^{\prime }&=c \\ r \left (0\right ) &= a \\ \end{align*}

3.670

15880

21936

\begin{align*} y^{\prime \prime } x +y^{\prime }&=16 x^{3} \\ \end{align*}

3.671

15881

22710

\begin{align*} y^{\prime \prime }+y&=x \,{\mathrm e}^{-x}+3 \sin \left (x \right ) \\ \end{align*}

3.672

15882

2329

\begin{align*} y^{\prime } t&=y+\sqrt {t^{2}+y^{2}} \\ y \left (1\right ) &= 0 \\ \end{align*}

3.673

15883

3023

\begin{align*} y^{\prime }&=\cos \left (y\right ) \cos \left (x \right )^{2} \\ \end{align*}

3.673

15884

7011

\begin{align*} \left (y^{2}+a \sin \left (x \right )\right ) y^{\prime }&=\cos \left (x \right ) \\ \end{align*}

3.673

15885

22460

\begin{align*} y^{\prime } x&=2 x^{2} y+y \ln \left (y\right ) \\ \end{align*}

3.673

15886

1273

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\ \end{align*}

3.674

15887

22404

\begin{align*} y^{\prime }&=\frac {3 x^{5}+3 y^{2} x^{2}}{2 x^{3} y-2 y^{3}} \\ \end{align*}

3.674

15888

4441

\begin{align*} 2 x y^{4} {\mathrm e}^{y}+2 x y^{3}+y+\left (x^{2} y^{4} {\mathrm e}^{y}-y^{2} x^{2}-3 x \right ) y^{\prime }&=0 \\ \end{align*}

3.675

15889

13791

\begin{align*} x^{2} y^{\prime \prime }-2 a x y^{\prime }+\left (-b^{2} x^{2}+a \left (1+a \right )\right ) y&=0 \\ \end{align*}

3.675

15890

18304

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{m} \\ \end{align*}

3.675

15891

13739

\begin{align*} y^{\prime \prime } x -\left (2 a x +1\right ) y^{\prime }+b \,x^{3} y&=0 \\ \end{align*}

3.676

15892

12069

\begin{align*} y^{\prime }&=\frac {x \left (-x -1+x^{2}-2 x^{2} y+2 x^{4}\right )}{\left (x^{2}-y\right ) \left (x +1\right )} \\ \end{align*}

3.680

15893

18290

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

3.680

15894

20318

\begin{align*} y^{\prime }&={\mathrm e}^{x -y} \left ({\mathrm e}^{x}-{\mathrm e}^{y}\right ) \\ \end{align*}

3.681

15895

21873

\begin{align*} x {y^{\prime }}^{2}&=y \\ \end{align*}

3.681

15896

21986

\begin{align*} y^{\prime }&=y x \\ \end{align*}

3.681

15897

22757

\begin{align*} x^{2} y^{\prime \prime }+y&=16 \sin \left (\ln \left (x \right )\right ) \\ \end{align*}

3.681

15898

25811

\begin{align*} y^{\prime }&=\left ({\mathrm e}^{y} y-9 y\right ) {\mathrm e}^{-y} \\ \end{align*}

3.681

15899

3596

\begin{align*} y-\left (x -1\right ) y^{\prime }&=0 \\ \end{align*}

3.683

15900

15057

\begin{align*} y^{\prime }&=\frac {-3+x +y}{y-x +1} \\ \end{align*}

3.684