| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 15801 |
\begin{align*}
y^{\prime \prime }-k^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.628 |
|
| 15802 |
\begin{align*}
\operatorname {a2} y+\operatorname {a1} x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.632 |
|
| 15803 |
\begin{align*}
a x y^{\prime \prime }+b y^{\prime }+c y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.632 |
|
| 15804 |
\begin{align*}
\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y&=\left (1-x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.632 |
|
| 15805 |
\begin{align*}
{y^{\prime }}^{n}-f \left (x \right ) g \left (y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.634 |
|
| 15806 |
\begin{align*}
y^{\prime }&=t y^{2}+2 y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.634 |
|
| 15807 |
\begin{align*}
y^{\prime \prime }+\left (a \,x^{n}+2 b \right ) y^{\prime }+\left (a b \,x^{n}-a \,x^{n -1}+b^{2}\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
3.635 |
|
| 15808 |
\begin{align*}
2 r \left (s^{2}+1\right )+\left (r^{4}+1\right ) s^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.635 |
|
| 15809 |
\begin{align*}
3 x^{2}+3 y^{2}+x \left (x^{2}+3 y^{2}+6 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.635 |
|
| 15810 |
\begin{align*}
r^{\prime }&=\frac {r^{2}}{\theta } \\
r \left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.636 |
|
| 15811 |
\begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= y_{0} \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.636 |
|
| 15812 |
\begin{align*}
x y^{2} \left (y^{\prime } x +y\right )&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.637 |
|
| 15813 |
\begin{align*}
y^{\prime }&=\frac {\left (y x +1\right ) \left (y^{2} x^{2}+x^{2} y+2 y x +1+x +x^{2}\right )}{x^{5}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.637 |
|
| 15814 |
\begin{align*}
y^{2}-y^{2} \cos \left (x \right )+y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.637 |
|
| 15815 |
\begin{align*}
x^{2} y^{\prime }+y-2 y x -2 x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.638 |
|
| 15816 |
\begin{align*}
{y^{\prime }}^{3}&=\left (a +b y+c y^{2}\right ) f \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.638 |
|
| 15817 |
\begin{align*}
y^{\prime }&=2 y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.638 |
|
| 15818 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (x^{2}-2 x \right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
3.638 |
|
| 15819 |
\begin{align*}
2 y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.639 |
|
| 15820 |
\begin{align*}
\left (a +x \right ) y^{\prime }&=-b -c y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.640 |
|
| 15821 |
\begin{align*}
y y^{\prime \prime }&=y^{2}-3 y y^{\prime }+3 {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.640 |
|
| 15822 |
\begin{align*}
y^{\prime \prime }-y x -x^{6}-x^{3}+42&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.641 |
|
| 15823 |
\begin{align*}
\left (y x +1\right ) y-y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.641 |
|
| 15824 |
\begin{align*}
y^{\prime \prime } x -\left (2 x -1\right ) y^{\prime }+\left (x -1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.641 |
|
| 15825 |
\begin{align*}
y^{\prime }&=3 x^{2} y-3 x^{4}+2 x^{2}-2 y+2 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.641 |
|
| 15826 |
\begin{align*}
y^{\prime }&=y \sec \left (x \right )+\left (\sin \left (x \right )-1\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.642 |
|
| 15827 |
\begin{align*}
y^{\prime } x&=x^{5}+x^{3} y^{2}+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.644 |
|
| 15828 |
\begin{align*}
y^{\prime }&=a y^{\frac {-1+a}{a}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.645 |
|
| 15829 |
\begin{align*}
2 y^{\prime }&=y^{3} \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.645 |
|
| 15830 |
\begin{align*}
y^{2} y^{\prime }+3 x^{2} y&=\sin \left (x \right ) \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
3.645 |
|
| 15831 |
\begin{align*}
-y^{\prime }+y^{\prime \prime } x&=3 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.645 |
|
| 15832 |
\begin{align*}
\left (1+t \right ) y+y^{\prime } t&=2 t \,{\mathrm e}^{-t} \\
y \left (1\right ) &= a \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.646 |
|
| 15833 |
\begin{align*}
y^{\prime }&=x \left (a y^{2}+b \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.646 |
|
| 15834 |
\begin{align*}
y^{\prime }&=y+3 \,{\mathrm e}^{x} x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.649 |
|
| 15835 |
\begin{align*}
y^{\prime \prime }+16 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.649 |
|
| 15836 |
\begin{align*}
y^{\prime }&=\frac {1-y^{2}}{2 y x +2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.650 |
|
| 15837 |
\begin{align*}
y^{\prime }&={\mathrm e}^{t} y^{2}-2 y \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.651 |
|
| 15838 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
3.652 |
|
| 15839 |
\begin{align*}
3 y x +2 y^{2}+y+\left (x^{2}+2 y x +x +2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.653 |
|
| 15840 |
\begin{align*}
y \ln \left (x \right ) \ln \left (y\right )+y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.653 |
|
| 15841 |
\begin{align*}
y^{\prime \prime }&=a \sqrt {b y^{2}+{y^{\prime }}^{2}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.653 |
|
| 15842 |
\begin{align*}
y&=y^{\prime } x +\sqrt {b^{2}-a^{2} {y^{\prime }}^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.653 |
|
| 15843 |
\begin{align*}
y^{\prime \prime }+8 y^{\prime }+15 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.654 |
|
| 15844 |
\begin{align*}
t \cot \left (x\right ) x^{\prime }&=-2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.654 |
|
| 15845 |
\begin{align*}
y^{\prime }+y&=2 x \,{\mathrm e}^{-x}+x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.655 |
|
| 15846 |
\begin{align*}
\operatorname {f5} y^{2}+\operatorname {f4} y y^{\prime }+\operatorname {f3} {y^{\prime }}^{2}+\operatorname {f2} y y^{\prime \prime }+\operatorname {f1} y^{\prime } y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
3.655 |
|
| 15847 |
\begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.655 |
|
| 15848 |
\begin{align*}
y^{\prime } \left (2 x +y^{2}\right )&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.655 |
|
| 15849 |
\begin{align*}
y^{\prime }+\frac {2 y}{x}&=-x^{9} y^{5} \\
y \left (-1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.656 |
|
| 15850 |
\begin{align*}
y^{\prime \prime }+2 y&=7 \cos \left (3 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.656 |
|
| 15851 |
\begin{align*}
y^{2}+1+\left (2 y x -y^{2}\right ) y^{\prime }&=0 \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.657 |
|
| 15852 |
\begin{align*}
y^{\prime }&=\sqrt {x^{2}+y^{2}} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
3.658 |
|
| 15853 |
\begin{align*}
\frac {y^{\prime }}{y}+p \left (x \right ) \ln \left (y\right )&=q \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.658 |
|
| 15854 |
\begin{align*}
\left (x^{4}+1\right ) y^{\prime }+x \left (1+4 y^{2}\right )&=0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
3.658 |
|
| 15855 |
\begin{align*}
x_{1}^{\prime }&=-3 x_{1}-5 x_{2}+8 x_{3}+14 x_{4} \\
x_{2}^{\prime }&=-6 x_{1}-8 x_{2}+11 x_{3}+27 x_{4} \\
x_{3}^{\prime }&=-6 x_{1}-4 x_{2}+7 x_{3}+17 x_{4} \\
x_{4}^{\prime }&=-2 x_{2}+2 x_{3}+4 x_{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.659 |
|
| 15856 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }-4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.659 |
|
| 15857 |
\begin{align*}
y^{\prime }&=\frac {y+t}{t -y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.661 |
|
| 15858 |
\begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.661 |
|
| 15859 |
\begin{align*}
2 y^{\prime \prime }+y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.661 |
|
| 15860 |
\begin{align*}
y^{\prime }+\left (\left \{\begin {array}{cc} 2 & 0\le x \le 1 \\ -\frac {2}{x} & 1<x \end {array}\right .\right ) y&=4 x \\
y \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.661 |
|
| 15861 |
\begin{align*}
y^{\prime }&=\frac {1+\sqrt {x}}{1+\sqrt {y}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.662 |
|
| 15862 |
\begin{align*}
x \left (-x^{3}+1\right ) y^{\prime }&=x^{2}+\left (1-2 y x \right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.662 |
|
| 15863 |
\begin{align*}
y^{\prime } x&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.662 |
|
| 15864 |
\begin{align*}
y^{\prime }+\frac {y}{x}&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.662 |
|
| 15865 |
\begin{align*}
y^{\prime }&=\cos \left (x \right )-y \sec \left (x \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.662 |
|
| 15866 |
\begin{align*}
1+y^{2}+\left (x^{2}+1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.663 |
|
| 15867 |
\begin{align*}
x^{\prime \prime }-5 x^{\prime }+6 x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.665 |
|
| 15868 |
\begin{align*}
\cos \left (x +y^{2}\right )+3 y+\left (2 y \cos \left (x +y^{2}\right )+3 x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.665 |
|
| 15869 |
\begin{align*}
\left (x^{3}+1\right ) y^{\prime }+x y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.666 |
|
| 15870 |
\begin{align*}
y^{\prime }+\sin \left (x +y\right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.667 |
|
| 15871 |
\begin{align*}
x^{\prime }&=6 t \left (x-1\right )^{{2}/{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.667 |
|
| 15872 |
\begin{align*}
2 x y^{2}+y+\left (2 y^{3}-x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.667 |
|
| 15873 |
\begin{align*}
x^{2} y^{\prime \prime }-x \left (2+x \right ) y^{\prime }+\left (2+x \right ) y&=x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.668 |
|
| 15874 |
\begin{align*}
\left (a +b \cos \left (2 x \right )\right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.669 |
|
| 15875 |
\begin{align*}
y^{\prime }&=y-y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.669 |
|
| 15876 |
\begin{align*}
y^{\prime } x +3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.670 |
|
| 15877 |
\begin{align*}
2 t \sin \left (y\right )+{\mathrm e}^{t} y^{3}+\left (\cos \left (y\right ) t^{2}+3 \,{\mathrm e}^{t} y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.670 |
|
| 15878 |
\begin{align*}
-y^{\prime } x +y&=a \left (y^{\prime }+y^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.670 |
|
| 15879 |
\begin{align*}
r^{\prime }&=c \\
r \left (0\right ) &= a \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.670 |
|
| 15880 |
\begin{align*}
y^{\prime \prime } x +y^{\prime }&=16 x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.671 |
|
| 15881 |
\begin{align*}
y^{\prime \prime }+y&=x \,{\mathrm e}^{-x}+3 \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.672 |
|
| 15882 |
\begin{align*}
y^{\prime } t&=y+\sqrt {t^{2}+y^{2}} \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.673 |
|
| 15883 |
\begin{align*}
y^{\prime }&=\cos \left (y\right ) \cos \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.673 |
|
| 15884 |
\begin{align*}
\left (y^{2}+a \sin \left (x \right )\right ) y^{\prime }&=\cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.673 |
|
| 15885 |
\begin{align*}
y^{\prime } x&=2 x^{2} y+y \ln \left (y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.673 |
|
| 15886 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.674 |
|
| 15887 |
\begin{align*}
y^{\prime }&=\frac {3 x^{5}+3 y^{2} x^{2}}{2 x^{3} y-2 y^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.674 |
|
| 15888 |
\begin{align*}
2 x y^{4} {\mathrm e}^{y}+2 x y^{3}+y+\left (x^{2} y^{4} {\mathrm e}^{y}-y^{2} x^{2}-3 x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.675 |
|
| 15889 |
\begin{align*}
x^{2} y^{\prime \prime }-2 a x y^{\prime }+\left (-b^{2} x^{2}+a \left (1+a \right )\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.675 |
|
| 15890 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{m} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.675 |
|
| 15891 |
\begin{align*}
y^{\prime \prime } x -\left (2 a x +1\right ) y^{\prime }+b \,x^{3} y&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
3.676 |
|
| 15892 |
\begin{align*}
y^{\prime }&=\frac {x \left (-x -1+x^{2}-2 x^{2} y+2 x^{4}\right )}{\left (x^{2}-y\right ) \left (x +1\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.680 |
|
| 15893 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.680 |
|
| 15894 |
\begin{align*}
y^{\prime }&={\mathrm e}^{x -y} \left ({\mathrm e}^{x}-{\mathrm e}^{y}\right ) \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
3.681 |
|
| 15895 |
\begin{align*}
x {y^{\prime }}^{2}&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.681 |
|
| 15896 |
\begin{align*}
y^{\prime }&=y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.681 |
|
| 15897 |
\begin{align*}
x^{2} y^{\prime \prime }+y&=16 \sin \left (\ln \left (x \right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.681 |
|
| 15898 |
\begin{align*}
y^{\prime }&=\left ({\mathrm e}^{y} y-9 y\right ) {\mathrm e}^{-y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.681 |
|
| 15899 |
\begin{align*}
y-\left (x -1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.683 |
|
| 15900 |
\begin{align*}
y^{\prime }&=\frac {-3+x +y}{y-x +1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.684 |
|