| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 16001 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=t^{2} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.736 |
|
| 16002 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.737 |
|
| 16003 |
\begin{align*}
{\mathrm e}^{x}+y+\left (x -2 \sin \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.737 |
|
| 16004 |
\begin{align*}
x^{\prime \prime }-2 x^{\prime }&=4 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.737 |
|
| 16005 |
\begin{align*}
y^{\prime }+3 y&=\frac {28 \,{\mathrm e}^{2 x}}{y^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.737 |
|
| 16006 |
\begin{align*}
4 y+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.738 |
|
| 16007 |
\begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.739 |
|
| 16008 |
\begin{align*}
y^{\prime } x&=3 y+x^{4} \cos \left (x \right ) \\
y \left (2 \pi \right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.740 |
|
| 16009 |
\begin{align*}
\left (-x^{2}+4 a +2\right ) y+4 y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.740 |
|
| 16010 |
\begin{align*}
y^{\prime \prime }+6 y^{\prime }+8 y&=2 t +{\mathrm e}^{t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.740 |
|
| 16011 |
\begin{align*}
20 y-9 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.741 |
|
| 16012 |
\begin{align*}
{y^{\prime }}^{2}+a y^{\prime }+b y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.743 |
|
| 16013 |
\begin{align*}
y^{\prime }&=\frac {\left (2 x +2+y\right ) y}{\left (\ln \left (y\right )+2 x -1\right ) \left (x +1\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.743 |
|
| 16014 |
\begin{align*}
y^{\prime \prime }-16 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.743 |
|
| 16015 |
\begin{align*}
-y+y^{\prime } x&=\left (1+y^{2}\right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.745 |
|
| 16016 |
\begin{align*}
y^{\prime } x&=x^{3}+\left (2 x^{2}+1\right ) y+x y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.747 |
|
| 16017 |
\begin{align*}
y^{\prime \prime }+y&=\frac {1}{\sin \left (x \right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.747 |
|
| 16018 |
\begin{align*}
9 y^{\prime \prime }+9 y^{\prime }-4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.748 |
|
| 16019 |
\begin{align*}
b y+a \tan \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.748 |
|
| 16020 |
\begin{align*}
4 x^{2} y^{\prime \prime }+4 y^{\prime } x -\left (a \,x^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.748 |
|
| 16021 |
\begin{align*}
2 x +y y^{\prime } \left (4 {y^{\prime }}^{2}+6\right )&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
3.748 |
|
| 16022 |
\begin{align*}
y^{\prime }&=F \left (y \,{\mathrm e}^{-b x}\right ) {\mathrm e}^{b x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.749 |
|
| 16023 |
\begin{align*}
{\mathrm e}^{-y}+\left (x^{2}+1\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.750 |
|
| 16024 |
\begin{align*}
t^{2} y^{\prime \prime }+y^{\prime } t +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.750 |
|
| 16025 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }&={\mathrm e}^{4 x} x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.750 |
|
| 16026 |
\begin{align*}
x^{\prime \prime }-x^{\prime }-6 x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.751 |
|
| 16027 |
\begin{align*}
3+2 x +\left (-2+2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.753 |
|
| 16028 |
\begin{align*}
y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.753 |
|
| 16029 |
\begin{align*}
y y^{\prime }&=y+x^{2} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
3.755 |
|
| 16030 |
\begin{align*}
2 y x -2 x y^{3}+x^{3}+\left (x^{2}+y^{2}-3 y^{2} x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.756 |
|
| 16031 |
\begin{align*}
\sqrt {1+y^{2}}\, y^{\prime }&=\frac {t y^{3}}{\sqrt {t^{2}+1}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
3.757 |
|
| 16032 |
\begin{align*}
y^{\prime \prime }+12 y&=7 y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.757 |
|
| 16033 |
\begin{align*}
2 y-\cot \left (2 x \right ) y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.758 |
|
| 16034 |
\begin{align*}
x^{2}+1+x^{2} y^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.759 |
|
| 16035 |
\begin{align*}
y^{\prime \prime }+y^{\prime }&=x^{2}+2 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.760 |
|
| 16036 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=4 x^{2} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.760 |
|
| 16037 |
\begin{align*}
y^{\prime \prime }+y^{\prime }&=x +1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.761 |
|
| 16038 |
\begin{align*}
2 y^{\prime } x&=\left (1+x -6 y^{2}\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.763 |
|
| 16039 |
\begin{align*}
2 y x +x^{2}+b +\left (a +x^{2}+y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.763 |
|
| 16040 |
\begin{align*}
x^{2} y^{\prime }+x y^{2}&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.763 |
|
| 16041 |
\begin{align*}
1+y+\left (1-x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.763 |
|
| 16042 |
\begin{align*}
x^{\prime \prime }+4 x^{\prime }+x&=k \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.763 |
|
| 16043 |
\begin{align*}
y^{\prime }+\frac {k y}{x}&=0 \\
y \left (1\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.765 |
|
| 16044 |
\begin{align*}
y^{\prime }&=\frac {2 \left (y+2\right )^{2}}{\left (x +y-1\right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.765 |
|
| 16045 |
\begin{align*}
y^{\prime \prime } x +\left (2 x -1\right ) y^{\prime }&=-4 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.765 |
|
| 16046 |
\begin{align*}
2 \sqrt {x}\, y^{\prime }&=\cos \left (y\right )^{2} \\
y \left (4\right ) &= \frac {\pi }{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.766 |
|
| 16047 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}+1\right ) y&=x^{3}+3 x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.766 |
|
| 16048 |
\begin{align*}
x^{2} \left (-y+y^{\prime } x \right )&=y \left (x +y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.767 |
|
| 16049 |
\begin{align*}
x^{\prime \prime }+x&=t \cos \left (t \right )-\cos \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.768 |
|
| 16050 |
\begin{align*}
y+6 x y^{3}-4 y^{4}-\left (2 x +4 x y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.768 |
|
| 16051 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.769 |
|
| 16052 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+20 y&=0 \\
y \left (\frac {\pi }{2}\right ) &= 1 \\
y^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.770 |
|
| 16053 |
\begin{align*}
y^{3} y^{\prime \prime }&=a \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.770 |
|
| 16054 |
\begin{align*}
\left (3 y^{3}+3 y \cos \left (y\right )+1\right ) y^{\prime }+\frac {\left (2 x +1\right ) y}{x^{2}+1}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.771 |
|
| 16055 |
\begin{align*}
x \left (x^{2}+1\right ) y^{\prime }+x^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.771 |
|
| 16056 |
\begin{align*}
y^{\prime }&=\left (1-12 x \right ) y^{2} \\
y \left (0\right ) &= -{\frac {1}{8}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.771 |
|
| 16057 |
\begin{align*}
r^{2} \sin \left (t \right )&=\left (2 r \cos \left (t \right )+10\right ) r^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.771 |
|
| 16058 |
\begin{align*}
x^{2} y^{\prime \prime }&=\left (3 x -2 y^{\prime }\right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.772 |
|
| 16059 |
\begin{align*}
x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y&=24 x +24 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.772 |
|
| 16060 |
\begin{align*}
2 y^{\prime \prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.773 |
|
| 16061 |
\begin{align*}
x^{{10}/{3}}-2 y+y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.774 |
|
| 16062 |
\begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=x^{2} \ln \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.775 |
|
| 16063 |
\begin{align*}
{\mathrm e}^{t} y^{\prime }&=y^{3}-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.775 |
|
| 16064 |
\begin{align*}
y^{\prime }+a y \left (-x +y\right )-1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.776 |
|
| 16065 |
\begin{align*}
y^{\prime \prime } x +a y^{\prime }+b \,x^{n} \left (-b \,x^{n +1}+a +n \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
3.776 |
|
| 16066 |
\begin{align*}
2 y+y^{\prime }&={\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.776 |
|
| 16067 |
\begin{align*}
4 y+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.776 |
|
| 16068 |
\begin{align*}
y^{3} y^{\prime }&=\left (1+y^{4}\right ) \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.779 |
|
| 16069 |
\begin{align*}
y^{\prime }&=\left (1+6 x +y\right )^{{1}/{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.779 |
|
| 16070 |
\begin{align*}
x^{3}+2 y+\left (x +1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.779 |
|
| 16071 |
\begin{align*}
y^{\prime }&=f \left (x \right )+x f \left (x \right ) y+y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.780 |
|
| 16072 |
\begin{align*}
T^{\prime }&=2 a t \left (T^{2}-a^{2}\right ) \\
T \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.780 |
|
| 16073 |
\begin{align*}
z^{\prime \prime }+6 z^{\prime }+9 z&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.780 |
|
| 16074 |
\begin{align*}
y^{\prime \prime }+12 y&=7 y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.781 |
|
| 16075 |
\begin{align*}
x^{\prime \prime }+9 x&=0 \\
x \left (0\right ) &= {\frac {1}{3}} \\
x^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.781 |
|
| 16076 |
\begin{align*}
y x -x^{2} y^{\prime }+y^{\prime \prime }&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.782 |
|
| 16077 |
\begin{align*}
y x -x^{2} y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.783 |
|
| 16078 |
\begin{align*}
\sin \left (x \right ) y^{\prime \prime }+2 \cos \left (x \right ) y^{\prime }+3 \sin \left (x \right ) y&={\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.783 |
|
| 16079 |
\begin{align*}
x^{2} y^{\prime }&=y-y x \\
y \left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.783 |
|
| 16080 |
\begin{align*}
y^{\prime }&=x^{3}-2 y x \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.783 |
|
| 16081 |
\begin{align*}
\left (x^{2}+1\right ) \left (1+y^{2}\right ) y^{\prime }+2 x y \left (1-y^{2}\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.784 |
|
| 16082 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }&=-1-y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.785 |
|
| 16083 |
\begin{align*}
\left (a^{2} x^{2}+2\right ) y-2 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.785 |
|
| 16084 |
\begin{align*}
{\mathrm e}^{x}+y \,{\mathrm e}^{y x}+\left ({\mathrm e}^{y}+x \,{\mathrm e}^{y x}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.787 |
|
| 16085 |
\begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x -\left (a^{2} x^{2}+2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.787 |
|
| 16086 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.787 |
|
| 16087 |
\begin{align*}
y^{\prime }&=\frac {-x +3}{y+5} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.787 |
|
| 16088 |
\begin{align*}
\left (\cos \left (\lambda x \right ) a +b \right ) y^{\prime }&=y^{2}+c \cos \left (\mu x \right ) y-d^{2}+c d \cos \left (\mu x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.788 |
|
| 16089 |
\begin{align*}
y^{\prime }&=-\frac {y}{x} \\
y \left (1\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.788 |
|
| 16090 |
\begin{align*}
\sin \left (\theta \right ) \theta ^{\prime }+\cos \left (\theta \right )-t \,{\mathrm e}^{-t}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.789 |
|
| 16091 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }-54 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.789 |
|
| 16092 |
\begin{align*}
y \,{\mathrm e}^{y x}+\left (2 y-x \,{\mathrm e}^{y x}\right ) y^{\prime }&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
3.791 |
|
| 16093 |
\begin{align*}
y^{2} {\mathrm e}^{x y^{2}}-2 x +2 x y \,{\mathrm e}^{x y^{2}} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.791 |
|
| 16094 |
\begin{align*}
t x^{\prime }+x&=2 t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.792 |
|
| 16095 |
\begin{align*}
\left (x +y-1\right ) y^{\prime }&=x -y+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.794 |
|
| 16096 |
\begin{align*}
\left (1+y^{2}\right ) \left ({\mathrm e}^{2 x}-{\mathrm e}^{y} y^{\prime }\right )-\left (1+y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.794 |
|
| 16097 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+3 y&=\delta \left (-2+t \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
3.795 |
|
| 16098 |
\begin{align*}
x^{2} y^{\prime \prime }+x \left (-x^{2}+3\right ) y^{\prime }-3 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
3.796 |
|
| 16099 |
\begin{align*}
y^{\prime }-\frac {y}{x}&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.796 |
|
| 16100 |
\begin{align*}
y^{\prime \prime } x +\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.796 |
|