2.2.44 Problems 4301 to 4400

Table 2.89: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

4301

\[ {}3 y^{\prime } = x +\sqrt {x^{2}-3 y} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

56.401

4302

\[ {}y^{\prime } x = \sqrt {a^{2}-x^{2}} \]

[_quadrature]

1.211

4303

\[ {}y^{\prime } x +x +y = 0 \]

[_linear]

8.443

4304

\[ {}y^{\prime } x +x^{2}-y = 0 \]

[_linear]

11.283

4305

\[ {}y^{\prime } x = x^{3}-y \]

[_linear]

4.145

4306

\[ {}y^{\prime } x = 1+x^{3}+y \]

[_linear]

2.132

4307

\[ {}y^{\prime } x = x^{m}+y \]

[_linear]

11.588

4308

\[ {}y^{\prime } x = x \sin \left (x \right )-y \]

[_linear]

2.901

4309

\[ {}y^{\prime } x = x^{2} \sin \left (x \right )+y \]

[_linear]

2.998

4310

\[ {}y^{\prime } x = x^{n} \ln \left (x \right )-y \]

[_linear]

12.623

4311

\[ {}y^{\prime } x = \sin \left (x \right )-2 y \]

[_linear]

2.855

4312

\[ {}y^{\prime } x = a y \]

[_separable]

16.548

4313

\[ {}y^{\prime } x = 1+x +a y \]

[_linear]

7.419

4314

\[ {}y^{\prime } x = a x +b y \]

[_linear]

18.184

4315

\[ {}y^{\prime } x = a \,x^{2}+b y \]

[_linear]

13.885

4316

\[ {}y^{\prime } x = a +b \,x^{n}+c y \]

[_linear]

5.133

4317

\[ {}y^{\prime } x +2+\left (3-x \right ) y = 0 \]

[_linear]

2.394

4318

\[ {}y^{\prime } x +x +\left (a x +2\right ) y = 0 \]

[_linear]

10.868

4319

\[ {}y^{\prime } x +\left (b x +a \right ) y = 0 \]

[_separable]

5.897

4320

\[ {}y^{\prime } x = x^{3}+\left (-2 x^{2}+1\right ) y \]

[_linear]

11.534

4321

\[ {}y^{\prime } x = a x -\left (-b \,x^{2}+1\right ) y \]

[_linear]

3.119

4322

\[ {}y^{\prime } x +x +\left (-a \,x^{2}+2\right ) y = 0 \]

[_linear]

2.802

4323

\[ {}y^{\prime } x +x^{2}+y^{2} = 0 \]

[_rational, _Riccati]

1.020

4324

\[ {}y^{\prime } x = x^{2}+y \left (1+y\right ) \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

15.005

4325

\[ {}y^{\prime } x -y+y^{2} = x^{{2}/{3}} \]

[_rational, _Riccati]

11.288

4326

\[ {}y^{\prime } x = a +b y^{2} \]

[_separable]

19.751

4327

\[ {}y^{\prime } x = a \,x^{2}+y+b y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

7.594

4328

\[ {}y^{\prime } x = a \,x^{2 n}+\left (n +b y\right ) y \]

[_rational, _Riccati]

13.755

4329

\[ {}y^{\prime } x = a \,x^{n}+b y+c y^{2} \]

[_rational, _Riccati]

7.437

4330

\[ {}y^{\prime } x = k +a \,x^{n}+b y+c y^{2} \]

[_rational, _Riccati]

16.677

4331

\[ {}y^{\prime } x +a +x y^{2} = 0 \]

[_rational, [_Riccati, _special]]

3.224

4332

\[ {}y^{\prime } x +\left (1-y x \right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3.577

4333

\[ {}y^{\prime } x = \left (1-y x \right ) y \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

17.543

4334

\[ {}y^{\prime } x = \left (y x +1\right ) y \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

18.118

4335

\[ {}y^{\prime } x = a \,x^{3} \left (1-y x \right ) y \]

[_Bernoulli]

4.011

4336

\[ {}y^{\prime } x = x^{3}+\left (2 x^{2}+1\right ) y+x y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

14.478

4337

\[ {}y^{\prime } x = y \left (2 y x +1\right ) \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5.725

4338

\[ {}y^{\prime } x +b x +\left (2+a x y\right ) y = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

11.899

4339

\[ {}y^{\prime } x +\operatorname {a0} +\operatorname {a1} x +\left (\operatorname {a2} +\operatorname {a3} x y\right ) y = 0 \]

[_rational, _Riccati]

11.724

4340

\[ {}y^{\prime } x +a \,x^{2} y^{2}+2 y = b \]

[_rational, _Riccati]

13.852

4341

\[ {}y^{\prime } x +x^{m}+\frac {\left (n -m \right ) y}{2}+x^{n} y^{2} = 0 \]

[_rational, _Riccati]

7.260

4342

\[ {}y^{\prime } x +\left (a +b \,x^{n} y\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

17.970

4343

\[ {}y^{\prime } x = a \,x^{m}-b y-c \,x^{n} y^{2} \]

[_rational, _Riccati]

20.937

4344

\[ {}y^{\prime } x = 2 x -y+a \,x^{n} \left (x -y\right )^{2} \]

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

10.115

4345

\[ {}y^{\prime } x +\left (1-a y \ln \left (x \right )\right ) y = 0 \]

[_Bernoulli]

21.169

4346

\[ {}y^{\prime } x = y+\left (x^{2}-y^{2}\right ) f \left (x \right ) \]

[[_homogeneous, ‘class D‘], _Riccati]

15.862

4347

\[ {}y^{\prime } x = y \left (1+y^{2}\right ) \]

[_separable]

35.010

4348

\[ {}y^{\prime } x +y \left (1-x y^{2}\right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

25.945

4349

\[ {}y^{\prime } x +y = a \left (x^{2}+1\right ) y^{3} \]

[_rational, _Bernoulli]

14.572

4350

\[ {}y^{\prime } x = a y+b \left (x^{2}+1\right ) y^{3} \]

[_rational, _Bernoulli]

22.339

4351

\[ {}y^{\prime } x +2 y = a \,x^{2 k} y^{k} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

44.626

4352

\[ {}y^{\prime } x = 4 y-4 \sqrt {y} \]

[_separable]

40.062

4353

\[ {}y^{\prime } x +2 y = \sqrt {1+y^{2}} \]

[_separable]

32.279

4354

\[ {}y^{\prime } x = y+\sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

57.112

4355

\[ {}y^{\prime } x = y+\sqrt {x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

186.401

4356

\[ {}y^{\prime } x = y+x \sqrt {x^{2}+y^{2}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.334

4357

\[ {}y^{\prime } x = y-x \left (x -y\right ) \sqrt {x^{2}+y^{2}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.933

4358

\[ {}y^{\prime } x = y+a \sqrt {y^{2}+b^{2} x^{2}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

83.473

4359

\[ {}y^{\prime } x +\left (\sin \left (y\right )-3 x^{2} \cos \left (y\right )\right ) \cos \left (y\right ) = 0 \]

[‘y=_G(x,y’)‘]

13.674

4360

\[ {}y^{\prime } x +x -y+x \cos \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

18.938

4361

\[ {}y^{\prime } x = y-x \cos \left (\frac {y}{x}\right )^{2} \]

[[_homogeneous, ‘class A‘], _dAlembert]

30.942

4362

\[ {}y^{\prime } x = \left (-2 x^{2}+1\right ) \cot \left (y\right )^{2} \]

[_separable]

7.982

4363

\[ {}y^{\prime } x = y-\cot \left (y\right )^{2} \]

[_separable]

16.060

4364

\[ {}y^{\prime } x +y+2 x \sec \left (y x \right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

40.779

4365

\[ {}y^{\prime } x -y+x \sec \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

69.468

4366

\[ {}y^{\prime } x = y+x \sec \left (\frac {y}{x}\right )^{2} \]

[[_homogeneous, ‘class A‘], _dAlembert]

75.328

4367

\[ {}y^{\prime } x = \sin \left (x -y\right ) \]

[‘y=_G(x,y’)‘]

14.290

4368

\[ {}y^{\prime } x = y+x \sin \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

22.454

4369

\[ {}y^{\prime } x +\tan \left (y\right ) = 0 \]

[_separable]

14.355

4370

\[ {}y^{\prime } x +x +\tan \left (x +y\right ) = 0 \]

[[_1st_order, _with_linear_symmetries]]

20.954

4371

\[ {}y^{\prime } x = y-x \tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

24.107

4372

\[ {}y^{\prime } x = \left (1+y^{2}\right ) \left (x^{2}+\arctan \left (y\right )\right ) \]

[‘y=_G(x,y’)‘]

13.167

4373

\[ {}y^{\prime } x = y+x \,{\mathrm e}^{\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

82.944

4374

\[ {}y^{\prime } x = x +y+x \,{\mathrm e}^{\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

86.986

4375

\[ {}y^{\prime } x = y \ln \left (y\right ) \]

[_separable]

9.492

4376

\[ {}y^{\prime } x = \left (1+\ln \left (x \right )-\ln \left (y\right )\right ) y \]

[[_homogeneous, ‘class A‘], _dAlembert]

41.155

4377

\[ {}y^{\prime } x +\left (1-\ln \left (x \right )-\ln \left (y\right )\right ) y = 0 \]

[[_homogeneous, ‘class G‘]]

23.062

4378

\[ {}y^{\prime } x = y-2 x \tanh \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

64.237

4379

\[ {}y^{\prime } x +n y = f \left (x \right ) g \left (x^{n} y\right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.277

4380

\[ {}y^{\prime } x = y f \left (x^{m} y^{n}\right ) \]

[[_homogeneous, ‘class G‘]]

16.603

4381

\[ {}\left (x +1\right ) y^{\prime } = x^{3} \left (4+3 x \right )+y \]

[_linear]

2.145

4382

\[ {}\left (x +1\right ) y^{\prime } = \left (x +1\right )^{4}+2 y \]

[_linear]

11.148

4383

\[ {}\left (x +1\right ) y^{\prime } = {\mathrm e}^{x} \left (x +1\right )^{n +1}+n y \]

[_linear]

3.645

4384

\[ {}\left (x +1\right ) y^{\prime } = a y+b x y^{2} \]

[_rational, _Bernoulli]

19.182

4385

\[ {}\left (x +1\right ) y^{\prime }+y+\left (x +1\right )^{4} y^{3} = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

22.773

4386

\[ {}\left (x +1\right ) y^{\prime } = \left (1-x y^{3}\right ) y \]

[_rational, _Bernoulli]

14.295

4387

\[ {}\left (x +1\right ) y^{\prime } = 1+y+\left (x +1\right ) \sqrt {1+y} \]

[[_1st_order, _with_linear_symmetries]]

25.486

4388

\[ {}\left (x +a \right ) y^{\prime } = b x \]

[_quadrature]

0.868

4389

\[ {}\left (x +a \right ) y^{\prime } = b x +y \]

[_linear]

11.665

4390

\[ {}\left (x +a \right ) y^{\prime }+b \,x^{2}+y = 0 \]

[_linear]

2.947

4391

\[ {}\left (x +a \right ) y^{\prime } = 2 \left (x +a \right )^{5}+3 y \]

[_linear]

4.721

4392

\[ {}\left (x +a \right ) y^{\prime } = b +c y \]

[_separable]

14.730

4393

\[ {}\left (x +a \right ) y^{\prime } = b x +c y \]

[_linear]

14.357

4394

\[ {}\left (x +a \right ) y^{\prime } = y \left (1-a y\right ) \]

[_separable]

14.562

4395

\[ {}\left (a -x \right ) y^{\prime } = y+\left (c x +b \right ) y^{3} \]

[_rational, _Bernoulli]

17.161

4396

\[ {}2 y^{\prime } x = 2 x^{3}-y \]

[_linear]

55.142

4397

\[ {}2 y^{\prime } x +1 = 4 i x y+y^{2} \]

[_rational, _Riccati]

10.407

4398

\[ {}2 y^{\prime } x = y \left (1+y^{2}\right ) \]

[_separable]

16.017

4399

\[ {}2 y^{\prime } x +y \left (1+y^{2}\right ) = 0 \]

[_separable]

18.355

4400

\[ {}2 y^{\prime } x = \left (1+x -6 y^{2}\right ) y \]

[_rational, _Bernoulli]

3.271