| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 16601 |
\begin{align*}
y^{\prime }&=\lambda \sinh \left (\lambda x \right ) y^{2}-\lambda \sinh \left (\lambda x \right )^{3} \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
4.127 |
|
| 16602 |
\begin{align*}
x^{\prime \prime }-4 x^{\prime }+4 x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.129 |
|
| 16603 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.130 |
|
| 16604 |
\begin{align*}
t y^{\prime \prime }-\left (1+t \right ) y^{\prime }+y&={\mathrm e}^{2 t} t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.130 |
|
| 16605 |
\begin{align*}
\left (x^{2}+y^{2}\right ) y^{\prime }&=y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.131 |
|
| 16606 |
\begin{align*}
\left (a \left (1+a \right )+b^{2} x^{2}\right ) y-2 a x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.133 |
|
| 16607 |
\begin{align*}
y^{\prime \prime } x -\left (3 x -2\right ) y^{\prime }-\left (2 x -3\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
4.133 |
|
| 16608 |
\begin{align*}
x \left (x +6 y^{2}\right ) y^{\prime }+y x -3 y^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.135 |
|
| 16609 |
\begin{align*}
y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (-c \,x^{2 n}+a \,x^{n +1}+b \,x^{n}+n \,x^{n -1}\right ) y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
4.137 |
|
| 16610 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }&={\mathrm e}^{-3 t}-{\mathrm e}^{3 t} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.137 |
|
| 16611 |
\begin{align*}
\left (1+a \left (x +y\right )\right )^{n} y^{\prime }+a \left (x +y\right )^{n}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.138 |
|
| 16612 |
\begin{align*}
y^{\prime }&=x +y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.138 |
|
| 16613 |
\begin{align*}
y^{\prime \prime }+y^{\prime }&=x^{2}+3 x +{\mathrm e}^{3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.139 |
|
| 16614 |
\begin{align*}
y^{\prime \prime }+a \,x^{-1+q} y^{\prime }+b \,x^{q -2} y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
4.140 |
|
| 16615 |
\begin{align*}
y y^{\prime }-x y^{2}&=6 x \,{\mathrm e}^{4 x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.140 |
|
| 16616 |
\begin{align*}
y^{\prime }&=-\frac {a x}{2}+1+y^{2}+\frac {a \,x^{2} y}{2}+b x y+\frac {a^{2} x^{4}}{16}+\frac {a \,x^{3} b}{4}+\frac {b^{2} x^{2}}{4}+y^{3}+\frac {3 a \,x^{2} y^{2}}{4}+\frac {3 b x y^{2}}{2}+\frac {3 a^{2} x^{4} y}{16}+\frac {3 y a \,x^{3} b}{4}+\frac {3 b^{2} x^{2} y}{4}+\frac {a^{3} x^{6}}{64}+\frac {3 a^{2} x^{5} b}{32}+\frac {3 b^{2} x^{4} a}{16}+\frac {b^{3} x^{3}}{8} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.141 |
|
| 16617 |
\begin{align*}
\left (1+y\right ) y^{\prime }+x \left (y^{2}+2 y\right )&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.141 |
|
| 16618 |
\begin{align*}
\left (1+{\mathrm e}^{y}\right )^{2} {\mathrm e}^{-y}+\left ({\mathrm e}^{x}+1\right )^{3} {\mathrm e}^{-x} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.142 |
|
| 16619 |
\begin{align*}
y^{\prime }&=-\frac {8 x \left (-1+a \right ) \left (1+a \right )}{8+x^{6}-8 y+2 x^{4}-a^{2} y^{6}+a^{8} x^{6}-4 a^{6} x^{6}+6 a^{4} x^{6}-8 y^{2} a^{2} x^{2}+2 y^{4}+3 x^{2} y^{4}-2 y^{4} a^{2}-6 a^{2} x^{4}-8 a^{2}+4 y^{2} x^{2}+y^{6}+3 y^{2} x^{4}+3 a^{4} y^{4} x^{2}-3 a^{6} y^{2} x^{4}+9 y^{2} a^{4} x^{4}-9 y^{2} a^{2} x^{4}+4 a^{4} y^{2} x^{2}-4 a^{2} x^{6}-6 y^{4} a^{2} x^{2}-2 a^{6} x^{4}+6 a^{4} x^{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.142 |
|
| 16620 |
\begin{align*}
y^{3}+\left (3 x^{2}-2 x y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.143 |
|
| 16621 |
\begin{align*}
\left (a +x \right ) y^{\prime }&=b x +c y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.143 |
|
| 16622 |
\begin{align*}
-\left (a^{2} x^{2}+1\right ) y+4 y^{\prime } x +4 x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.144 |
|
| 16623 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.144 |
|
| 16624 |
\begin{align*}
\left (2+x \right ) y^{\prime \prime }-\left (x +1\right ) y^{\prime }+x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.144 |
|
| 16625 |
\begin{align*}
y^{\prime } x&=3 x^{2 n +1} y^{3}+\left (b x -n \right ) y+c \,x^{1-n} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.146 |
|
| 16626 |
\begin{align*}
y^{\prime }&=a \,{\mathrm e}^{\lambda x} y^{3}+3 a b \,{\mathrm e}^{\lambda x} y^{2}+c y-2 a \,b^{3} {\mathrm e}^{\lambda x}+b c \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.146 |
|
| 16627 |
\begin{align*}
y^{2}+2 y x -x^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.147 |
|
| 16628 |
\begin{align*}
\cos \left (x \right ) y^{\prime }+y+\left (1+\sin \left (x \right )\right ) \cos \left (x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.147 |
|
| 16629 |
\begin{align*}
y^{\prime \prime } x -\left (a x +1\right ) y^{\prime }-b \,x^{2} \left (b x +a \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.148 |
|
| 16630 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }&=8 \,{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.150 |
|
| 16631 |
\begin{align*}
y^{\prime }+\cot \left (x \right ) \cot \left (y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.151 |
|
| 16632 |
\begin{align*}
x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&={\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.151 |
|
| 16633 |
\begin{align*}
y^{2}+2 y x -x^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.151 |
|
| 16634 |
\begin{align*}
\left (a +x^{2}+y^{2}\right ) y y^{\prime }+x \left (y^{2}+x^{2}-a \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.151 |
|
| 16635 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x&=2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.151 |
|
| 16636 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.151 |
|
| 16637 |
\begin{align*}
y^{\prime } x&=\left (1+y^{2}\right ) \left (x^{2}+\arctan \left (y\right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.153 |
|
| 16638 |
\begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=x^{m} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.153 |
|
| 16639 |
\begin{align*}
x^{\prime \prime }+\frac {2 x^{\prime }}{5}+2 x&=1-\operatorname {Heaviside}\left (t -5\right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
4.154 |
|
| 16640 |
\begin{align*}
x +y+\left (-x +y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.154 |
|
| 16641 |
\begin{align*}
y-\cos \left (x \right )^{2}+\cos \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.154 |
|
| 16642 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }-8 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.155 |
|
| 16643 |
\begin{align*}
v \left (2 u v^{2}-3\right )+\left (3 u^{2} v^{2}-3 u +4 v\right ) v^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.155 |
|
| 16644 |
\begin{align*}
2 y \sin \left (y x \right )+\left (2 x \sin \left (y x \right )+y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.156 |
|
| 16645 |
\begin{align*}
\left (x^{2}-y^{2}\right ) y^{\prime }&=2 y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.156 |
|
| 16646 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.156 |
|
| 16647 |
\begin{align*}
y^{\prime }&=\frac {3-2 x}{y} \\
y \left (1\right ) &= -6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.157 |
|
| 16648 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.157 |
|
| 16649 |
\begin{align*}
y&=y x +x^{2} y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.158 |
|
| 16650 |
\begin{align*}
t^{2} y^{\prime \prime }+y^{\prime } t +\left (t^{2}-5\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.158 |
|
| 16651 |
\begin{align*}
y^{\prime } x&=2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.158 |
|
| 16652 |
\begin{align*}
y^{\prime \prime }+y&=2 x -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.159 |
|
| 16653 |
\begin{align*}
y^{\prime \prime }+y&=x \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.160 |
|
| 16654 |
\begin{align*}
2 t^{2} y^{\prime \prime }-5 y^{\prime } t +5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.162 |
|
| 16655 |
\begin{align*}
y^{\prime }&=\frac {1+y}{1+t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.162 |
|
| 16656 |
\begin{align*}
\left (6+3 y x -4 y^{3}\right ) x +\left (x^{3}-6 y^{2} x^{2}-1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.162 |
|
| 16657 |
\begin{align*}
y^{\prime }&=y^{2}-4 t \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.164 |
|
| 16658 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
y \left (1\right ) &= 3 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.165 |
|
| 16659 |
\begin{align*}
9 y^{2} x^{2}+x^{{3}/{2}} y^{\prime }&=y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.166 |
|
| 16660 |
\begin{align*}
4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (-v^{2}+x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.166 |
|
| 16661 |
\begin{align*}
y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y^{\prime }+x \left (b \,x^{2} a +b c +2 a \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.166 |
|
| 16662 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (4 x^{2}-\frac {1}{9}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.166 |
|
| 16663 |
\begin{align*}
\left (a^{2}+x^{2}\right ) y^{\prime }&=b +y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.170 |
|
| 16664 |
\begin{align*}
y^{\prime }&=\frac {x^{2}}{y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.171 |
|
| 16665 |
\begin{align*}
y^{\prime }-y x&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.172 |
|
| 16666 |
\begin{align*}
\left (x -y\right ) y^{\prime }&=x +y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.173 |
|
| 16667 |
\begin{align*}
y^{\prime }&=\frac {x -y-1}{x +y+3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.174 |
|
| 16668 |
\begin{align*}
y^{\prime }&=y^{2}-4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.174 |
|
| 16669 |
\begin{align*}
\left (t^{2}+1\right ) y^{\prime \prime }-4 y^{\prime } t +6 y&=2 t \\
y \left (0\right ) &= a \\
y^{\prime }\left (0\right ) &= b \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.174 |
|
| 16670 |
\begin{align*}
y^{\prime }&=\frac {x y}{x^{2}+1} \\
y \left (\sqrt {15}\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.175 |
|
| 16671 |
\begin{align*}
2 y^{\prime \prime } x -7 \cos \left (x \right ) y^{\prime }+y&={\mathrm e}^{-x} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
4.175 |
|
| 16672 |
\begin{align*}
y^{2} x^{2}-3 y y^{\prime } x&=2 y^{2}+x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.177 |
|
| 16673 |
\begin{align*}
\left (t -1\right ) y^{\prime \prime }-y^{\prime } t +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.177 |
|
| 16674 |
\begin{align*}
x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+n^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.180 |
|
| 16675 |
\begin{align*}
y^{\prime \prime } x -\left (2 x +2\right ) y^{\prime }+\left (2+x \right ) y&=6 \,{\mathrm e}^{x} x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.181 |
|
| 16676 |
\begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.182 |
|
| 16677 |
\begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=x^{2} \ln \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.184 |
|
| 16678 |
\begin{align*}
y^{\prime }&=\left (x +y+1\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.184 |
|
| 16679 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (36 x^{2}-\frac {1}{4}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.185 |
|
| 16680 |
\begin{align*}
y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }+\left (\alpha \,x^{2}+\beta x +\gamma \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
4.185 |
|
| 16681 |
\begin{align*}
2 t y+y^{\prime }&=2 t \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.185 |
|
| 16682 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.186 |
|
| 16683 |
\begin{align*}
y^{\prime }-x^{a} y^{3}+3 y^{2}-x^{-a} y-x^{-2 a}+a \,x^{-a -1}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.187 |
|
| 16684 |
\begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x +6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.189 |
|
| 16685 |
\begin{align*}
{\mathrm e}^{x} \left (y^{2} x^{4}+4 x^{3} y^{2}+1\right )+\left (2 x^{4} y \,{\mathrm e}^{x}+2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.190 |
|
| 16686 |
\begin{align*}
9 y {y^{\prime }}^{2}+4 x^{3} y^{\prime }-4 x^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.191 |
|
| 16687 |
\begin{align*}
y^{\prime }&=4 x^{3} y-y \\
y \left (1\right ) &= -3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.192 |
|
| 16688 |
\begin{align*}
y^{2}+2 y x -x^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.194 |
|
| 16689 |
\begin{align*}
y^{\prime \prime } x +\left (x -2\right ) y^{\prime }-2 y&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.194 |
|
| 16690 |
\begin{align*}
y^{\prime \prime }-4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.195 |
|
| 16691 |
\begin{align*}
y \ln \left (y\right )-2 y x +\left (x +y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.195 |
|
| 16692 |
\begin{align*}
y^{\prime \prime }+{\mathrm e}^{-2 y}&=0 \\
y \left (3\right ) &= 0 \\
y^{\prime }\left (3\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.195 |
|
| 16693 |
\begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.196 |
|
| 16694 |
\begin{align*}
2 f \left (x \right ) y^{\prime }+2 f \left (x \right ) y^{2}-y f^{\prime }\left (x \right )-2 f \left (x \right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.196 |
|
| 16695 |
\begin{align*}
\left (a -3 x^{2}-y^{2}\right ) y y^{\prime }+x \left (a -x^{2}+y^{2}\right )&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
4.197 |
|
| 16696 |
\begin{align*}
{\mathrm e}^{t} y+t \,{\mathrm e}^{t} y+\left ({\mathrm e}^{t} t +2\right ) y^{\prime }&=0 \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.197 |
|
| 16697 |
\begin{align*}
y^{\prime }&=\frac {4 y^{2}-x^{4}}{4 y x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.197 |
|
| 16698 |
\begin{align*}
x^{2} y^{\prime }+y^{2}-y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.198 |
|
| 16699 |
\begin{align*}
y^{\prime }-4 y&=t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.198 |
|
| 16700 |
\begin{align*}
4 x^{2} y^{\prime \prime }-4 y^{\prime } x +3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.199 |
|