| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 16501 |
\begin{align*}
\sin \left (x \right ) \cos \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.055 |
|
| 16502 |
\begin{align*}
y^{\prime }+\frac {y}{x}&=\ln \left (x \right )-2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.055 |
|
| 16503 |
\begin{align*}
y^{\prime } x&=\sqrt {1-y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.056 |
|
| 16504 |
\begin{align*}
y^{\prime \prime }+\left (a \cosh \left (x \right )^{2}+b \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
4.056 |
|
| 16505 |
\begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
✓ |
✗ |
✗ |
✗ |
4.056 |
|
| 16506 |
\begin{align*}
\left (1-x \right ) y^{\prime }-1-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.058 |
|
| 16507 |
\begin{align*}
y^{\prime \prime }&=-\frac {y^{\prime }}{x +1}-\frac {y}{x \left (x +1\right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.059 |
|
| 16508 |
\begin{align*}
t^{2} x^{\prime \prime }+3 t x^{\prime }+3 x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.059 |
|
| 16509 |
\begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.059 |
|
| 16510 |
\begin{align*}
y^{\prime } x +y&=x y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.060 |
|
| 16511 |
\begin{align*}
y^{\prime \prime } x +\left (x -1\right ) y^{\prime }-y&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.061 |
|
| 16512 |
\begin{align*}
\left (10 x^{2} y^{3}-3 y^{2}-2\right ) y^{\prime }+5 y^{4} x +x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.062 |
|
| 16513 |
\begin{align*}
y^{\prime } x +y^{2}&=1 \\
y \left (-2\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.064 |
|
| 16514 |
\begin{align*}
2 x^{2} y-y^{2}+6 x^{3} y^{3}+\left (2 y^{2} x^{4}-x^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.064 |
|
| 16515 |
\begin{align*}
y^{\prime }&=x y \left (3+y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.065 |
|
| 16516 |
\begin{align*}
y^{\prime }+2 x&=2 \sqrt {y+x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.065 |
|
| 16517 |
\begin{align*}
y^{\prime \prime } x -\left (2 x +1\right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
4.065 |
|
| 16518 |
\begin{align*}
y \sqrt {1+y^{2}}+\left (x \sqrt {1+y^{2}}-y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.066 |
|
| 16519 |
\begin{align*}
x^{2}+y^{2}+2 y y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.068 |
|
| 16520 |
\begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.068 |
|
| 16521 |
\begin{align*}
\left (2 x^{3} y^{3}-x \right ) y^{\prime }+2 x^{3} y^{3}-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.069 |
|
| 16522 |
\begin{align*}
y^{\prime \prime }+\frac {\left (x -1\right ) y^{\prime }}{x}+\frac {y}{x^{3}}&=\frac {{\mathrm e}^{-\frac {1}{x}}}{x^{3}} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
4.069 |
|
| 16523 |
\begin{align*}
y^{\prime \prime }-\left (2 \alpha -1\right ) y^{\prime }+\alpha \left (\alpha -1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.070 |
|
| 16524 |
\begin{align*}
r^{\prime }&=-2 r t \\
r \left (0\right ) &= r_{0} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.070 |
|
| 16525 |
\begin{align*}
y^{\prime } x +\left (\sin \left (y\right )-3 \cos \left (y\right ) x^{2}\right ) \cos \left (y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.071 |
|
| 16526 |
\begin{align*}
y^{\prime }&=\frac {t^{2}+y^{2}}{t y} \\
y \left ({\mathrm e}\right ) &= 2 \,{\mathrm e} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.071 |
|
| 16527 |
\begin{align*}
y^{\prime }+y&=\frac {2 x \,{\mathrm e}^{-x}}{1+{\mathrm e}^{x} y} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.072 |
|
| 16528 |
\begin{align*}
y^{\prime }-y^{2}-y x -x +1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.073 |
|
| 16529 |
\begin{align*}
2 y y^{\prime }+2 x +x^{2}+y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.074 |
|
| 16530 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.076 |
|
| 16531 |
\begin{align*}
y-t +\left (t +2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.076 |
|
| 16532 |
\begin{align*}
\cos \left (x \right ) y^{\prime }+\sin \left (x \right ) y&=1 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.077 |
|
| 16533 |
\begin{align*}
\left (y+\sqrt {1+y^{2}}\right ) \left (x^{2}+1\right )^{{3}/{2}} y^{\prime }&=1+y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.077 |
|
| 16534 |
\begin{align*}
y^{\prime \prime } x -2 \left (x +1\right ) y^{\prime }+\left (2+x \right ) y&=\left (x -2\right ) {\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.077 |
|
| 16535 |
\begin{align*}
y^{\prime } x -y f \left (x^{a} y^{b}\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.078 |
|
| 16536 |
\begin{align*}
r^{\prime } \sin \left (t \right )+r \cos \left (t \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.078 |
|
| 16537 |
\begin{align*}
y^{\prime \prime }+y&=\csc \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.079 |
|
| 16538 |
\begin{align*}
y^{\prime } x +y \ln \left (x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.080 |
|
| 16539 |
\begin{align*}
y^{\prime \prime }-a^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.082 |
|
| 16540 |
\begin{align*}
y^{\prime }&=1-x -x^{3}+\left (2 x^{2}+1\right ) y-x y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.084 |
|
| 16541 |
\begin{align*}
-y+y^{\prime } x&=2 x \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.084 |
|
| 16542 |
\begin{align*}
y^{\prime } x&={\mathrm e}^{\frac {y}{x}} x +y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.085 |
|
| 16543 |
\begin{align*}
\left ({\mathrm e}^{x}-3 y^{2} x^{2}\right ) y^{\prime }+{\mathrm e}^{x} y&=2 x y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.085 |
|
| 16544 |
\begin{align*}
3 y^{\prime } y^{2} x&=3 x^{4}+y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.086 |
|
| 16545 |
\begin{align*}
y^{\prime }&=\frac {1}{x +2 y+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.086 |
|
| 16546 |
\begin{align*}
y^{\prime \prime }+9 y&=\left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
4.087 |
|
| 16547 |
\begin{align*}
y x -y^{2}-x^{2} y^{\prime }&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.088 |
|
| 16548 |
\begin{align*}
4 x^{2} y^{2} y^{\prime }-3 x y^{3}&=x^{2} y^{3}+2 x^{2} y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.089 |
|
| 16549 |
\begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.089 |
|
| 16550 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.090 |
|
| 16551 |
\begin{align*}
y^{\prime \prime } x +\left (b -x \right ) y^{\prime }-a y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
4.091 |
|
| 16552 |
\begin{align*}
y+3 x^{5} y^{\prime }+x^{6} y^{\prime \prime }&=\frac {1}{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.092 |
|
| 16553 |
\begin{align*}
y^{\prime \prime }-x^{2} y^{\prime }-x^{3} y-x^{4}-x^{2}&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
4.093 |
|
| 16554 |
\begin{align*}
y^{\prime \prime }+y^{\prime } x +x^{2} y&=0 \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
4.095 |
|
| 16555 |
\begin{align*}
\left (\ln \left (y\right )+x \right ) y^{\prime }-1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.096 |
|
| 16556 |
\begin{align*}
\left (x^{2}-4\right ) y^{\prime \prime }+y&=0 \\
\end{align*} Series expansion around \(x=2\). |
✓ |
✓ |
✓ |
✓ |
4.097 |
|
| 16557 |
\begin{align*}
\left (y^{3}-x \right ) y^{\prime }&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.098 |
|
| 16558 |
\begin{align*}
x +\sin \left (y\right )+x \cos \left (y\right ) y^{\prime }&=0 \\
y \left (2\right ) &= \pi \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
4.098 |
|
| 16559 |
\begin{align*}
2 y^{\prime \prime }+y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.100 |
|
| 16560 |
\begin{align*}
2 x +3 y-1-4 \left (x +1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.101 |
|
| 16561 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x -3 y&=-\frac {16 \ln \left (x \right )}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.101 |
|
| 16562 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
y \left (1\right ) &= 3 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.102 |
|
| 16563 |
\begin{align*}
y^{\prime }&=\frac {y+F \left (\frac {y}{x}\right ) x^{2}}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.102 |
|
| 16564 |
\begin{align*}
2 y^{\prime \prime }&={\mathrm e}^{y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.102 |
|
| 16565 |
\begin{align*}
y y^{\prime \prime }-{y^{\prime }}^{2}&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.102 |
|
| 16566 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.102 |
|
| 16567 |
\begin{align*}
y^{\prime }&=\frac {y}{x}-\tan \left (\frac {y}{x}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.103 |
|
| 16568 |
\begin{align*}
4 y+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 0 \\
y \left (L \right ) &= 7 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.103 |
|
| 16569 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -4 y&=x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.104 |
|
| 16570 |
\begin{align*}
y^{\prime }&=a \,{\mathrm e}^{\lambda x} y^{2}+b n \,x^{n -1}-a \,b^{2} {\mathrm e}^{\lambda x} x^{2 n} \\
\end{align*} |
✓ |
✗ |
✗ |
✗ |
4.105 |
|
| 16571 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.105 |
|
| 16572 |
\begin{align*}
y^{\prime }+\cos \left (\frac {x}{2}+\frac {y}{2}\right )&=\cos \left (\frac {x}{2}-\frac {y}{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.107 |
|
| 16573 |
\begin{align*}
y^{\prime \prime }+6 y^{\prime }+18 y&=2 \operatorname {Heaviside}\left (\pi -t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
4.107 |
|
| 16574 |
\begin{align*}
y^{\prime }&=5 \\
y \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.108 |
|
| 16575 |
\begin{align*}
y x +y^{2}-x^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.109 |
|
| 16576 |
\begin{align*}
2 x y \cos \left (x^{2}\right )-2 y x +1+\left (\sin \left (x^{2}\right )-x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.109 |
|
| 16577 |
\begin{align*}
\left (1+y\right ) y^{\prime }&=x^{2} \left (1-y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.112 |
|
| 16578 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y&=x^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.112 |
|
| 16579 |
\begin{align*}
2 x \sin \left (y\right ) \cos \left (y\right ) y^{\prime }&=4 x^{2}+\sin \left (y\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.113 |
|
| 16580 |
\begin{align*}
y y^{\prime }&=a x +b y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.113 |
|
| 16581 |
\begin{align*}
x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime }&=0 \\
y \left (\frac {1}{2}\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.114 |
|
| 16582 |
\begin{align*}
\cos \left (x \right )^{2} y^{\prime }+y&=\tan \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.114 |
|
| 16583 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.115 |
|
| 16584 |
\begin{align*}
y^{\prime }&=\frac {1-x y^{2}}{2 x^{2} y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.116 |
|
| 16585 |
\begin{align*}
y^{\prime \prime }+6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.116 |
|
| 16586 |
\begin{align*}
x^{\prime \prime }+5 x^{\prime }+6 x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.117 |
|
| 16587 |
\begin{align*}
x^{2} y^{\prime \prime }+\frac {7 y^{\prime } x}{2}-\frac {3 y}{2}&=0 \\
y \left (-4\right ) &= 1 \\
y^{\prime }\left (-4\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.117 |
|
| 16588 |
\begin{align*}
2 x^{3} y+\left (2 y^{2} x^{2}+2 y^{4}+\ln \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
4.117 |
|
| 16589 |
\begin{align*}
y^{\prime }&=\frac {\cot \left (y\right )}{t} \\
y \left (1\right ) &= \frac {\pi }{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.118 |
|
| 16590 |
\begin{align*}
t^{2} y^{\prime \prime }-y^{\prime } t +y&=t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.118 |
|
| 16591 |
\begin{align*}
{y^{\prime }}^{3}+f \left (x \right ) \left (y-a \right )^{2} \left (y-b \right )^{2} \left (y-c \right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.119 |
|
| 16592 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\
y \left (1\right ) &= 5 \\
y^{\prime }\left (1\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.119 |
|
| 16593 |
\begin{align*}
y^{\prime }&=\frac {x^{2}+y^{2}}{y x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.119 |
|
| 16594 |
\begin{align*}
y^{\prime \prime }+b y^{\prime }+y&=\cos \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.119 |
|
| 16595 |
\begin{align*}
x \left (x^{2}-1\right ) y^{\prime }-\left (2 x^{2}-1\right ) y+a \,x^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.120 |
|
| 16596 |
\begin{align*}
y^{\prime }&=-\frac {x}{2}+1+y^{2}+\frac {x^{2} y}{2}+a x y+\frac {x^{4}}{16}+\frac {a \,x^{3}}{4}+\frac {a^{2} x^{2}}{4}+y^{3}+\frac {3 y^{2} x^{2}}{4}+\frac {3 a x y^{2}}{2}+\frac {3 x^{4} y}{16}+\frac {3 y a \,x^{3}}{4}+\frac {3 y a^{2} x^{2}}{4}+\frac {x^{6}}{64}+\frac {3 x^{5} a}{32}+\frac {3 a^{2} x^{4}}{16}+\frac {a^{3} x^{3}}{8} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.123 |
|
| 16597 |
\begin{align*}
{y^{\prime }}^{4}+4 y {y^{\prime }}^{3}+6 y^{2} {y^{\prime }}^{2}-\left (1-4 y^{3}\right ) y^{\prime }-\left (3-y^{3}\right ) y&=0 \\
\end{align*} |
✓ |
✗ |
✓ |
✓ |
4.125 |
|
| 16598 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=3 x -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.125 |
|
| 16599 |
\begin{align*}
y^{\prime } x -4 x^{2} y+2 y \ln \left (y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.126 |
|
| 16600 |
\begin{align*}
-\left (5+4 x \right ) y+32 y^{\prime } x +16 x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.127 |
|