| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 17701 |
\begin{align*}
x \cos \left (\frac {y}{x}\right ) y^{\prime }&=y \cos \left (\frac {y}{x}\right )-x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.951 |
|
| 17702 |
\begin{align*}
3 y^{\prime } x +5 y&=10 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.952 |
|
| 17703 |
\begin{align*}
y^{\prime } t +y&=t^{3} \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.954 |
|
| 17704 |
\begin{align*}
a \,x^{2} y^{\prime \prime }+b x y^{\prime }+c y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.954 |
|
| 17705 |
\begin{align*}
2 y^{4} x +\sin \left (y\right )+\left (4 x^{2} y^{3}+x \cos \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.954 |
|
| 17706 |
\begin{align*}
y^{\prime \prime }+5 y^{\prime }+5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.955 |
|
| 17707 |
\begin{align*}
-y^{\prime }+y^{\prime \prime } x&=-\frac {2}{x}-\ln \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.956 |
|
| 17708 |
\begin{align*}
x^{\prime \prime }&=x^{3}-x \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
4.956 |
|
| 17709 |
\begin{align*}
y^{3} y^{\prime }+y^{\prime \prime }&=y y^{\prime } \sqrt {y^{4}+4 y^{\prime }} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.957 |
|
| 17710 |
\begin{align*}
y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.957 |
|
| 17711 |
\begin{align*}
y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.957 |
|
| 17712 |
\begin{align*}
t^{2} x^{\prime \prime }-5 t x^{\prime }+10 x&=0 \\
x \left (1\right ) &= 2 \\
x^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.958 |
|
| 17713 |
\begin{align*}
y^{\prime \prime }&=-\frac {\left (-a^{2} \cos \left (x \right )^{2}-\left (3-2 a \right ) \cos \left (x \right )-3+3 a \right ) y}{\sin \left (x \right )^{2}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
4.962 |
|
| 17714 |
\begin{align*}
{\mathrm e}^{x} y+2 \,{\mathrm e}^{x}+y^{2}+\left ({\mathrm e}^{x}+2 y x \right ) y^{\prime }&=0 \\
y \left (0\right ) &= 6 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.963 |
|
| 17715 |
\begin{align*}
\left (1-4 x -2 y\right ) y^{\prime }+2 x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.964 |
|
| 17716 |
\begin{align*}
1+{\mathrm e}^{\frac {y}{x}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.964 |
|
| 17717 |
\begin{align*}
y^{\prime }&=y^{3}-y^{3} \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.964 |
|
| 17718 |
\begin{align*}
u \ln \left (u \right ) v^{\prime }+\sin \left (v\right )^{2}&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.964 |
|
| 17719 |
\begin{align*}
\frac {x^{2}}{y}+y^{2}-\left (\frac {x^{3}}{y^{2}}+y x +y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
4.964 |
|
| 17720 |
\begin{align*}
y x^{\prime }&=2 y \,{\mathrm e}^{3 y}+x \left (3 y +2\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.965 |
|
| 17721 |
\begin{align*}
y^{\prime }+\tan \left (x \right ) \left (1-y^{2}\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.966 |
|
| 17722 |
\begin{align*}
y^{\prime }&=t y+t y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.967 |
|
| 17723 |
\begin{align*}
y^{\prime } x +\ln \left (x \right )-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.968 |
|
| 17724 |
\begin{align*}
y^{\prime \prime }-x^{2} y-x^{4}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.968 |
|
| 17725 |
\begin{align*}
y^{\prime }&=a \,x^{n} y^{3}+3 a b \,x^{n +m} y^{2}-b m \,x^{m -1}-2 a \,b^{3} x^{n +3 m} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.968 |
|
| 17726 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.969 |
|
| 17727 |
\begin{align*}
y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}-\lambda \right ) y^{\prime }+b \,{\mathrm e}^{2 \lambda x} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.970 |
|
| 17728 |
\begin{align*}
x^{\prime \prime }&=-3 \sqrt {t} \\
x \left (1\right ) &= 4 \\
x^{\prime }\left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.970 |
|
| 17729 |
\begin{align*}
y y^{\prime \prime }&=2 {y^{\prime }}^{2}+y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.971 |
|
| 17730 |
\begin{align*}
y^{\prime }&=-\frac {x}{y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.971 |
|
| 17731 |
\begin{align*}
\left (2 x +1\right ) y^{\prime }&=4 \,{\mathrm e}^{-y}-2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.972 |
|
| 17732 |
\begin{align*}
\sin \left (x \right ) y^{\prime }+y \,{\mathrm e}^{x^{2}}&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.973 |
|
| 17733 |
\begin{align*}
y^{\prime \prime }+y&=x^{3}-1+2 \cos \left (x \right )+\left (2-4 x \right ) {\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.974 |
|
| 17734 |
\begin{align*}
3 x +4 y y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.974 |
|
| 17735 |
\begin{align*}
x^{\prime \prime }-x^{\prime }&=t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.975 |
|
| 17736 |
\begin{align*}
\sqrt {\left (a +x \right ) \left (x +b \right )}\, y^{\prime }+y&=\sqrt {a +x}-\sqrt {x +b} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.977 |
|
| 17737 |
\begin{align*}
13 y+5 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.977 |
|
| 17738 |
\begin{align*}
8 x +4 y+1+\left (4 x +2 y+1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.978 |
|
| 17739 |
\begin{align*}
3 y-\left (x +3\right ) y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.981 |
|
| 17740 |
\begin{align*}
\left (x +\frac {2}{y}\right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.982 |
|
| 17741 |
\begin{align*}
2 y y^{\prime } x +3 x^{2}-y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.982 |
|
| 17742 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y-3 x^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.982 |
|
| 17743 |
\begin{align*}
x^{2} y^{\prime \prime }-5 y^{\prime } x +5 y&=\frac {1}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.982 |
|
| 17744 |
\begin{align*}
y^{\prime \prime }+a^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.985 |
|
| 17745 |
\begin{align*}
a x y^{\prime \prime }+\left (b x +3 a \right ) y^{\prime }+3 b y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.986 |
|
| 17746 |
\begin{align*}
y^{\prime }-\frac {y^{2}}{x^{2}}&={\frac {1}{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.987 |
|
| 17747 |
\begin{align*}
2 y y^{\prime } x&=x^{2}+2 y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.990 |
|
| 17748 |
\begin{align*}
\tan \left (y\right )-t +\left (t \sec \left (y\right )^{2}+1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.991 |
|
| 17749 |
\begin{align*}
x^{2} y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+4 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
4.992 |
|
| 17750 |
\begin{align*}
y^{\prime }&=\frac {y^{2}+2 y x +x^{2}+{\mathrm e}^{2+2 y^{4}-4 y^{2} x^{2}+2 x^{4}+2 y^{6}-6 x^{2} y^{4}+6 y^{2} x^{4}-2 x^{6}}}{y^{2}+2 y x +x^{2}-{\mathrm e}^{2+2 y^{4}-4 y^{2} x^{2}+2 x^{4}+2 y^{6}-6 x^{2} y^{4}+6 y^{2} x^{4}-2 x^{6}}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.994 |
|
| 17751 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=2 x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.995 |
|
| 17752 |
\begin{align*}
x^{2} \left (2 x +1\right ) y^{\prime \prime }+y^{\prime } x +\left (4 x^{3}-4\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
4.996 |
|
| 17753 |
\begin{align*}
y^{\prime \prime }-\cot \left (x \right ) y^{\prime }-y \sin \left (x \right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.996 |
|
| 17754 |
\begin{align*}
y \sqrt {x^{2}-1}+x \sqrt {-1+y^{2}}\, y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.997 |
|
| 17755 |
\begin{align*}
y-4 \left (x +y^{6}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.999 |
|
| 17756 |
\begin{align*}
x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (2\right ) &= -12 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.999 |
|
| 17757 |
\begin{align*}
y y^{\prime }&=x +1 \\
y \left (1\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.000 |
|
| 17758 |
\begin{align*}
x^{2} y^{\prime \prime }+a \,x^{2} y^{\prime }+f \left (x \right ) y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
5.000 |
|
| 17759 |
\begin{align*}
4 y^{\prime \prime }-12 y^{\prime }+5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.000 |
|
| 17760 |
\begin{align*}
y^{\prime }+y x&=y^{4} x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.001 |
|
| 17761 |
\begin{align*}
-y^{\prime } x +y&=y^{\prime } y^{2} {\mathrm e}^{y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.003 |
|
| 17762 |
\begin{align*}
y^{\prime }&=6 \sqrt {y}+5 x^{3} \\
y \left (-1\right ) &= 4 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
5.005 |
|
| 17763 |
\begin{align*}
y^{\prime }&=f \left (x \right ) y^{2}+\lambda y+a^{2} {\mathrm e}^{2 \lambda x} f \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.006 |
|
| 17764 |
\begin{align*}
y^{\prime }&={\mathrm e}^{3 x -2 y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.006 |
|
| 17765 |
\begin{align*}
4 y^{\prime \prime }-12 y^{\prime }+9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.007 |
|
| 17766 |
\begin{align*}
y^{\prime \prime }+y^{\prime }&=10 x^{4}+2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.008 |
|
| 17767 |
\begin{align*}
\frac {2}{y}-\frac {y}{x^{2}}+\left (\frac {1}{x}-\frac {2 x}{y^{2}}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.009 |
|
| 17768 |
\begin{align*}
2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.010 |
|
| 17769 |
\begin{align*}
2 t y^{3}+\left (1+3 t^{2} y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.010 |
|
| 17770 |
\begin{align*}
3 x -y+1-\left (6 x -2 y-3\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.013 |
|
| 17771 |
\begin{align*}
2 x^{3} y+y^{3}-\left (x^{4}+2 x y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.013 |
|
| 17772 |
\begin{align*}
y^{\prime } x +\left (a +b \,x^{n} y\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.013 |
|
| 17773 |
\begin{align*}
\operatorname {f3} \left (y\right )+\operatorname {f2} \left (y\right ) y^{\prime }+\operatorname {f1} \left (y\right ) {y^{\prime }}^{2}+\operatorname {f0} \left (y\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
5.014 |
|
| 17774 |
\begin{align*}
y^{\prime } x&=a \,{\mathrm e}^{\lambda x} y^{2}+k y+a \,b^{2} x^{2 k} {\mathrm e}^{\lambda x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.016 |
|
| 17775 |
\begin{align*}
y^{\prime }&=\sin \left (y\right )^{3} \cos \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.016 |
|
| 17776 |
\begin{align*}
y^{\prime \prime }+\left (a +b \,{\mathrm e}^{2 \lambda x}\right ) y^{\prime }+\lambda \left (a -\lambda -b \,{\mathrm e}^{2 \lambda x}\right ) y&=0 \\
\end{align*} |
✗ |
✗ |
✓ |
✗ |
5.018 |
|
| 17777 |
\begin{align*}
\left (-x +y\right )^{2} y^{\prime }&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.019 |
|
| 17778 |
\begin{align*}
y y^{\prime }&={\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.020 |
|
| 17779 |
\begin{align*}
y^{\prime \prime } x -\left (2 x^{2}+1\right ) y^{\prime }&=4 x^{3} {\mathrm e}^{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.021 |
|
| 17780 |
\begin{align*}
4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-16 x^{2}+3\right ) y&=8 x^{{5}/{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.023 |
|
| 17781 |
\begin{align*}
2 x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.023 |
|
| 17782 |
\begin{align*}
\frac {y^{\prime }}{\tan \left (x \right )}-\frac {y}{x^{2}+1}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.024 |
|
| 17783 |
\begin{align*}
y^{\prime }&=\frac {t \sec \left (\frac {y}{t}\right )+y}{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.024 |
|
| 17784 |
\begin{align*}
\left (x +y-1\right ) y^{\prime }&=x +y+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.025 |
|
| 17785 |
\begin{align*}
y^{\prime }&=x^{n} \left (a +b y^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.026 |
|
| 17786 |
\begin{align*}
x^{\prime }&={\mathrm e}^{\frac {x}{t}}+\frac {x}{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.030 |
|
| 17787 |
\begin{align*}
t^{2} y^{\prime \prime }+3 y^{\prime } t +y&=t^{7} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.033 |
|
| 17788 |
\begin{align*}
x^{n} y^{\prime }&=a +b \,x^{n -1} y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.034 |
|
| 17789 |
\begin{align*}
y^{\prime } \ln \left (x -y\right )&=1+\ln \left (x -y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.036 |
|
| 17790 |
\begin{align*}
2 y-x \left (\ln \left (x^{2} y\right )-1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.037 |
|
| 17791 |
\begin{align*}
x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.037 |
|
| 17792 |
\begin{align*}
y^{\prime }&=\frac {\sqrt {y}}{x} \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.037 |
|
| 17793 |
\begin{align*}
y^{\prime }-\frac {3 t y}{t^{2}-4}&=t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.038 |
|
| 17794 |
\begin{align*}
\left (T+\frac {1}{\sqrt {t^{2}-T^{2}}}\right ) T^{\prime }&=\frac {T}{t \sqrt {t^{2}-T^{2}}}-t \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.038 |
|
| 17795 |
\begin{align*}
y^{\prime }&=-1-\frac {x}{2}+\frac {\sqrt {x^{2}+4 x +4 y}}{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.043 |
|
| 17796 |
\begin{align*}
y^{\prime }&=\sqrt {x +y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.043 |
|
| 17797 |
\begin{align*}
x^{2} y+y^{2}+x^{3} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.043 |
|
| 17798 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +2 y&=0 \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.043 |
|
| 17799 |
\begin{align*}
y^{\prime }&=y^{3} \sin \left (x \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.044 |
|
| 17800 |
\begin{align*}
y \left ({\mathrm e}^{x}+2 y x \right )-{\mathrm e}^{x} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.044 |
|