2.3.243 Problems 24201 to 24300

Table 2.1017: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

24201

17448

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=-32 t^{2} \cos \left (2 t \right ) \\ \end{align*}

42.973

24202

15932

\begin{align*} y^{\prime }&=\frac {y}{\sqrt {t^{3}-3}}+t \\ \end{align*}

42.987

24203

5977

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +2 y&=x \ln \left (x \right ) \\ \end{align*}

42.990

24204

6082

\begin{align*} p \left (2 k +p \right ) y-\left (1+2 k \right ) x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

42.997

24205

16091

\begin{align*} y^{\prime \prime }+2 y^{\prime }+10 y&=10 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

43.000

24206

12168

\begin{align*} y^{\prime }&=\frac {6 x^{2} y-2 x +1-5 x^{3} y^{2}-2 y x +y^{3} x^{4}}{x^{2} \left (x^{2} y-x +1\right )} \\ \end{align*}

43.042

24207

19699

\begin{align*} x^{\prime \prime }-x^{\prime }+x&=\sin \left (2 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

43.067

24208

13402

\begin{align*} y^{\prime }&=y^{2}-2 a b \cot \left (a x \right ) y+b^{2}-a^{2} \\ \end{align*}

43.068

24209

25516

\begin{align*} m y^{\prime \prime }+k \sin \left (y\right )&=0 \\ \end{align*}

43.074

24210

16654

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=x^{2} {\mathrm e}^{3 x} \sin \left (2 x \right ) \\ \end{align*}

43.089

24211

8370

\begin{align*} y^{\prime }&=\left (1+y^{2}\right ) \sqrt {1+\cos \left (x^{3}\right )} \\ y \left (1\right ) &= 1 \\ \end{align*}

43.122

24212

10427

\begin{align*} y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}}&=0 \\ \end{align*}

43.132

24213

6101

\begin{align*} y-\left (x +1\right ) y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

43.168

24214

13426

\begin{align*} y^{\prime } x&=\lambda \arcsin \left (x \right )^{n} y^{2}+k y+\lambda \,b^{2} x^{2 k} \arcsin \left (x \right )^{n} \\ \end{align*}

43.177

24215

17450

\begin{align*} y^{\prime \prime }-4 y^{\prime }-5 y&=-648 t^{2} {\mathrm e}^{5 t} \\ \end{align*}

43.195

24216

14553

\begin{align*} 3 x -y-6+\left (x +y+2\right ) y^{\prime }&=0 \\ y \left (2\right ) &= -2 \\ \end{align*}

43.209

24217

3478

\begin{align*} \left (5 x +y-7\right ) y^{\prime }&=3 x +3 y+3 \\ \end{align*}

43.211

24218

13506

\begin{align*} y y^{\prime }-y&=\frac {4}{9} x +2 A \,x^{2}+2 A^{2} x^{3} \\ \end{align*}

43.268

24219

24169

\begin{align*} y-\left (x +\sqrt {y^{2}-x^{2}}\right ) y^{\prime }&=0 \\ \end{align*}

43.273

24220

25596

\begin{align*} y^{\prime \prime }+3 y&=t \cos \left (t \right ) \\ \end{align*}

43.299

24221

16123

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=2 \cos \left (2 t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

43.355

24222

11992

\begin{align*} y^{\prime }&=\frac {2 a x +2 a +x^{3} \sqrt {-y^{2}+4 a x}}{\left (x +1\right ) y} \\ \end{align*}

43.423

24223

9117

\begin{align*} y^{\prime } y^{2} x +y^{3}&=\cos \left (x \right ) x \\ \end{align*}

43.429

24224

23401

\begin{align*} \left (2+x \right ) y^{\prime \prime }-y^{\prime }+\frac {y}{2+x}&=0 \\ \end{align*}

43.443

24225

12128

\begin{align*} y^{\prime }&=\frac {x}{2}+\frac {1}{2}+\sqrt {x^{2}+2 x +1-4 y}+x^{2} \sqrt {x^{2}+2 x +1-4 y}+x^{3} \sqrt {x^{2}+2 x +1-4 y} \\ \end{align*}

43.459

24226

13437

\begin{align*} y^{\prime }&=-\left (1+k \right ) x^{k} y^{2}+\lambda \arctan \left (x \right )^{n} \left (x^{1+k} y-1\right ) \\ \end{align*}

43.483

24227

13275

\begin{align*} x \left (a \,x^{k}+b \right ) y^{\prime }&=\alpha \,x^{n} y^{2}+\left (\beta -a n \,x^{k}\right ) y+\gamma \,x^{-n} \\ \end{align*}

43.566

24228

12915

\begin{align*} \left (a \,x^{2}+b x +c \right )^{{3}/{2}} y^{\prime \prime }-F \left (\frac {y}{\sqrt {a \,x^{2}+b x +c}}\right )&=0 \\ \end{align*}

43.652

24229

13420

\begin{align*} y^{\prime }&=y^{2}+\lambda x \arcsin \left (x \right )^{n} y+\arcsin \left (x \right )^{n} \lambda \\ \end{align*}

43.708

24230

12078

\begin{align*} y^{\prime }&=\frac {y^{3} x \,{\mathrm e}^{3 x^{2}} {\mathrm e}^{-\frac {9 x^{2}}{2}}}{9 \,{\mathrm e}^{\frac {3 x^{2}}{2}}+3 \,{\mathrm e}^{\frac {3 x^{2}}{2}} y+9 y} \\ \end{align*}

43.714

24231

22400

\begin{align*} 2 x \sin \left (\frac {y}{x}\right )+2 x \tan \left (\frac {y}{x}\right )-y \cos \left (\frac {y}{x}\right )-y \sec \left (\frac {y}{x}\right )^{2}+\left (x \cos \left (\frac {y}{x}\right )+x \sec \left (\frac {y}{x}\right )^{2}\right ) y^{\prime }&=0 \\ \end{align*}

43.730

24232

12118

\begin{align*} y^{\prime }&=\frac {y \left (x -y\right ) \left (1+y\right )}{x \left (y x +x -y\right )} \\ \end{align*}

43.804

24233

18035

\begin{align*} \left (y^{\prime } x +y\right )^{2}&=y^{2} y^{\prime } \\ \end{align*}

43.823

24234

5151

\begin{align*} x \left (4 x -y\right ) y^{\prime }+4 x^{2}-6 y x -y^{2}&=0 \\ \end{align*}

43.850

24235

24132

\begin{align*} x \cos \left (y\right )^{2}+\tan \left (y\right ) y^{\prime }&=0 \\ \end{align*}

43.882

24236

20742

\begin{align*} x^{2} {y^{\prime }}^{3}+\left (2 x +y\right ) y y^{\prime }+y^{2}&=0 \\ \end{align*}

43.895

24237

8815

\begin{align*} 4 y+y^{\prime \prime }&=x^{2} \\ \end{align*}

43.913

24238

14319

\begin{align*} x^{\prime \prime }+w^{2} x&=\cos \left (\beta t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

43.961

24239

20879

\begin{align*} y^{\prime \prime }-4 y&={\mathrm e}^{2 x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

43.961

24240

14202

\begin{align*} x^{\prime }&=t^{2}+x^{2} \\ \end{align*}

43.969

24241

13812

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x +a y&=0 \\ \end{align*}

43.982

24242

12569

\begin{align*} x^{3} y^{\prime \prime }+x^{2} y^{\prime }+\left (a \,x^{2}+b x +a \right ) y&=0 \\ \end{align*}

43.985

24243

11694

\begin{align*} a {y^{\prime }}^{2}+y y^{\prime }-x&=0 \\ \end{align*}

43.990

24244

11514

\begin{align*} \left (1-2 x +y\right ) y^{\prime }+y+x&=0 \\ \end{align*}

44.030

24245

14313

\begin{align*} x^{\prime \prime }+x^{\prime }+2 x&=t \sin \left (2 t \right ) \\ \end{align*}

44.051

24246

12570

\begin{align*} x^{3} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-2 y&=0 \\ \end{align*}

44.068

24247

13962

\begin{align*} \left (a^{2} {\mathrm e}^{2 \lambda x}+b \right ) y^{\prime \prime }-b \lambda y^{\prime }-a^{2} \lambda ^{2} k^{2} {\mathrm e}^{2 \lambda x} y&=0 \\ \end{align*}

44.083

24248

16619

\begin{align*} y^{\prime \prime }+9 y&=x^{3} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

44.168

24249

11349

\begin{align*} y^{\prime }-a \left (x^{n}-x \right ) y^{3}-y^{2}&=0 \\ \end{align*}

44.231

24250

17748

\begin{align*} y^{\prime \prime }-2 y^{\prime }-8 y&=-t \\ \end{align*}

44.273

24251

22160

\begin{align*} y^{\prime \prime }+4 y^{\prime }+8 y&=\sin \left (x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

44.283

24252

3580

\begin{align*} y^{\prime }&=\frac {\cos \left (x \right )-2 x y^{2}}{2 x^{2} y} \\ y \left (\pi \right ) &= \frac {1}{\pi } \\ \end{align*}

44.291

24253

14694

\begin{align*} x \left (x -2\right ) y^{\prime \prime }-\left (x^{2}-2\right ) y^{\prime }+2 \left (x -1\right ) y&=3 x^{2} \left (x -2\right )^{2} {\mathrm e}^{x} \\ \end{align*}

44.304

24254

1836

\begin{align*} \left (x -1\right )^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=2 x \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}

44.325

24255

1147

\begin{align*} \sin \left (2 x \right )+\cos \left (3 y\right ) y^{\prime }&=0 \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ \end{align*}

44.329

24256

12130

\begin{align*} y^{\prime }&=-\frac {x}{2}+1+\sqrt {x^{2}-4 x +4 y}+x^{2} \sqrt {x^{2}-4 x +4 y}+x^{3} \sqrt {x^{2}-4 x +4 y} \\ \end{align*}

44.345

24257

16618

\begin{align*} y^{\prime \prime }+9 y&=9 x^{4}-9 \\ \end{align*}

44.359

24258

24325

\begin{align*} 2 x^{3} y^{\prime }&=y \left (3 x^{2}+y^{2}\right ) \\ \end{align*}

44.365

24259

326

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=\sin \left (x \right )^{2} \\ \end{align*}

44.371

24260

24380

\begin{align*} x +3 y-5-\left (x -y-1\right ) y^{\prime }&=0 \\ \end{align*}

44.396

24261

8287

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=6 x +4 \\ y \left (1\right ) &= 4 \\ y^{\prime }\left (1\right ) &= -2 \\ \end{align*}

44.457

24262

5796

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{a x} \\ \end{align*}

44.481

24263

3731

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=\sin \left (x \right )^{2} \\ \end{align*}

44.490

24264

13448

\begin{align*} y^{\prime } x&=\lambda \operatorname {arccot}\left (x \right )^{n} y^{2}+k y+\lambda \,b^{2} x^{2 k} \operatorname {arccot}\left (x \right )^{n} \\ \end{align*}

44.517

24265

11792

\begin{align*} x^{2} \left (x y^{2}-1\right ) {y^{\prime }}^{2}+2 x^{2} y^{2} \left (-x +y\right ) y^{\prime }-y^{2} \left (x^{2} y-1\right )&=0 \\ \end{align*}

44.530

24266

21526

\begin{align*} 5 y+2 y^{\prime }+y^{\prime \prime }&=\sin \left (x \right ) {\mathrm e}^{-x} \\ \end{align*}

44.546

24267

12101

\begin{align*} y^{\prime }&=-\frac {2 x}{3}+\sqrt {x^{2}+3 y}+x^{2} \sqrt {x^{2}+3 y}+x^{3} \sqrt {x^{2}+3 y} \\ \end{align*}

44.576

24268

11513

\begin{align*} \left (y+2 x -2\right ) y^{\prime }-y+x +1&=0 \\ \end{align*}

44.585

24269

12138

\begin{align*} y^{\prime }&=-\frac {x}{4}+\frac {1}{4}+\sqrt {x^{2}-2 x +1+8 y}+x^{2} \sqrt {x^{2}-2 x +1+8 y}+x^{3} \sqrt {x^{2}-2 x +1+8 y} \\ \end{align*}

44.681

24270

17757

\begin{align*} y^{\prime \prime }+7 y^{\prime }+12 y&=3 t^{2} {\mathrm e}^{-4 t} \\ \end{align*}

44.690

24271

10076

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=0 \\ y^{\prime }\left (0\right ) &= 0 \\ y \left (0\right ) &= 1 \\ \end{align*}

44.716

24272

13405

\begin{align*} y^{\prime }&=-\left (1+k \right ) x^{k} y^{2}+a \,x^{1+k} \cot \left (x \right )^{m} y-a \cot \left (x \right )^{m} \\ \end{align*}

44.722

24273

8360

\begin{align*} x^{\prime }&=4 x^{2}+4 \\ x \left (\frac {\pi }{4}\right ) &= 1 \\ \end{align*}

44.802

24274

12050

\begin{align*} y^{\prime }&=\frac {y \left (1+y\right )}{x \left (-y-1+y x \right )} \\ \end{align*}

44.877

24275

14621

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=10 \sin \left (4 x \right ) \\ \end{align*}

44.882

24276

6126

\begin{align*} -\left (2+x \right ) y-\left (-x^{2}-x +1\right ) y^{\prime }+\left (x +1\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

44.968

24277

11643

\begin{align*} y^{\prime } \cos \left (y\right )-\cos \left (x \right ) \sin \left (y\right )^{2}-\sin \left (y\right )&=0 \\ \end{align*}

44.971

24278

21598

\begin{align*} x -2 y+1+\left (4 x -3 y-6\right ) y^{\prime }&=0 \\ \end{align*}

45.004

24279

12262

\begin{align*} y^{\prime }&=\frac {y \,{\mathrm e}^{-\frac {x^{2}}{2}} \left (2 y^{2}+2 y \,{\mathrm e}^{\frac {x^{2}}{4}}+2 \,{\mathrm e}^{\frac {x^{2}}{2}}+x \,{\mathrm e}^{\frac {x^{2}}{2}}\right )}{2} \\ \end{align*}

45.014

24280

12125

\begin{align*} y^{\prime }&=\frac {y \left (x +y\right ) \left (1+y\right )}{x \left (y x +x +y\right )} \\ \end{align*}

45.042

24281

4509

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +5 y&=\frac {5 \ln \left (x \right )}{x^{2}} \\ \end{align*}

45.085

24282

13432

\begin{align*} y^{\prime }&=\lambda \arccos \left (x \right )^{n} y^{2}+\beta m \,x^{m -1}-\lambda \,\beta ^{2} x^{2 m} \arccos \left (x \right )^{n} \\ \end{align*}

45.089

24283

3257

\begin{align*} y^{\prime \prime }&=\sqrt {1+{y^{\prime }}^{2}} \\ \end{align*}

45.094

24284

12596

\begin{align*} y^{\prime \prime }&=-\frac {\left (3 x -1\right ) y^{\prime }}{2 x \left (x -1\right )}+\frac {v \left (v +1\right ) y}{4 x^{2}} \\ \end{align*}

45.119

24285

24358

\begin{align*} x +3 y-4+\left (x +4 y-5\right ) y^{\prime }&=0 \\ \end{align*}

45.130

24286

13486

\begin{align*} f \left (x \right )^{2} y^{\prime }-f^{\prime }\left (x \right ) y^{2}+g \left (x \right ) \left (y-f \left (x \right )\right )&=0 \\ \end{align*}

45.162

24287

13535

\begin{align*} y y^{\prime }-y&=12 x +\frac {A}{x^{{5}/{2}}} \\ \end{align*}

45.174

24288

3961

\begin{align*} y^{\prime }-3 y&=-10 \,{\mathrm e}^{-t +a} \sin \left (-2 t +2 a \right ) \operatorname {Heaviside}\left (t -a \right ) \\ y \left (0\right ) &= 5 \\ \end{align*}
Using Laplace transform method.

45.180

24289

19351

\begin{align*} y^{\prime } y^{2} x +y^{3}&=\cos \left (x \right ) x \\ \end{align*}

45.185

24290

14726

\begin{align*} \left (2 x -3\right )^{2} y^{\prime \prime }-6 \left (2 x -3\right ) y^{\prime }+12 y&=0 \\ \end{align*}

45.301

24291

17066

\begin{align*} y^{\prime }&=-y^{3} \\ y \left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

45.346

24292

13374

\begin{align*} y^{\prime }&=a \sin \left (\lambda x +\mu \right )^{k} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1} \\ \end{align*}

45.369

24293

25579

\begin{align*} r^{\prime \prime }+2 r^{\prime }+r&=1 \\ r \left (0\right ) &= 0 \\ r^{\prime }\left (0\right ) &= 0 \\ \end{align*}

45.433

24294

21040

\begin{align*} x^{\prime }&=2+\sin \left (x\right ) \\ x \left (0\right ) &= 0 \\ \end{align*}

45.436

24295

13567

\begin{align*} 2 y y^{\prime }&=\left (7 a x +5 b \right ) y-3 a^{2} x^{3}-2 c \,x^{2}-3 b^{2} x \\ \end{align*}

45.455

24296

13565

\begin{align*} y y^{\prime }&=\left (a x +3 b \right ) y+c \,x^{3}-b \,x^{2} a -2 b^{2} x \\ \end{align*}

45.551

24297

15667

\begin{align*} y^{\prime \prime }+9 y&=27 x +18 \\ y \left (0\right ) &= 23 \\ y^{\prime }\left (0\right ) &= 21 \\ \end{align*}

45.563

24298

12564

\begin{align*} \left (a \,x^{2}+b x \right ) y^{\prime \prime }+2 b y^{\prime }-2 a y&=0 \\ \end{align*}

45.616

24299

8734

\begin{align*} y^{\prime }&=\frac {3 x -y+1}{2 x +y+4} \\ \end{align*}

45.629

24300

2602

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=2 \cos \left (t \right )^{2} {\mathrm e}^{t} \\ \end{align*}

45.664