2.2.51 Problems 5001 to 5100

Table 2.103: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

5001

\[ {}x {y^{\prime }}^{2}+y y^{\prime }-y^{4} = 0 \]

[[_homogeneous, ‘class G‘]]

16.647

5002

\[ {}x {y^{\prime }}^{2}+\left (-y+a \right ) y^{\prime }+b = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.418

5003

\[ {}x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }+1-y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

1.148

5004

\[ {}x {y^{\prime }}^{2}+\left (a +x -y\right ) y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.456

5005

\[ {}x {y^{\prime }}^{2}-\left (3 x -y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.900

5006

\[ {}x {y^{\prime }}^{2}+a +b x -y-b y = 0 \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

1.961

5007

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+a = 0 \]

[[_homogeneous, ‘class G‘], _rational, _dAlembert]

0.457

5008

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+a x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.415

5009

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.122

5010

\[ {}x {y^{\prime }}^{2}-3 y y^{\prime }+9 x^{2} = 0 \]

[[_homogeneous, ‘class G‘]]

12.145

5011

\[ {}x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

[_quadrature]

3.653

5012

\[ {}x {y^{\prime }}^{2}-a y y^{\prime }+b = 0 \]

[[_homogeneous, ‘class G‘], _rational, _dAlembert]

0.603

5013

\[ {}x {y^{\prime }}^{2}+a y y^{\prime }+b x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.923

5014

\[ {}x {y^{\prime }}^{2}-\left (y x +1\right ) y^{\prime }+y = 0 \]

[_quadrature]

1.216

5015

\[ {}x {y^{\prime }}^{2}+\left (1-x \right ) y y^{\prime }-y^{2} = 0 \]

[_quadrature]

3.618

5016

\[ {}x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-y x = 0 \]

[_quadrature]

2.355

5017

\[ {}\left (x +1\right ) {y^{\prime }}^{2} = y \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

1.551

5018

\[ {}\left (x +1\right ) {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.477

5019

\[ {}\left (a -x \right ) {y^{\prime }}^{2}+y y^{\prime }-b = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.451

5020

\[ {}2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y = 0 \]

[_rational, _dAlembert]

1.800

5021

\[ {}3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.557

5022

\[ {}\left (1+3 x \right ) {y^{\prime }}^{2}-3 \left (2+y\right ) y^{\prime }+9 = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.209

5023

\[ {}\left (5+3 x \right ) {y^{\prime }}^{2}-\left (3+3 y\right ) y^{\prime }+y = 0 \]

[_rational, _dAlembert]

2.967

5024

\[ {}4 x {y^{\prime }}^{2} = \left (a -3 x \right )^{2} \]

[_quadrature]

0.256

5025

\[ {}4 x {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.133

5026

\[ {}4 x {y^{\prime }}^{2}-3 y y^{\prime }+3 = 0 \]

[[_homogeneous, ‘class G‘], _rational, _dAlembert]

0.429

5027

\[ {}4 x {y^{\prime }}^{2}+4 y y^{\prime } = 1 \]

[[_homogeneous, ‘class G‘], _dAlembert]

0.415

5028

\[ {}4 x {y^{\prime }}^{2}+4 y y^{\prime }-y^{4} = 0 \]

[[_homogeneous, ‘class G‘]]

22.937

5029

\[ {}4 \left (2-x \right ) {y^{\prime }}^{2}+1 = 0 \]

[_quadrature]

0.207

5030

\[ {}16 x {y^{\prime }}^{2}+8 y y^{\prime }+y^{6} = 0 \]

[[_homogeneous, ‘class G‘]]

7.838

5031

\[ {}x^{2} {y^{\prime }}^{2} = a^{2} \]

[_quadrature]

1.197

5032

\[ {}x^{2} {y^{\prime }}^{2} = y^{2} \]

[_separable]

5.220

5033

\[ {}x^{2} {y^{\prime }}^{2}+x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9.901

5034

\[ {}x^{2} {y^{\prime }}^{2} = \left (x -y\right )^{2} \]

[_linear]

6.915

5035

\[ {}x^{2} {y^{\prime }}^{2}+y^{2}-y^{4} = 0 \]

[_separable]

4.482

5036

\[ {}x^{2} {y^{\prime }}^{2}-y^{\prime } x +y \left (1-y\right ) = 0 \]

[_separable]

5.117

5037

\[ {}x^{2} {y^{\prime }}^{2}+2 a x y^{\prime }+a^{2}+x^{2}-2 a y = 0 \]

[_rational]

3.544

5038

\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }-x +y \left (1+y\right ) = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

8.879

5039

\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }-x^{4}+\left (-x^{2}+1\right ) y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

7.158

5040

\[ {}x^{2} {y^{\prime }}^{2}-\left (2 y x +1\right ) y^{\prime }+1+y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

1.490

5041

\[ {}x^{2} {y^{\prime }}^{2}-\left (a +2 y x \right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.782

5042

\[ {}x^{2} {y^{\prime }}^{2}-x \left (x -2 y\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.676

5043

\[ {}x^{2} {y^{\prime }}^{2}+2 x \left (y+2 x \right ) y^{\prime }-4 a +y^{2} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

8.668

5044

\[ {}x^{2} {y^{\prime }}^{2}+x \left (x^{3}-2 y\right ) y^{\prime }-\left (2 x^{3}-y\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

8.436

5045

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

6.936

5046

\[ {}x^{2} {y^{\prime }}^{2}-3 x y y^{\prime }+x^{3}+2 y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational]

165.345

5047

\[ {}x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }-5 y^{2} = 0 \]

[_separable]

4.444

5048

\[ {}x^{2} {y^{\prime }}^{2}-4 x \left (2+y\right ) y^{\prime }+4 \left (2+y\right ) y = 0 \]

[_separable]

0.748

5049

\[ {}x^{2} {y^{\prime }}^{2}-5 x y y^{\prime }+6 y^{2} = 0 \]

[_separable]

3.951

5050

\[ {}x^{2} {y^{\prime }}^{2}+x \left (x^{2}+y x -2 y\right ) y^{\prime }+\left (1-x \right ) \left (x^{2}-y\right ) y = 0 \]

[_rational]

10.516

5051

\[ {}x^{2} {y^{\prime }}^{2}+\left (y+2 x \right ) y y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

213.921

5052

\[ {}x^{2} {y^{\prime }}^{2}+\left (2 x -y\right ) y y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

193.234

5053

\[ {}x^{2} {y^{\prime }}^{2}+\left (a +b \,x^{2} y^{3}\right ) y^{\prime }+a b y^{3} = 0 \]

[_quadrature]

0.847

5054

\[ {}\left (-x^{2}+1\right ) {y^{\prime }}^{2} = 1-y^{2} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4.141

5055

\[ {}\left (-x^{2}+1\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+4 x^{2} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

12.701

5056

\[ {}\left (a^{2}+x^{2}\right ) {y^{\prime }}^{2} = b^{2} \]

[_quadrature]

0.502

5057

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}+b^{2} = 0 \]

[_quadrature]

0.281

5058

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2} = b^{2} \]

[_quadrature]

0.378

5059

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2} = x^{2} \]

[_quadrature]

0.248

5060

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+x^{2} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

16.367

5061

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}-2 x y y^{\prime }-y^{2} = 0 \]

[_separable]

4.540

5062

\[ {}\left (a^{2}+x^{2}\right ) {y^{\prime }}^{2}-2 x y y^{\prime }+b +y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

1.716

5063

\[ {}4 x^{2} {y^{\prime }}^{2}-4 x y y^{\prime } = 8 x^{3}-y^{2} \]

[_linear]

1.808

5064

\[ {}a \,x^{2} {y^{\prime }}^{2}-2 a x y y^{\prime }+a \left (1-a \right ) x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7.147

5065

\[ {}\left (-a^{2}+1\right ) x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }-a^{2} x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

79.413

5066

\[ {}x^{3} {y^{\prime }}^{2} = a \]

[_quadrature]

0.231

5067

\[ {}x^{3} {y^{\prime }}^{2}+y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.235

5068

\[ {}x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+a = 0 \]

[[_homogeneous, ‘class G‘], _rational]

10.901

5069

\[ {}x \left (-x^{2}+1\right ) {y^{\prime }}^{2}-2 \left (-x^{2}+1\right ) y y^{\prime }+x \left (1-y^{2}\right ) = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

7.396

5070

\[ {}4 x \left (a -x \right ) \left (b -x \right ) {y^{\prime }}^{2} = \left (a b -2 x \left (a +b \right )+2 x^{2}\right )^{2} \]

[_quadrature]

0.781

5071

\[ {}x^{4} {y^{\prime }}^{2}-y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4.174

5072

\[ {}x^{4} {y^{\prime }}^{2}+2 x^{3} y y^{\prime }-4 = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.736

5073

\[ {}x^{4} {y^{\prime }}^{2}+x y^{2} y^{\prime }-y^{3} = 0 \]

[[_homogeneous, ‘class G‘]]

8.196

5074

\[ {}x^{2} \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}+1 = 0 \]

[_quadrature]

0.470

5075

\[ {}3 x^{4} {y^{\prime }}^{2}-y x -y = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.023

5076

\[ {}4 x^{5} {y^{\prime }}^{2}+12 x^{4} y y^{\prime }+9 = 0 \]

[[_homogeneous, ‘class G‘]]

13.608

5077

\[ {}x^{6} {y^{\prime }}^{2}-2 y^{\prime } x -4 y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4.571

5078

\[ {}x^{8} {y^{\prime }}^{2}+3 y^{\prime } x +9 y = 0 \]

[[_homogeneous, ‘class G‘]]

4.707

5079

\[ {}y {y^{\prime }}^{2} = a \]

[_quadrature]

23.916

5080

\[ {}y {y^{\prime }}^{2} = a^{2} x \]

[[_homogeneous, ‘class A‘], _dAlembert]

7.241

5081

\[ {}y {y^{\prime }}^{2} = {\mathrm e}^{2 x} \]

[[_1st_order, _with_linear_symmetries]]

1.981

5082

\[ {}y {y^{\prime }}^{2}+2 a x y^{\prime }-a y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.410

5083

\[ {}y {y^{\prime }}^{2}-4 a^{2} x y^{\prime }+a^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10.105

5084

\[ {}y {y^{\prime }}^{2}+a x y^{\prime }+b y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.775

5085

\[ {}y {y^{\prime }}^{2}-\left (-2 b x +a \right ) y^{\prime }-b y = 0 \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

2.884

5086

\[ {}y {y^{\prime }}^{2}+x^{3} y^{\prime }-x^{2} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

8.436

5087

\[ {}y {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-x = 0 \]

[_quadrature]

9.332

5088

\[ {}y {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.097

5089

\[ {}y {y^{\prime }}^{2}-\left (y x +1\right ) y^{\prime }+x = 0 \]

[_quadrature]

0.490

5090

\[ {}y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-y x = 0 \]

[_quadrature]

9.706

5091

\[ {}y {y^{\prime }}^{2}+y = a \]

[_quadrature]

1.155

5092

\[ {}\left (x +y\right ) {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.321

5093

\[ {}\left (2 x -y\right ) {y^{\prime }}^{2}-2 \left (1-x \right ) y^{\prime }+2-y = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

2.750

5094

\[ {}2 y {y^{\prime }}^{2}+\left (5-4 x \right ) y^{\prime }+2 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

1.086

5095

\[ {}9 y {y^{\prime }}^{2}+4 x^{3} y^{\prime }-4 x^{2} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

8.662

5096

\[ {}\left (1-a y\right ) {y^{\prime }}^{2} = a y \]

[_quadrature]

1.256

5097

\[ {}\left (x^{2}-a y\right ) {y^{\prime }}^{2}-2 x y y^{\prime } = 0 \]

[_quadrature]

3.882

5098

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

[_quadrature]

0.510

5099

\[ {}x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}\right ) y^{\prime }+y x = 0 \]

[_separable]

10.632

5100

\[ {}x y {y^{\prime }}^{2}+\left (x^{2}-y^{2}\right ) y^{\prime }-y x = 0 \]

[_separable]

10.491