2.2.50 Problems 4901 to 5000

Table 2.101: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

4901

\[ {}{y^{\prime }}^{2} = 1-y^{2} \]

[_quadrature]

9.690

4902

\[ {}{y^{\prime }}^{2} = a^{2}-y^{2} \]

[_quadrature]

70.262

4903

\[ {}{y^{\prime }}^{2} = a^{2} y^{2} \]

[_quadrature]

3.604

4904

\[ {}{y^{\prime }}^{2} = a +b y^{2} \]

[_quadrature]

8.957

4905

\[ {}{y^{\prime }}^{2} = x^{2} y^{2} \]

[_separable]

5.888

4906

\[ {}{y^{\prime }}^{2} = \left (-1+y\right ) y^{2} \]

[_quadrature]

77.381

4907

\[ {}{y^{\prime }}^{2} = \left (y-a \right ) \left (y-b \right ) \left (y-c \right ) \]

[_quadrature]

80.486

4908

\[ {}{y^{\prime }}^{2} = a^{2} y^{n} \]

[_quadrature]

39.431

4909

\[ {}{y^{\prime }}^{2} = a^{2} \left (1-\ln \left (y\right )^{2}\right ) y^{2} \]

[_quadrature]

14.379

4910

\[ {}{y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right ) \left (y-b \right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

98.243

4911

\[ {}{y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right )^{2} \left (y-b \right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

63.657

4912

\[ {}{y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right ) \left (y-b \right ) \left (y-c \right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

98.301

4913

\[ {}{y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right )^{2} \left (y-b \right ) \left (y-c \right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

98.543

4914

\[ {}{y^{\prime }}^{2} = f \left (x \right )^{2} \left (y-a \right ) \left (y-b \right ) \left (y-c \right )^{2} \]

[_separable]

83.621

4915

\[ {}{y^{\prime }}^{2} = f \left (x \right )^{2} \left (y-u \left (x \right )\right )^{2} \left (y-a \right ) \left (y-b \right ) \]

[‘y=_G(x,y’)‘]

5.355

4916

\[ {}{y^{\prime }}^{2}+2 y^{\prime }+x = 0 \]

[_quadrature]

0.224

4917

\[ {}{y^{\prime }}^{2}-2 y^{\prime }+a \left (x -y\right ) = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

0.372

4918

\[ {}{y^{\prime }}^{2}-2 y^{\prime }-y^{2} = 0 \]

[_quadrature]

0.470

4919

\[ {}{y^{\prime }}^{2}-5 y^{\prime }+6 = 0 \]

[_quadrature]

0.544

4920

\[ {}{y^{\prime }}^{2}-7 y^{\prime }+12 = 0 \]

[_quadrature]

0.581

4921

\[ {}{y^{\prime }}^{2}+a y^{\prime }+b = 0 \]

[_quadrature]

0.361

4922

\[ {}{y^{\prime }}^{2}+a y^{\prime }+b x = 0 \]

[_quadrature]

0.271

4923

\[ {}{y^{\prime }}^{2}+a y^{\prime }+b y = 0 \]

[_quadrature]

0.733

4924

\[ {}{y^{\prime }}^{2}+y^{\prime } x +1 = 0 \]

[_quadrature]

0.270

4925

\[ {}{y^{\prime }}^{2}+y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.315

4926

\[ {}{y^{\prime }}^{2}-y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.271

4927

\[ {}{y^{\prime }}^{2}-y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.445

4928

\[ {}{y^{\prime }}^{2}+y^{\prime } x +x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.391

4929

\[ {}{y^{\prime }}^{2}+\left (1-x \right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.467

4930

\[ {}{y^{\prime }}^{2}-\left (x +1\right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.324

4931

\[ {}{y^{\prime }}^{2}-\left (2-x \right ) y^{\prime }+1-y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.342

4932

\[ {}{y^{\prime }}^{2}+\left (x +a \right ) y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.336

4933

\[ {}{y^{\prime }}^{2}-2 y^{\prime } x +1 = 0 \]

[_quadrature]

0.263

4934

\[ {}{y^{\prime }}^{2}+2 y^{\prime } x -3 x^{2} = 0 \]

[_quadrature]

0.308

4935

\[ {}{y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.357

4936

\[ {}{y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.294

4937

\[ {}{y^{\prime }}^{2}-2 y^{\prime } x +2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.277

4938

\[ {}{y^{\prime }}^{2}-\left (2 x +1\right ) y^{\prime }-x \left (1-x \right ) = 0 \]

[_quadrature]

0.270

4939

\[ {}{y^{\prime }}^{2}+2 \left (1-x \right ) y^{\prime }-2 x +2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.394

4940

\[ {}{y^{\prime }}^{2}+3 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.366

4941

\[ {}{y^{\prime }}^{2}-4 \left (x +1\right ) y^{\prime }+4 y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.329

4942

\[ {}{y^{\prime }}^{2}+a x y^{\prime } = b c \,x^{2} \]

[_quadrature]

0.246

4943

\[ {}{y^{\prime }}^{2}-a x y^{\prime }+a y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.327

4944

\[ {}{y^{\prime }}^{2}+a x y^{\prime }+b \,x^{2}+c y = 0 \]

[[_homogeneous, ‘class G‘]]

3.931

4945

\[ {}{y^{\prime }}^{2}+\left (b x +a \right ) y^{\prime }+c = b y \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.447

4946

\[ {}{y^{\prime }}^{2}-2 x^{2} y^{\prime }+2 y^{\prime } x = 0 \]

[_quadrature]

0.381

4947

\[ {}{y^{\prime }}^{2}+a \,x^{3} y^{\prime }-2 a \,x^{2} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

3.796

4948

\[ {}{y^{\prime }}^{2}-2 a \,x^{3} y^{\prime }+4 a \,x^{2} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

3.129

4949

\[ {}{y^{\prime }}^{2}+4 x^{5} y^{\prime }-12 x^{4} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

2.572

4950

\[ {}{y^{\prime }}^{2}-2 y^{\prime } \cosh \left (x \right )+1 = 0 \]

[_quadrature]

0.250

4951

\[ {}{y^{\prime }}^{2}+y y^{\prime } = x \left (x +y\right ) \]

[_quadrature]

1.317

4952

\[ {}{y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0 \]

[[_1st_order, _with_linear_symmetries]]

4.101

4953

\[ {}{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+y x = 0 \]

[_quadrature]

0.480

4954

\[ {}{y^{\prime }}^{2}-2 y y^{\prime }-2 x = 0 \]

[_dAlembert]

42.126

4955

\[ {}{y^{\prime }}^{2}+\left (1+2 y\right ) y^{\prime }+y \left (-1+y\right ) = 0 \]

[_quadrature]

0.552

4956

\[ {}{y^{\prime }}^{2}-2 \left (x -y\right ) y^{\prime }-4 y x = 0 \]

[_quadrature]

0.951

4957

\[ {}{y^{\prime }}^{2}-\left (1+4 y\right ) y^{\prime }+\left (1+4 y\right ) y = 0 \]

[_quadrature]

0.977

4958

\[ {}{y^{\prime }}^{2}-2 \left (1-3 y\right ) y^{\prime }-\left (4-9 y\right ) y = 0 \]

[_quadrature]

1.197

4959

\[ {}{y^{\prime }}^{2}+\left (a +6 y\right ) y^{\prime }+y \left (3 a +b +9 y\right ) = 0 \]

[_quadrature]

0.994

4960

\[ {}{y^{\prime }}^{2}+a y y^{\prime }-a x = 0 \]

[_dAlembert]

160.383

4961

\[ {}{y^{\prime }}^{2}-a y y^{\prime }-a x = 0 \]

[_dAlembert]

197.328

4962

\[ {}{y^{\prime }}^{2}+\left (a x +b y\right ) y^{\prime }+a b x y = 0 \]

[_quadrature]

1.087

4963

\[ {}{y^{\prime }}^{2}-x y y^{\prime }+y^{2} \ln \left (a y\right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

5.850

4964

\[ {}{y^{\prime }}^{2}-\left (2 y x +1\right ) y^{\prime }+2 y x = 0 \]

[_quadrature]

1.324

4965

\[ {}{y^{\prime }}^{2}-\left (4+y^{2}\right ) y^{\prime }+4+y^{2} = 0 \]

[_quadrature]

2.854

4966

\[ {}{y^{\prime }}^{2}-\left (x -y\right ) y y^{\prime }-x y^{3} = 0 \]

[_separable]

1.835

4967

\[ {}{y^{\prime }}^{2}+x y^{2} y^{\prime }+y^{3} = 0 \]

[[_homogeneous, ‘class G‘]]

7.303

4968

\[ {}{y^{\prime }}^{2}-2 x^{3} y^{2} y^{\prime }-4 x^{2} y^{3} = 0 \]

[[_1st_order, _with_linear_symmetries]]

3.078

4969

\[ {}{y^{\prime }}^{2}-x y \left (x^{2}+y^{2}\right ) y^{\prime }+x^{4} y^{4} = 0 \]

[_separable]

3.678

4970

\[ {}{y^{\prime }}^{2}+2 x y^{3} y^{\prime }+y^{4} = 0 \]

[[_homogeneous, ‘class G‘]]

3.216

4971

\[ {}{y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right )-y^{2} = 0 \]

[_separable]

0.872

4972

\[ {}{y^{\prime }}^{2}-3 x y^{{2}/{3}} y^{\prime }+9 y^{{5}/{3}} = 0 \]

[[_1st_order, _with_linear_symmetries]]

5.882

4973

\[ {}{y^{\prime }}^{2} = {\mathrm e}^{4 x -2 y} \left (y^{\prime }-1\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

0.678

4974

\[ {}2 {y^{\prime }}^{2}+y^{\prime } x -2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.407

4975

\[ {}2 {y^{\prime }}^{2}-\left (1-x \right ) y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.349

4976

\[ {}2 {y^{\prime }}^{2}-2 x^{2} y^{\prime }+3 y x = 0 \]

[[_homogeneous, ‘class G‘]]

3.368

4977

\[ {}2 {y^{\prime }}^{2}+2 \left (6 y-1\right ) y^{\prime }+3 y \left (6 y-1\right ) = 0 \]

[_quadrature]

2.852

4978

\[ {}3 {y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.373

4979

\[ {}3 {y^{\prime }}^{2}+4 y^{\prime } x +x^{2}-y = 0 \]

[[_homogeneous, ‘class G‘]]

3.099

4980

\[ {}4 {y^{\prime }}^{2} = 9 x \]

[_quadrature]

0.198

4981

\[ {}4 {y^{\prime }}^{2}+2 x \,{\mathrm e}^{-2 y} y^{\prime }-{\mathrm e}^{-2 y} = 0 \]

[[_1st_order, _with_linear_symmetries]]

9.972

4982

\[ {}4 {y^{\prime }}^{2}+2 \,{\mathrm e}^{2 x -2 y} y^{\prime }-{\mathrm e}^{2 x -2 y} = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

0.734

4983

\[ {}5 {y^{\prime }}^{2}+3 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.394

4984

\[ {}5 {y^{\prime }}^{2}+6 y^{\prime } x -2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.363

4985

\[ {}9 {y^{\prime }}^{2}+3 x y^{4} y^{\prime }+y^{5} = 0 \]

[[_1st_order, _with_linear_symmetries]]

264.806

4986

\[ {}x {y^{\prime }}^{2} = a \]

[_quadrature]

0.218

4987

\[ {}x {y^{\prime }}^{2} = -x^{2}+a \]

[_quadrature]

0.363

4988

\[ {}x {y^{\prime }}^{2} = y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.090

4989

\[ {}x {y^{\prime }}^{2}+x -2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.042

4990

\[ {}x {y^{\prime }}^{2}+y^{\prime } = y \]

[_rational, _dAlembert]

0.875

4991

\[ {}x {y^{\prime }}^{2}+2 y^{\prime }-y = 0 \]

[_rational, _dAlembert]

1.465

4992

\[ {}x {y^{\prime }}^{2}-2 y^{\prime }-y = 0 \]

[_rational, _dAlembert]

0.845

4993

\[ {}x {y^{\prime }}^{2}+4 y^{\prime }-2 y = 0 \]

[_rational, _dAlembert]

0.958

4994

\[ {}x {y^{\prime }}^{2}+y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.127

4995

\[ {}x {y^{\prime }}^{2}-\left (x^{2}+1\right ) y^{\prime }+x = 0 \]

[_quadrature]

0.893

4996

\[ {}x {y^{\prime }}^{2}+y y^{\prime }+a = 0 \]

[[_homogeneous, ‘class G‘], _dAlembert]

0.464

4997

\[ {}x {y^{\prime }}^{2}-y y^{\prime }+a = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.327

4998

\[ {}x {y^{\prime }}^{2}-y y^{\prime }+a x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4.699

4999

\[ {}x {y^{\prime }}^{2}+y y^{\prime }+x^{3} = 0 \]

[[_homogeneous, ‘class G‘]]

6.151

5000

\[ {}x {y^{\prime }}^{2}-y y^{\prime }+a y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

6.642