2.2.50 Problems 4901 to 5000

Table 2.101: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

4901

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1+y^{2}-2 x y \left (1+y^{2}\right ) \]

[_rational, _Abel]

1.215

4902

\[ {}\left (x^{2}+1\right ) y^{\prime }+x \sin \left (y\right ) \cos \left (y\right ) = x \left (x^{2}+1\right ) \cos \left (y\right )^{2} \]

[‘y=_G(x,y’)‘]

14.879

4903

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1+x^{2}-y \,\operatorname {arccot}\left (x \right ) \]

[_linear]

2.204

4904

\[ {}\left (-x^{2}+4\right ) y^{\prime }+4 y = \left (x +2\right ) y^{2} \]

[_rational, _Bernoulli]

1.488

4905

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime } = b +x y \]

[_linear]

1.168

4906

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime } = \left (b +y\right ) \left (x +\sqrt {a^{2}+x^{2}}\right ) \]

[_separable]

3.915

4907

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime }+\left (x -y\right ) y = 0 \]

[_rational, _Bernoulli]

2.340

4908

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime } = a^{2}+3 x y-2 y^{2} \]

[_rational, _Riccati]

161.737

4909

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime }+x y+b x y^{2} = 0 \]

[_separable]

2.562

4910

\[ {}x \left (1-x \right ) y^{\prime } = a +\left (x +1\right ) y \]

[_linear]

1.098

4911

\[ {}x \left (1-x \right ) y^{\prime } = 2+2 x y \]

[_linear]

1.258

4912

\[ {}x \left (1-x \right ) y^{\prime } = 2 x y-2 \]

[_linear]

1.256

4913

\[ {}x \left (x +1\right ) y^{\prime } = \left (1-2 x \right ) y \]

[_separable]

1.760

4914

\[ {}x \left (1-x \right ) y^{\prime }+\left (2 x +1\right ) y = a \]

[_linear]

1.259

4915

\[ {}x \left (1-x \right ) y^{\prime } = a +2 \left (2-x \right ) y \]

[_linear]

1.401

4916

\[ {}x \left (1-x \right ) y^{\prime }+2-3 x y+y = 0 \]

[_linear]

1.322

4917

\[ {}x \left (x +1\right ) y^{\prime } = \left (x +1\right ) \left (x^{2}-1\right )+\left (x^{2}+x -1\right ) y \]

[_linear]

1.581

4918

\[ {}\left (x -2\right ) \left (x -3\right ) y^{\prime }+x^{2}-8 y+3 x y = 0 \]

[_linear]

1.609

4919

\[ {}x \left (x +a \right ) y^{\prime } = \left (b +c y\right ) y \]

[_separable]

2.592

4920

\[ {}\left (x +a \right )^{2} y^{\prime } = 2 \left (x +a \right ) \left (b +y\right ) \]

[_separable]

1.217

4921

\[ {}\left (x -a \right )^{2} y^{\prime }+k \left (x +y-a \right )^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class C‘], _rational, _Riccati]

39.018

4922

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }+k y = 0 \]

[_separable]

2.083

4923

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime } = \left (x -a \right ) \left (x -b \right )+\left (2 x -a -b \right ) y \]

[_linear]

1.540

4924

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime } = c y^{2} \]

[_separable]

1.832

4925

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }+k \left (y-a \right ) \left (y-b \right ) = 0 \]

[_separable]

3.455

4926

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }+k \left (x +y-a \right ) \left (x +y-b \right )+y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

2.931

4927

\[ {}2 x^{2} y^{\prime } = y \]

[_separable]

1.716

4928

\[ {}2 x^{2} y^{\prime }+x \cot \left (x \right )-1+2 x^{2} y \cot \left (x \right ) = 0 \]

[_linear]

2.184

4929

\[ {}2 x^{2} y^{\prime }+1+2 x y-x^{2} y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

1.863

4930

\[ {}2 x^{2} y^{\prime } = 2 x y+\left (1-x \cot \left (x \right )\right ) \left (x^{2}-y^{2}\right ) \]

[[_homogeneous, ‘class D‘], _Riccati]

50.354

4931

\[ {}2 \left (-x^{2}+1\right ) y^{\prime } = \sqrt {-x^{2}+1}+\left (x +1\right ) y \]

[_linear]

2.531

4932

\[ {}x \left (1-2 x \right ) y^{\prime }+1+\left (1-4 x \right ) y = 0 \]

[_linear]

1.285

4933

\[ {}x \left (1-2 x \right ) y^{\prime } = 4 x -\left (1+4 x \right ) y+y^{2} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

2.581

4934

\[ {}2 x \left (1-x \right ) y^{\prime }+x +\left (1-2 x \right ) y = 0 \]

[_linear]

1.399

4935

\[ {}2 x \left (1-x \right ) y^{\prime }+x +\left (1-x \right ) y^{2} = 0 \]

[_rational, _Riccati]

2.245

4936

\[ {}2 \left (x^{2}+x +1\right ) y^{\prime } = 1+8 x^{2}-\left (2 x +1\right ) y \]

[_linear]

4.038

4937

\[ {}4 \left (x^{2}+1\right ) y^{\prime }-4 x y-x^{2} = 0 \]

[_linear]

1.362

4938

\[ {}a \,x^{2} y^{\prime } = x^{2}+y a x +b^{2} y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

14.958

4939

\[ {}\left (b \,x^{2}+a \right ) y^{\prime } = A +B y^{2} \]

[_separable]

3.703

4940

\[ {}\left (b \,x^{2}+a \right ) y^{\prime } = c x y \ln \left (y\right ) \]

[_separable]

1.950

4941

\[ {}x \left (a x +1\right ) y^{\prime }+a -y = 0 \]

[_separable]

0.985

4942

\[ {}\left (b x +a \right )^{2} y^{\prime }+c y^{2}+\left (b x +a \right ) y^{3} = 0 \]

[_rational, _Abel]

2.049

4943

\[ {}x^{3} y^{\prime } = a +b \,x^{2} y \]

[_linear]

1.155

4944

\[ {}x^{3} y^{\prime } = 3-x^{2}+x^{2} y \]

[_linear]

1.342

4945

\[ {}x^{3} y^{\prime } = x^{4}+y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

1.412

4946

\[ {}x^{3} y^{\prime } = y \left (y+x^{2}\right ) \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2.170

4947

\[ {}x^{3} y^{\prime } = x^{2} \left (-1+y\right )+y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

2.322

4948

\[ {}x^{3} y^{\prime } = \left (x +1\right ) y^{2} \]

[_separable]

1.526

4949

\[ {}x^{3} y^{\prime }+20+x^{2} y \left (1-x^{2} y\right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

2.109

4950

\[ {}x^{3} y^{\prime }+3+\left (3-2 x \right ) x^{2} y-x^{6} y^{2} = 0 \]

[_rational, _Riccati]

1.816

4951

\[ {}x^{3} y^{\prime } = \left (2 x^{2}+y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

88.449

4952

\[ {}x^{3} y^{\prime } = \cos \left (y\right ) \left (\cos \left (y\right )-2 x^{2} \sin \left (y\right )\right ) \]

[‘y=_G(x,y’)‘]

44.275

4953

\[ {}x \left (x^{2}+1\right ) y^{\prime } = a \,x^{2}+y \]

[_linear]

1.097

4954

\[ {}x \left (-x^{2}+1\right ) y^{\prime } = a \,x^{2}+y \]

[_linear]

1.155

4955

\[ {}x \left (x^{2}+1\right ) y^{\prime } = a \,x^{3}+y \]

[_linear]

1.047

4956

\[ {}x \left (x^{2}+1\right ) y^{\prime } = a -x^{2} y \]

[_linear]

1.110

4957

\[ {}x \left (x^{2}+1\right ) y^{\prime } = \left (-x^{2}+1\right ) y \]

[_separable]

1.774

4958

\[ {}x \left (-x^{2}+1\right ) y^{\prime } = \left (x^{2}-x +1\right ) y \]

[_separable]

2.006

4959

\[ {}x \left (-x^{2}+1\right ) y^{\prime } = a \,x^{3}+\left (-2 x^{2}+1\right ) y \]

[_linear]

1.112

4960

\[ {}x \left (-x^{2}+1\right ) y^{\prime } = x^{3} \left (-x^{2}+1\right )+\left (-2 x^{2}+1\right ) y \]

[_linear]

2.918

4961

\[ {}x \left (x^{2}+1\right ) y^{\prime } = 2-4 x^{2} y \]

[_linear]

1.324

4962

\[ {}x \left (x^{2}+1\right ) y^{\prime } = x -\left (5 x^{2}+3\right ) y \]

[_linear]

1.398

4963

\[ {}x \left (-x^{2}+1\right ) y^{\prime }+x^{2}+\left (-x^{2}+1\right ) y^{2} = 0 \]

[_rational, _Riccati]

141.428

4964

\[ {}x^{2} \left (1-x \right ) y^{\prime } = \left (2-x \right ) x y-y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2.210

4965

\[ {}2 x^{3} y^{\prime } = \left (x^{2}-y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

88.745

4966

\[ {}2 x^{3} y^{\prime } = \left (3 x^{2}+a y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13.652

4967

\[ {}6 x^{3} y^{\prime } = 4 x^{2} y+\left (1-3 x \right ) y^{4} \]

[_rational, _Bernoulli]

2.134

4968

\[ {}x \left (c \,x^{2}+b x +a \right ) y^{\prime }+x^{2}-\left (c \,x^{2}+b x +a \right ) y = y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

2.703

4969

\[ {}x^{4} y^{\prime } = \left (x^{3}+y\right ) y \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2.020

4970

\[ {}x^{4} y^{\prime }+a^{2}+x^{4} y^{2} = 0 \]

[_rational, [_Riccati, _special]]

3.022

4971

\[ {}x^{4} y^{\prime }+x^{3} y+\csc \left (x y\right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

13.887

4972

\[ {}\left (-x^{4}+1\right ) y^{\prime } = 2 x \left (1-y^{2}\right ) \]

[_separable]

2.629

4973

\[ {}x \left (-x^{3}+1\right ) y^{\prime } = 2 x -\left (-4 x^{3}+1\right ) y \]

[_linear]

1.353

4974

\[ {}x \left (-x^{3}+1\right ) y^{\prime } = x^{2}+\left (1-2 x y\right ) y \]

[_rational, _Riccati]

1.783

4975

\[ {}x^{2} \left (-x^{2}+1\right ) y^{\prime } = \left (x -3 x^{3} y\right ) y \]

[_rational, _Bernoulli]

1.440

4976

\[ {}x \left (-2 x^{3}+1\right ) y^{\prime } = 2 \left (-x^{3}+1\right ) y \]

[_separable]

1.825

4977

\[ {}\left (c \,x^{2}+b x +a \right )^{2} \left (y^{\prime }+y^{2}\right )+A = 0 \]

[_rational, _Riccati]

3.741

4978

\[ {}x^{5} y^{\prime } = 1-3 x^{4} y \]

[_linear]

1.536

4979

\[ {}x \left (-x^{4}+1\right ) y^{\prime } = 2 x \left (x^{2}-y^{2}\right )+\left (-x^{4}+1\right ) y \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

2.356

4980

\[ {}x^{7} y^{\prime }+5 x^{3} y^{2}+2 \left (x^{2}+1\right ) y^{3} = 0 \]

[_rational, _Abel]

1.426

4981

\[ {}x^{n} y^{\prime } = a +b \,x^{n -1} y \]

[_linear]

1.214

4982

\[ {}x^{n} y^{\prime } = x^{2 n -1}-y^{2} \]

[_Riccati]

1.913

4983

\[ {}x^{n} y^{\prime }+x^{2 n -2}+y^{2}+\left (1-n \right ) x^{n -1} = 0 \]

[_Riccati]

9.789

4984

\[ {}x^{n} y^{\prime } = a^{2} x^{2 n -2}+b^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _Riccati]

4.299

4985

\[ {}x^{n} y^{\prime } = x^{n -1} \left (a \,x^{2 n}+n y-b y^{2}\right ) \]

[_rational, _Riccati]

3.490

4986

\[ {}x^{k} y^{\prime } = a \,x^{m}+b y^{n} \]

[_Chini]

1.687

4987

\[ {}y^{\prime } \sqrt {x^{2}+1} = 2 x -y \]

[_linear]

1.756

4988

\[ {}y^{\prime } \sqrt {-x^{2}+1} = 1+y^{2} \]

[_separable]

3.086

4989

\[ {}\left (x -\sqrt {x^{2}+1}\right ) y^{\prime } = y+\sqrt {1+y^{2}} \]

[_separable]

2.627

4990

\[ {}y^{\prime } \sqrt {a^{2}+x^{2}}+x +y = \sqrt {a^{2}+x^{2}} \]

[_linear]

1.542

4991

\[ {}y^{\prime } \sqrt {b^{2}+x^{2}} = \sqrt {y^{2}+a^{2}} \]

[_separable]

12.386

4992

\[ {}y^{\prime } \sqrt {b^{2}-x^{2}} = \sqrt {a^{2}-y^{2}} \]

[_separable]

13.510

4993

\[ {}x y^{\prime } \sqrt {a^{2}+x^{2}} = y \sqrt {b^{2}+y^{2}} \]

[_separable]

2.182

4994

\[ {}x y^{\prime } \sqrt {-a^{2}+x^{2}} = y \sqrt {y^{2}-b^{2}} \]

[_separable]

20.640

4995

\[ {}y^{\prime } \sqrt {X}+\sqrt {Y} = 0 \]

[_quadrature]

0.407

4996

\[ {}y^{\prime } \sqrt {X} = \sqrt {Y} \]

[_quadrature]

0.398

4997

\[ {}x^{{3}/{2}} y^{\prime } = a +b \,x^{{3}/{2}} y^{2} \]

[_rational, [_Riccati, _special]]

1.798

4998

\[ {}y^{\prime } \sqrt {x^{3}+1} = \sqrt {1+y^{3}} \]

[_separable]

2.243

4999

\[ {}y^{\prime } \sqrt {x \left (1-x \right ) \left (-a x +1\right )} = \sqrt {y \left (1-y\right ) \left (1-a y\right )} \]

[_separable]

3.117

5000

\[ {}y^{\prime } \sqrt {-x^{4}+1} = \sqrt {1-y^{4}} \]

[_separable]

2.809