2.2.52 Problems 5101 to 5200

Table 2.105: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

5101

\[ {}x y {y^{\prime }}^{2}-\left (x^{2}-y^{2}\right ) y^{\prime }-y x = 0 \]

[_separable]

15.579

5102

\[ {}x y {y^{\prime }}^{2}+\left (a +x^{2}-y^{2}\right ) y^{\prime }-y x = 0 \]

[_rational]

103.249

5103

\[ {}x y {y^{\prime }}^{2}-\left (a -b \,x^{2}+y^{2}\right ) y^{\prime }-b x y = 0 \]

[_rational]

162.640

5104

\[ {}x y {y^{\prime }}^{2}+\left (3 x^{2}-2 y^{2}\right ) y^{\prime }-6 y x = 0 \]

[_separable]

12.507

5105

\[ {}x \left (x -2 y\right ) {y^{\prime }}^{2}-2 x y y^{\prime }-2 y x +y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9.530

5106

\[ {}x \left (x -2 y\right ) {y^{\prime }}^{2}+6 x y y^{\prime }-2 y x +y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

87.795

5107

\[ {}y^{2} {y^{\prime }}^{2} = a^{2} \]

[_quadrature]

0.664

5108

\[ {}y^{2} {y^{\prime }}^{2}-a^{2}+y^{2} = 0 \]

[_quadrature]

3.137

5109

\[ {}y^{2} {y^{\prime }}^{2}-3 y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

10.935

5110

\[ {}y^{2} {y^{\prime }}^{2}-6 x^{3} y^{\prime }+4 x^{2} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

7.380

5111

\[ {}y^{2} {y^{\prime }}^{2}-4 a y y^{\prime }+4 a^{2}-4 a x +y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

159.171

5112

\[ {}y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x = 0 \]

[_quadrature]

14.786

5113

\[ {}y^{2} {y^{\prime }}^{2}+2 x y y^{\prime }+x^{2} = 0 \]

[_separable]

4.347

5114

\[ {}y^{2} {y^{\prime }}^{2}+2 x y y^{\prime }+a -y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

16.852

5115

\[ {}y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }-x^{2}+2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9.616

5116

\[ {}y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+a -x^{2}+2 y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

6.967

5117

\[ {}y^{2} {y^{\prime }}^{2}+2 a x y y^{\prime }+\left (a -1\right ) b +a \,x^{2}+\left (1-a \right ) y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

9.449

5118

\[ {}\left (1-y^{2}\right ) {y^{\prime }}^{2} = 1 \]

[_quadrature]

0.681

5119

\[ {}\left (a^{2}-y^{2}\right ) {y^{\prime }}^{2} = y^{2} \]

[_quadrature]

3.383

5120

\[ {}\left (a^{2}-2 a x y+y^{2}\right ) {y^{\prime }}^{2}+2 a y y^{\prime }+y^{2} = 0 \]

[‘y=_G(x,y’)‘]

273.329

5121

\[ {}\left (\left (1-a \right ) x^{2}+y^{2}\right ) {y^{\prime }}^{2}+2 a x y y^{\prime }+x^{2}+\left (1-a \right ) y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

84.996

5122

\[ {}\left (\left (-4 a^{2}+1\right ) x^{2}+y^{2}\right ) {y^{\prime }}^{2}-8 a^{2} x y y^{\prime }+x^{2}+\left (-4 a^{2}+1\right ) y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

94.587

5123

\[ {}\left (\left (-a^{2}+1\right ) x^{2}+y^{2}\right ) {y^{\prime }}^{2}+2 a^{2} x y y^{\prime }+x^{2}+\left (-a^{2}+1\right ) y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

60.322

5124

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

30.125

5125

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2}-\left (x^{2}-y x -2 y^{2}\right ) y^{\prime }-\left (x -y\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

41.638

5126

\[ {}\left (a^{2}-\left (x -y\right )^{2}\right ) {y^{\prime }}^{2}+2 a^{2} y^{\prime }+a^{2}-\left (x -y\right )^{2} = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

38.846

5127

\[ {}2 y^{2} {y^{\prime }}^{2}+2 x y y^{\prime }-1+x^{2}+y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

156.059

5128

\[ {}3 y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }-x^{2}+4 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

8.685

5129

\[ {}4 y^{2} {y^{\prime }}^{2}+2 \left (1+3 x \right ) x y y^{\prime }+3 x^{3} = 0 \]

[_separable]

17.125

5130

\[ {}\left (x^{2}-4 y^{2}\right ) {y^{\prime }}^{2}+6 x y y^{\prime }-4 x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

75.474

5131

\[ {}9 y^{2} {y^{\prime }}^{2}-3 y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

13.417

5132

\[ {}\left (2-3 y\right )^{2} {y^{\prime }}^{2} = 4-4 y \]

[_quadrature]

0.402

5133

\[ {}\left (-a^{2}+1\right ) y^{2} {y^{\prime }}^{2}-3 a^{2} x y y^{\prime }-a^{2} x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

196.574

5134

\[ {}\left (a -b \right ) y^{2} {y^{\prime }}^{2}-2 b x y y^{\prime }-a b -b \,x^{2}+a y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

11.801

5135

\[ {}a^{2} \left (b^{2}-\left (c x -a y\right )^{2}\right ) {y^{\prime }}^{2}+2 a \,b^{2} c y^{\prime }+c^{2} \left (b^{2}-\left (c x -a y\right )^{2}\right ) = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

54.921

5136

\[ {}x y^{2} {y^{\prime }}^{2}-y^{3} y^{\prime }+a^{2} x = 0 \]

[[_homogeneous, ‘class G‘], _rational]

32.237

5137

\[ {}x y^{2} {y^{\prime }}^{2}+\left (a -x^{3}-y^{3}\right ) y^{\prime }+x^{2} y = 0 \]

[_rational]

13.706

5138

\[ {}2 x y^{2} {y^{\prime }}^{2}-y^{3} y^{\prime }-a = 0 \]

[[_homogeneous, ‘class G‘], _rational]

42.483

5139

\[ {}4 x^{2} y^{2} {y^{\prime }}^{2} = \left (x^{2}+y^{2}\right )^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

57.948

5140

\[ {}4 y^{3} {y^{\prime }}^{2}-4 y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

8.585

5141

\[ {}3 x y^{4} {y^{\prime }}^{2}-y^{5} y^{\prime }+1 = 0 \]

[[_homogeneous, ‘class G‘], _rational]

120.744

5142

\[ {}9 x y^{4} {y^{\prime }}^{2}-3 y^{5} y^{\prime }-a = 0 \]

[[_homogeneous, ‘class G‘], _rational]

21.760

5143

\[ {}9 \left (-x^{2}+1\right ) y^{4} {y^{\prime }}^{2}+6 x y^{5} y^{\prime }+4 x^{2} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

8.878

5144

\[ {}{y^{\prime }}^{3} = b x +a \]

[_quadrature]

0.362

5145

\[ {}{y^{\prime }}^{3} = a \,x^{n} \]

[_quadrature]

0.629

5146

\[ {}{y^{\prime }}^{3}+x -y = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

22.842

5147

\[ {}{y^{\prime }}^{3} = \left (a +b y+c y^{2}\right ) f \left (x \right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5.618

5148

\[ {}{y^{\prime }}^{3} = \left (y-a \right )^{2} \left (y-b \right )^{2} \]

[_quadrature]

1.258

5149

\[ {}{y^{\prime }}^{3}+f \left (x \right ) \left (y-a \right )^{2} \left (y-b \right )^{2} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.799

5150

\[ {}{y^{\prime }}^{3}+f \left (x \right ) \left (y-a \right )^{2} \left (y-b \right )^{2} \left (y-c \right )^{2} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

6.715

5151

\[ {}{y^{\prime }}^{3}+y^{\prime }+a -b x = 0 \]

[_quadrature]

2.984

5152

\[ {}{y^{\prime }}^{3}+y^{\prime }-y = 0 \]

[_quadrature]

4.243

5153

\[ {}{y^{\prime }}^{3}+y^{\prime } = {\mathrm e}^{y} \]

[_quadrature]

1.102

5154

\[ {}{y^{\prime }}^{3}-7 y^{\prime }+6 = 0 \]

[_quadrature]

1.073

5155

\[ {}{y^{\prime }}^{3}-y^{\prime } x +a y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.736

5156

\[ {}{y^{\prime }}^{3}+2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.556

5157

\[ {}{y^{\prime }}^{3}-2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.482

5158

\[ {}{y^{\prime }}^{3}-a x y^{\prime }+x^{3} = 0 \]

[_quadrature]

0.850

5159

\[ {}{y^{\prime }}^{3}+a x y^{\prime }-a y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.553

5160

\[ {}{y^{\prime }}^{3}-\left (b x +a \right ) y^{\prime }+b y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.692

5161

\[ {}{y^{\prime }}^{3}-2 y y^{\prime }+y^{2} = 0 \]

[_quadrature]

4.278

5162

\[ {}{y^{\prime }}^{3}-a x y y^{\prime }+2 a y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries]]

17.645

5163

\[ {}{y^{\prime }}^{3}-x y^{4} y^{\prime }-y^{5} = 0 \]

[[_1st_order, _with_linear_symmetries]]

25.027

5164

\[ {}{y^{\prime }}^{3}+{\mathrm e}^{3 x -2 y} \left (y^{\prime }-1\right ) = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

5.036

5165

\[ {}{y^{\prime }}^{3}+{\mathrm e}^{-2 y} \left ({\mathrm e}^{2 x}+{\mathrm e}^{3 x}\right ) y^{\prime }-{\mathrm e}^{3 x -2 y} = 0 \]

[‘y=_G(x,y’)‘]

237.924

5166

\[ {}{y^{\prime }}^{3}+{y^{\prime }}^{2}-y = 0 \]

[_quadrature]

121.846

5167

\[ {}{y^{\prime }}^{3}-{y^{\prime }}^{2}+y^{2} = 0 \]

[_quadrature]

41.054

5168

\[ {}{y^{\prime }}^{3}-{y^{\prime }}^{2}+y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.711

5169

\[ {}{y^{\prime }}^{3}-a {y^{\prime }}^{2}+b y+a b x = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

4.928

5170

\[ {}{y^{\prime }}^{3}+\operatorname {a0} {y^{\prime }}^{2}+\operatorname {a1} y^{\prime }+\operatorname {a2} +\operatorname {a3} y = 0 \]

[_quadrature]

158.174

5171

\[ {}{y^{\prime }}^{3}+\left (1-3 x \right ) {y^{\prime }}^{2}-x \left (1-3 x \right ) y^{\prime }-1-x^{3} = 0 \]

[_quadrature]

1.053

5172

\[ {}{y^{\prime }}^{3}-y {y^{\prime }}^{2}+y^{2} = 0 \]

[_quadrature]

9.380

5173

\[ {}{y^{\prime }}^{3}+\left (\cos \left (x \right ) \cot \left (x \right )-y\right ) {y^{\prime }}^{2}-\left (1+y \cos \left (x \right ) \cot \left (x \right )\right ) y^{\prime }+y = 0 \]

[_quadrature]

1.576

5174

\[ {}{y^{\prime }}^{3}+\left (2 x -y^{2}\right ) {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0 \]

[_quadrature]

0.912

5175

\[ {}{y^{\prime }}^{3}-\left (2 x +y^{2}\right ) {y^{\prime }}^{2}+\left (x^{2}-y^{2}+2 x y^{2}\right ) y^{\prime }-\left (x^{2}-y^{2}\right ) y^{2} = 0 \]

[_quadrature]

6.183

5176

\[ {}{y^{\prime }}^{3}-\left (x^{2}+y x +y^{2}\right ) {y^{\prime }}^{2}+x y \left (x^{2}+y x +y^{2}\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

1.948

5177

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y^{2}+y^{4}\right ) {y^{\prime }}^{2}+x y^{2} \left (x^{2}+x y^{2}+y^{4}\right ) y^{\prime }-x^{3} y^{6} = 0 \]

[_quadrature]

12.415

5178

\[ {}2 {y^{\prime }}^{3}+y^{\prime } x -2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.557

5179

\[ {}2 {y^{\prime }}^{3}+{y^{\prime }}^{2}-y = 0 \]

[_quadrature]

84.172

5180

\[ {}3 {y^{\prime }}^{3}-x^{4} y^{\prime }+2 x^{3} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

250.355

5181

\[ {}4 {y^{\prime }}^{3}+4 y^{\prime } = x \]

[_quadrature]

0.725

5182

\[ {}8 {y^{\prime }}^{3}+12 {y^{\prime }}^{2} = 27 x +27 y \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.170

5183

\[ {}x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+a = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.073

5184

\[ {}x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+y x \right ) y^{\prime }-y x = 0 \]

[_quadrature]

2.475

5185

\[ {}x {y^{\prime }}^{3}-2 y {y^{\prime }}^{2}+4 x^{2} = 0 \]

[[_1st_order, _with_linear_symmetries]]

346.086

5186

\[ {}2 x {y^{\prime }}^{3}-3 y {y^{\prime }}^{2}-x = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.771

5187

\[ {}4 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}-x +3 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5.126

5188

\[ {}8 x {y^{\prime }}^{3}-12 y {y^{\prime }}^{2}+9 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

1.503

5189

\[ {}x^{2} {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+y^{2} y^{\prime }+1 = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

8.325

5190

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{3}+b x \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}-y^{\prime }-b x = 0 \]

[_quadrature]

0.477

5191

\[ {}x {y^{\prime }}^{3}-3 x^{2} y {y^{\prime }}^{2}+x \left (x^{5}+3 y^{2}\right ) y^{\prime }-2 x^{5} y-y^{3} = 0 \]

[‘y=_G(x,y’)‘]

477.077

5192

\[ {}2 x^{3} {y^{\prime }}^{3}+6 x^{2} y {y^{\prime }}^{2}-\left (1-6 y x \right ) y y^{\prime }+2 y^{3} = 0 \]

[[_homogeneous, ‘class G‘]]

32.034

5193

\[ {}x^{4} {y^{\prime }}^{3}-x^{3} y {y^{\prime }}^{2}-x^{2} y^{2} y^{\prime }+x y^{3} = 1 \]

[[_1st_order, _with_linear_symmetries]]

203.322

5194

\[ {}x^{6} {y^{\prime }}^{3}-y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries]]

25.704

5195

\[ {}y {y^{\prime }}^{3}-3 y^{\prime } x +3 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

18.681

5196

\[ {}2 y {y^{\prime }}^{3}-3 y^{\prime } x +2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

3.755

5197

\[ {}\left (x +2 y\right ) {y^{\prime }}^{3}+3 \left (x +y\right ) {y^{\prime }}^{2}+\left (y+2 x \right ) y^{\prime } = 0 \]

[_quadrature]

28.889

5198

\[ {}y^{2} {y^{\prime }}^{3}-y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries]]

248.036

5199

\[ {}y^{2} {y^{\prime }}^{3}+2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries]]

239.076

5200

\[ {}4 y^{2} {y^{\prime }}^{3}-2 y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries]]

236.650