2.2.45 Problems 4401 to 4500

Table 2.103: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

4401

\begin{align*} y^{\prime }&={\mathrm e}^{\frac {x y^{\prime }}{y}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

5.999

4402

\begin{align*} 2 x^{3} y^{2}-y+\left (2 x^{2} y^{3}-x \right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

2.378

4403

\begin{align*} y-1-y x +y^{\prime } x&=0 \\ \end{align*}

[_linear]

1.068

4404

\begin{align*} -y+y^{\prime } x&=x \tan \left (\frac {y}{x}\right ) \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

5.187

4405

\begin{align*} y^{\prime }+\frac {y}{x}&={\mathrm e}^{y x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.179

4406

\begin{align*} y y^{\prime \prime }-y y^{\prime }&={y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.345

4407

\begin{align*} 2 y-x \left (\ln \left (x^{2} y\right )-1\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

5.037

4408

\begin{align*} y^{\prime }&=\frac {1}{y x +x^{3} y^{3}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2.890

4409

\begin{align*} y^{\prime }&=\frac {2 \left (y+2\right )^{2}}{\left (x +y-1\right )^{2}} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational]

3.765

4410

\begin{align*} {\mathrm e}^{x}+3 y^{2}+2 y y^{\prime } x&=0 \\ \end{align*}

[_Bernoulli]

3.023

4411

\begin{align*} y x +2 x^{3} y+x^{2} y^{\prime }&=0 \\ \end{align*}

[_separable]

2.430

4412

\begin{align*} 4 x -2 y y^{\prime }+x {y^{\prime }}^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.848

4413

\begin{align*} y^{\prime \prime \prime }&=2 \left (y^{\prime \prime }-1\right ) \cot \left (x \right ) \\ \end{align*}

[[_3rd_order, _missing_y]]

0.559

4414

\begin{align*} y+3 y^{2} x^{4}+\left (x +2 x^{2} y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

2.410

4415

\begin{align*} y^{\prime } x&=y+\sqrt {x^{2}-y^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

27.059

4416

\begin{align*} 2 y \left (x \,{\mathrm e}^{x^{2}}+\sin \left (x \right ) \cos \left (x \right ) y\right )+\left (2 \,{\mathrm e}^{x^{2}}+3 y \sin \left (x \right )^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class B‘]]

1.400

4417

\begin{align*} \cos \left (y\right )+\sin \left (y\right ) \left (x -\sin \left (y\right ) \cos \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

8.902

4418

\begin{align*} y^{3}+\left (3 x^{2}-2 x y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

4.143

4419

\begin{align*} \left (1+y^{\prime }\right ) \ln \left (\frac {x +y}{x +3}\right )&=\frac {x +y}{x +3} \\ \end{align*}

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

10.806

4420

\begin{align*} 2 y y^{\prime } x^{3}+3 y^{2} x^{2}+7&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

2.721

4421

\begin{align*} x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

5.149

4422

\begin{align*} x^{2} \left (-y+y^{\prime } x \right )&=y \left (x +y\right ) \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

3.767

4423

\begin{align*} y^{4}+y x +\left (x y^{3}-x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

4.527

4424

\begin{align*} x^{2}+3 \ln \left (y\right )-\frac {x y^{\prime }}{y}&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4.687

4425

\begin{align*} y^{\prime \prime } x&=x +y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

2.984

4426

\begin{align*} y+\left (y x -x -y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

3.466

4427

\begin{align*} y+2 y^{3} y^{\prime }&=\left (x +4 y \ln \left (y\right )\right ) y^{\prime } \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

2.750

4428

\begin{align*} y \ln \left (x \right ) \ln \left (y\right )+y^{\prime }&=0 \\ \end{align*}

[_separable]

3.078

4429

\begin{align*} 2 x^{{3}/{2}}+x^{2}+y^{2}+2 y \sqrt {x}\, y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

6.445

4430

\begin{align*} 2 x +y \cos \left (y x \right )+x \cos \left (y x \right ) y^{\prime }&=0 \\ \end{align*}

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.306

4431

\begin{align*} y y^{\prime \prime }-y^{2} y^{\prime }-{y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.949

4432

\begin{align*} 2 y^{\prime }+x&=4 \sqrt {y} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Chini]

6.043

4433

\begin{align*} 2 {y^{\prime }}^{3}-3 {y^{\prime }}^{2}+x&=y \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

0.763

4434

\begin{align*} y^{\prime }-6 x \,{\mathrm e}^{x -y}-1&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

3.408

4435

\begin{align*} \left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

15.709

4436

\begin{align*} \sin \left (x \right ) y+\cos \left (x \right )^{2}-\cos \left (x \right ) y^{\prime }&=0 \\ \end{align*}

[_linear]

2.909

4437

\begin{align*} y \left (6 y^{2}-x -1\right )+2 y^{\prime } x&=0 \\ \end{align*}

[_rational, _Bernoulli]

2.775

4438

\begin{align*} y^{\prime } \left (x -\ln \left (y^{\prime }\right )\right )&=1 \\ \end{align*}

[_quadrature]

1.015

4439

\begin{align*} \left (\cos \left (x \right )+1\right ) y^{\prime }+\sin \left (x \right ) \left (\sin \left (x \right )+\cos \left (x \right ) \sin \left (x \right )-y\right )&=0 \\ \end{align*}

[_linear]

4.224

4440

\begin{align*} x +\sin \left (\frac {y}{x}\right )^{2} \left (-y^{\prime } x +y\right )&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

5.360

4441

\begin{align*} 2 x y^{4} {\mathrm e}^{y}+2 x y^{3}+y+\left (x^{2} y^{4} {\mathrm e}^{y}-y^{2} x^{2}-3 x \right ) y^{\prime }&=0 \\ \end{align*}

[‘x=_G(y,y’)‘]

3.675

4442

\begin{align*} x y^{3}-1+x^{2} y^{2} y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3.713

4443

\begin{align*} y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime }-2 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.066

4444

\begin{align*} y^{\prime \prime \prime }+y^{\prime \prime }+9 y^{\prime }+9 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.064

4445

\begin{align*} y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.061

4446

\begin{align*} y^{\prime \prime \prime }+8 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.056

4447

\begin{align*} y^{\prime \prime \prime }-8 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.053

4448

\begin{align*} y^{\prime \prime \prime \prime }+4 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.063

4449

\begin{align*} y^{\prime \prime \prime \prime }+18 y^{\prime \prime }+81 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.076

4450

\begin{align*} y^{\prime \prime \prime \prime }-4 y^{\prime \prime }+16 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.110

4451

\begin{align*} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.072

4452

\begin{align*} y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+5 y^{\prime \prime }+5 y^{\prime }-6 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.069

4453

\begin{align*} y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }+9 y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.070

4454

\begin{align*} y^{\left (6\right )}-64 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.088

4455

\begin{align*} y^{\prime \prime }+6 y^{\prime }+10 y&=3 x \,{\mathrm e}^{-3 x}-2 \,{\mathrm e}^{3 x} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

63.459

4456

\begin{align*} y^{\prime \prime }-8 y^{\prime }+17 y&={\mathrm e}^{4 x} \left (x^{2}-3 x \sin \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

81.166

4457

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=\left (x +{\mathrm e}^{x}\right ) \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

74.215

4458

\begin{align*} y^{\prime \prime }+4 y&=\sinh \left (x \right ) \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

69.381

4459

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=\cosh \left (x \right ) \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

65.111

4460

\begin{align*} y^{\prime \prime \prime }+y^{\prime }&=\sin \left (x \right )+\cos \left (x \right ) x \\ \end{align*}

[[_3rd_order, _missing_y]]

0.497

4461

\begin{align*} y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y&=\sin \left (2 x \right ) {\mathrm e}^{2 x}+2 x^{2} \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.980

4462

\begin{align*} y^{\prime \prime \prime }-4 y^{\prime \prime }+3 y^{\prime }&=x^{2}+x \,{\mathrm e}^{2 x} \\ \end{align*}

[[_3rd_order, _missing_y]]

0.168

4463

\begin{align*} y^{\prime \prime \prime \prime }+2 y^{\prime \prime }&=7 x -3 \cos \left (x \right ) \\ \end{align*}

[[_high_order, _missing_y]]

0.208

4464

\begin{align*} y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y&=\sin \left (x \right ) \cos \left (2 x \right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.821

4465

\begin{align*} y^{\left (5\right )}-3 y^{\prime \prime \prime }+y&=9 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.185

4466

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y&=48 x \,{\mathrm e}^{x} \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.161

4467

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime }&=9 x^{2} \\ \end{align*}

[[_3rd_order, _missing_y]]

0.130

4468

\begin{align*} y^{\left (5\right )}+4 y^{\prime \prime \prime }&=7+x \\ \end{align*}

[[_high_order, _missing_y]]

0.149

4469

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=36 x \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

35.626

4470

\begin{align*} y^{\prime \prime \prime \prime }+16 y&=64 \cos \left (2 x \right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.153

4471

\begin{align*} y^{\prime \prime \prime \prime }+4 y^{\prime \prime }-y&=44 \sin \left (3 x \right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.195

4472

\begin{align*} y^{\prime \prime \prime }+y^{\prime \prime }+5 y^{\prime }+5 y&=5 \cos \left (2 x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.162

4473

\begin{align*} y^{\prime \prime }+3 y^{\prime }+5 y&=5 \,{\mathrm e}^{-x} \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

80.605

4474

\begin{align*} y^{\prime \prime \prime \prime }-y&=4 \,{\mathrm e}^{-x} \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.135

4475

\begin{align*} y^{\prime \prime }+4 y&=8 \sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

3.837

4476

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=4 \sin \left (x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.469

4477

\begin{align*} y^{\prime \prime \prime \prime }-y^{\prime \prime }&=2 \,{\mathrm e}^{x} \\ \end{align*}

[[_high_order, _missing_y]]

0.129

4478

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{x} \left (x +1\right )+2 \,{\mathrm e}^{2 x}+3 \,{\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

85.912

4479

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=4 \cos \left (2 x \right ) {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

48.058

4480

\begin{align*} y^{\prime \prime }+4 y&=4 \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

67.211

4481

\begin{align*} y^{\prime \prime }-y&=12 \,{\mathrm e}^{x} x^{2}+3 \,{\mathrm e}^{2 x}+10 \cos \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

64.686

4482

\begin{align*} y^{\prime \prime }+y&=2 \sin \left (x \right )-3 \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

6.789

4483

\begin{align*} y^{\prime \prime }-y^{\prime }&={\mathrm e}^{x} \left (x^{2}+10\right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

10.479

4484

\begin{align*} y^{\prime \prime }-4 y&=96 x^{2} {\mathrm e}^{2 x}+4 \,{\mathrm e}^{-2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

63.708

4485

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=5 \cos \left (x \right )+10 \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

79.431

4486

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=4 x -2+2 \,{\mathrm e}^{x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

47.358

4487

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=4 \sin \left (2 x \right ) {\mathrm e}^{2 x} x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

79.916

4488

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=15 \sin \left (2 x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.156

4489

\begin{align*} y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y&=40 \sin \left (2 x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.154

4490

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=2 \,{\mathrm e}^{x}+5 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.196

4491

\begin{align*} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y&=10 \,{\mathrm e}^{x} \sin \left (x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.156

4492

\begin{align*} y^{\prime \prime \prime }-2 y^{\prime }-4 y&=50 \,{\mathrm e}^{2 x}+50 \sin \left (x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.237

4493

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y&=12 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{3 x} \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.206

4494

\begin{align*} y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y&=32 \,{\mathrm e}^{2 x}+16 x^{3} \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.185

4495

\begin{align*} y^{\prime \prime \prime \prime }-18 y^{\prime \prime }+81 y&=72 \,{\mathrm e}^{3 x}+729 x^{2} \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.187

4496

\begin{align*} y^{\prime \prime }-y&=\frac {1}{x}-\frac {2}{x^{3}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

11.513

4497

\begin{align*} y^{\prime \prime }-y&=\frac {1}{\sinh \left (x \right )} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

11.602

4498

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=\frac {{\mathrm e}^{x}}{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

26.199

4499

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=\sin \left ({\mathrm e}^{x}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

85.461

4500

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&=\sin \left ({\mathrm e}^{-x}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

85.202