2.2.46 Problems 4501 to 4600

Table 2.105: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

4501

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right )^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.899

4502

\begin{align*} y^{\prime \prime }-y&=\frac {1}{\sqrt {1-{\mathrm e}^{2 x}}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

63.333

4503

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{-2 x} \sin \left ({\mathrm e}^{-x}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

66.635

4504

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=15 \,{\mathrm e}^{-x} \sqrt {x +1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

27.388

4505

\begin{align*} y^{\prime \prime }+4 y&=2 \tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

63.951

4506

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=\frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{x}+1\right )^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

76.780

4507

\begin{align*} y^{\prime \prime }+y^{\prime }&=\frac {1}{{\mathrm e}^{x}+1} \\ \end{align*}

[[_2nd_order, _missing_y]]

6.096

4508

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.142

4509

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +5 y&=\frac {5 \ln \left (x \right )}{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

45.085

4510

\begin{align*} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y&=9 x^{2} \ln \left (x \right ) \\ \end{align*}

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

0.365

4511

\begin{align*} \left (x -2\right )^{2} y^{\prime \prime }-3 \left (x -2\right ) y^{\prime }+4 y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

33.360

4512

\begin{align*} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{2} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.921

4513

\begin{align*} y^{\prime \prime }+4 y^{\prime }+3 y&=60 \cos \left (3 t \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.416

4514

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=9 \,{\mathrm e}^{-2 t} \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -6 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.238

4515

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=2 t^{2}+1 \\ y \left (0\right ) &= 6 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.265

4516

\begin{align*} y^{\prime \prime }+4 y&=8 \sin \left (2 t \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.290

4517

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=4 \,{\mathrm e}^{-t}+2 \,{\mathrm e}^{t} \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.261

4518

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=8 \sin \left (t \right ) {\mathrm e}^{-t} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.319

4519

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=8 \,{\mathrm e}^{t} \sin \left (2 t \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.290

4520

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=54 t \,{\mathrm e}^{-2 t} \\ y \left (0\right ) &= 6 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.281

4521

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=9 \,{\mathrm e}^{2 t} \operatorname {Heaviside}\left (t -1\right ) \\ y \left (0\right ) &= 6 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

2.081

4522

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=2 \sin \left (t \right ) \operatorname {Heaviside}\left (t -\pi \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.103

4523

\begin{align*} y^{\prime \prime }+4 y&=8 \operatorname {Heaviside}\left (t -\pi \right ) \sin \left (2 t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.982

4524

\begin{align*} y^{\prime \prime }+4 y&=8 \left (t^{2}+t -1\right ) \operatorname {Heaviside}\left (-2+t \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.810

4525

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&={\mathrm e}^{t} \operatorname {Heaviside}\left (-2+t \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.163

4526

\begin{align*} y^{\prime \prime }-5 y^{\prime }+6 y&=\delta \left (-2+t \right ) \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.337

4527

\begin{align*} y^{\prime \prime }+4 y&=4 \operatorname {Heaviside}\left (t -\pi \right )+2 \delta \left (t -\pi \right ) \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.993

4528

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y&=10 \,{\mathrm e}^{-t} \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (0\right ) &= -2 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_3rd_order, _with_linear_symmetries]]

0.336

4529

\begin{align*} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y&=120 \,{\mathrm e}^{3 t} \operatorname {Heaviside}\left (t -1\right ) \\ y \left (0\right ) &= 15 \\ y^{\prime }\left (0\right ) &= -6 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_high_order, _linear, _nonhomogeneous]]

3.946

4530

\begin{align*} y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y&=40 \operatorname {Heaviside}\left (-2+t \right ) t^{2} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_high_order, _linear, _nonhomogeneous]]

4.669

4531

\begin{align*} y^{\prime \prime \prime \prime }+4 y&=\left (2 t^{2}+t +1\right ) \delta \left (t -1\right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -2 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_high_order, _linear, _nonhomogeneous]]

2.204

4532

\begin{align*} x^{\prime }+2 x-y&=0 \\ x+y^{\prime }-2 y&=0 \\ \end{align*}

system_of_ODEs

0.562

4533

\begin{align*} 2 x^{\prime }+x-5 y^{\prime }-4 y&=0 \\ -y^{\prime }-2 x+y&=0 \\ \end{align*}

system_of_ODEs

0.444

4534

\begin{align*} x^{\prime }-x+3 y&=0 \\ 3 x-y^{\prime }+y&=0 \\ \end{align*}

system_of_ODEs

0.434

4535

\begin{align*} x^{\prime \prime }+x^{\prime }+y^{\prime }-2 y&=0 \\ x^{\prime }+x-y^{\prime }&=0 \\ \end{align*}

system_of_ODEs

0.052

4536

\begin{align*} x^{\prime \prime }-3 x-4 y&=0 \\ x+y^{\prime \prime }+y&=0 \\ \end{align*}

system_of_ODEs

0.038

4537

\begin{align*} y_{1}^{\prime }-y_{2}&=0 \\ 4 y_{1}+y_{2}^{\prime }-4 y_{2}-2 y_{3}&=0 \\ -2 y_{1}+y_{2}+y_{3}^{\prime }+y_{3}&=0 \\ \end{align*}

system_of_ODEs

0.780

4538

\begin{align*} y_{1}^{\prime }-2 y_{1}+3 y_{2}-3 y_{3}&=0 \\ -4 y_{1}+y_{2}^{\prime }+5 y_{2}-3 y_{3}&=0 \\ -4 y_{1}+4 y_{2}+y_{3}^{\prime }-2 y_{3}&=0 \\ \end{align*}

system_of_ODEs

0.731

4539

\begin{align*} x^{\prime }+x+2 y&=8 \\ 2 x+y^{\prime }-2 y&=2 \,{\mathrm e}^{-t}-8 \\ \end{align*}

system_of_ODEs

0.765

4540

\begin{align*} x^{\prime }&=2 x-3 y+t \,{\mathrm e}^{-t} \\ y^{\prime }&=2 x-3 y+{\mathrm e}^{-t} \\ \end{align*}

system_of_ODEs

0.660

4541

\begin{align*} x^{\prime }-x-2 y&={\mathrm e}^{t} \\ -4 x+y^{\prime }-3 y&=1 \\ \end{align*}

system_of_ODEs

0.927

4542

\begin{align*} x^{\prime }-4 x+3 y&=\sin \left (t \right ) \\ -2 x+y^{\prime }+y&=-2 \cos \left (t \right ) \\ \end{align*}

system_of_ODEs

0.831

4543

\begin{align*} x^{\prime }-y&=0 \\ -x+y^{\prime }&={\mathrm e}^{t}+{\mathrm e}^{-t} \\ \end{align*}

system_of_ODEs

0.812

4544

\begin{align*} x^{\prime }+2 x+5 y&=0 \\ -x+y^{\prime }-2 y&=\sin \left (2 t \right ) \\ \end{align*}

system_of_ODEs

0.831

4545

\begin{align*} x^{\prime }-2 x+2 y^{\prime }&=-4 \,{\mathrm e}^{2 t} \\ 2 x^{\prime }-3 x+3 y^{\prime }-y&=0 \\ \end{align*}

system_of_ODEs

0.705

4546

\begin{align*} 3 x^{\prime }+2 x+y^{\prime }-6 y&=5 \,{\mathrm e}^{t} \\ 4 x^{\prime }+2 x+y^{\prime }-8 y&=5 \,{\mathrm e}^{t}+2 t -3 \\ \end{align*}

system_of_ODEs

0.898

4547

\begin{align*} x^{\prime }-5 x+3 y&=2 \,{\mathrm e}^{3 t} \\ -x+y^{\prime }-y&=5 \,{\mathrm e}^{-t} \\ \end{align*}

system_of_ODEs

1.381

4548

\begin{align*} x^{\prime }-2 x+y&=0 \\ x+y^{\prime }-2 y&=-5 \,{\mathrm e}^{t} \sin \left (t \right ) \\ \end{align*}

system_of_ODEs

0.797

4549

\begin{align*} x^{\prime }+4 x+2 y&=\frac {2}{{\mathrm e}^{t}-1} \\ 6 x-y^{\prime }+3 y&=\frac {3}{{\mathrm e}^{t}-1} \\ \end{align*}

system_of_ODEs

0.043

4550

\begin{align*} x^{\prime }-x+y&=\sec \left (t \right ) \\ -2 x+y^{\prime }+y&=0 \\ \end{align*}

system_of_ODEs

0.899

4551

\begin{align*} x^{\prime }-x-2 y&=16 \,{\mathrm e}^{t} t \\ 2 x-y^{\prime }-2 y&=0 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 4 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.314

4552

\begin{align*} x^{\prime }-2 x+y&=5 \,{\mathrm e}^{t} \cos \left (t \right ) \\ x+y^{\prime }-2 y&=10 \,{\mathrm e}^{t} \sin \left (t \right ) \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.324

4553

\begin{align*} x^{\prime }-4 x+3 y&=\sin \left (t \right ) \\ 2 x+y^{\prime }-y&=2 \cos \left (t \right ) \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= x_{0} \\ y \left (0\right ) &= y_{0} \\ \end{align*}

system_of_ODEs

0.319

4554

\begin{align*} x^{\prime }-2 x-y&=2 \,{\mathrm e}^{t} \\ x-y^{\prime }+2 y&=3 \,{\mathrm e}^{4 t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= x_{0} \\ y \left (0\right ) &= y_{0} \\ \end{align*}

system_of_ODEs

0.297

4555

\begin{align*} x^{\prime \prime }+x^{\prime }+y^{\prime }-2 y&=40 \,{\mathrm e}^{3 t} \\ x^{\prime }+x-y^{\prime }&=36 \,{\mathrm e}^{t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 3 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.031

4556

\begin{align*} x^{\prime }-2 x-y&=2 \,{\mathrm e}^{t} \\ y^{\prime }-2 y-4 z&=4 \,{\mathrm e}^{2 t} \\ x-z^{\prime }-z&=0 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 9 \\ y \left (0\right ) &= 3 \\ z \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.391

4557

\begin{align*} x^{\prime \prime }+2 x-2 y^{\prime }&=0 \\ 3 x^{\prime }+y^{\prime \prime }-8 y&=240 \,{\mathrm e}^{t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.037

4558

\begin{align*} x^{\prime }-x-2 y&=0 \\ x-y^{\prime }&=15 \cos \left (t \right ) \operatorname {Heaviside}\left (t -\pi \right ) \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= x_{0} \\ y \left (0\right ) &= y_{0} \\ \end{align*}

system_of_ODEs

0.345

4559

\begin{align*} x^{\prime }-x+y&=2 \sin \left (t \right ) \left (1-\operatorname {Heaviside}\left (t -\pi \right )\right ) \\ 2 x-y^{\prime }-y&=0 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.456

4560

\begin{align*} 2 x^{\prime }+x-5 y^{\prime }-4 y&=28 \,{\mathrm e}^{t} \operatorname {Heaviside}\left (-2+t \right ) \\ 3 x^{\prime }-2 x-4 y^{\prime }+y&=0 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.404

4561

\begin{align*} x_{1}^{\prime }&=x_{1}-x_{2} \\ x_{2}^{\prime }&=-4 x_{1}+x_{2} \\ \end{align*}

system_of_ODEs

0.454

4562

\begin{align*} x_{1}^{\prime }&=x_{1}-3 x_{2} \\ x_{2}^{\prime }&=3 x_{1}+x_{2} \\ \end{align*}

system_of_ODEs

0.448

4563

\begin{align*} x_{1}^{\prime }&=5 x_{1}+3 x_{2} \\ x_{2}^{\prime }&=-3 x_{1}-x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= -2 \\ \end{align*}

system_of_ODEs

0.450

4564

\begin{align*} x_{1}^{\prime }&=2 x_{1}-x_{2}+x_{3} \\ x_{2}^{\prime }&=x_{1}+2 x_{2}-x_{3} \\ x_{3}^{\prime }&=x_{1}-x_{2}+2 x_{3} \\ \end{align*}

system_of_ODEs

0.697

4565

\begin{align*} x_{1}^{\prime }&=3 x_{1}-x_{2}+x_{3} \\ x_{2}^{\prime }&=x_{1}+x_{2}+x_{3} \\ x_{3}^{\prime }&=4 x_{1}-x_{2}+4 x_{3} \\ \end{align*}

system_of_ODEs

0.889

4566

\begin{align*} x_{1}^{\prime }&=2 x_{1}+x_{2} \\ x_{2}^{\prime }&=x_{1}+3 x_{2}-x_{3} \\ x_{3}^{\prime }&=-x_{1}+2 x_{2}+3 x_{3} \\ \end{align*}

system_of_ODEs

1.095

4567

\begin{align*} x_{1}^{\prime }&=3 x_{1}-2 x_{2}-x_{3} \\ x_{2}^{\prime }&=3 x_{1}-4 x_{2}-3 x_{3} \\ x_{3}^{\prime }&=2 x_{1}-4 x_{2} \\ \end{align*}

system_of_ODEs

0.756

4568

\begin{align*} x_{1}^{\prime }&=x_{1}-x_{2}+x_{3} \\ x_{2}^{\prime }&=x_{1}+x_{2}-x_{3} \\ x_{3}^{\prime }&=-2 x_{2}+2 x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= -2 \\ x_{3} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.702

4569

\begin{align*} x_{1}^{\prime }&=-x_{1}+x_{2}-2 x_{3} \\ x_{2}^{\prime }&=4 x_{1}+x_{2} \\ x_{3}^{\prime }&=2 x_{1}+x_{2}-x_{3} \\ \end{align*}

system_of_ODEs

0.748

4570

\begin{align*} x_{1}^{\prime }&=2 x_{1}+x_{2}+26 \sin \left (t \right ) \\ x_{2}^{\prime }&=3 x_{1}+4 x_{2} \\ \end{align*}

system_of_ODEs

0.912

4571

\begin{align*} x_{1}^{\prime }&=-x_{1}+8 x_{2}+9 t \\ x_{2}^{\prime }&=x_{1}+x_{2}+3 \,{\mathrm e}^{-t} \\ \end{align*}

system_of_ODEs

1.525

4572

\begin{align*} x_{1}^{\prime }&=-x_{1}+2 x_{2} \\ x_{2}^{\prime }&=-3 x_{1}+4 x_{2}+\frac {{\mathrm e}^{3 t}}{1+{\mathrm e}^{2 t}} \\ \end{align*}

system_of_ODEs

0.051

4573

\begin{align*} x_{1}^{\prime }&=-4 x_{1}-2 x_{2}+\frac {2}{{\mathrm e}^{t}-1} \\ x_{2}^{\prime }&=6 x_{1}+3 x_{2}-\frac {3}{{\mathrm e}^{t}-1} \\ \end{align*}

system_of_ODEs

0.046

4574

\begin{align*} x_{1}^{\prime }&=x_{1}+x_{2}+{\mathrm e}^{2 t} \\ x_{2}^{\prime }&=-2 x_{1}+3 x_{2} \\ \end{align*}

system_of_ODEs

1.026

4575

\begin{align*} x_{1}^{\prime }&=-x_{1}-5 x_{2} \\ x_{2}^{\prime }&=x_{1}+x_{2}+\frac {4}{\sin \left (2 t \right )} \\ \end{align*}

system_of_ODEs

1.180

4576

\begin{align*} x_{1}^{\prime }&=2 x_{1}+x_{2}+27 t \\ x_{2}^{\prime }&=-x_{1}+4 x_{2} \\ \end{align*}

system_of_ODEs

0.617

4577

\begin{align*} x_{1}^{\prime }&=3 x_{1}-x_{2}+{\mathrm e}^{t} \\ x_{2}^{\prime }&=4 x_{1}-x_{2} \\ \end{align*}

system_of_ODEs

0.645

4578

\begin{align*} x_{1}^{\prime }&=3 x_{1}-2 x_{2} \\ x_{2}^{\prime }&=2 x_{1}-x_{2}+35 \,{\mathrm e}^{t} t^{{3}/{2}} \\ \end{align*}

system_of_ODEs

0.642

4579

\begin{align*} x_{1}^{\prime }&=x_{1}-x_{2}+x_{3} \\ x_{2}^{\prime }&=x_{1}+x_{2}-x_{3}+6 \,{\mathrm e}^{-t} \\ x_{3}^{\prime }&=2 x_{1}-x_{2} \\ \end{align*}

system_of_ODEs

1.194

4580

\begin{align*} x_{1}^{\prime }&=x_{1}-2 x_{2}-x_{3} \\ x_{2}^{\prime }&=-x_{1}+x_{2}+x_{3}+12 t \\ x_{3}^{\prime }&=x_{1}-x_{3} \\ \end{align*}

system_of_ODEs

1.190

4581

\begin{align*} x_{1}^{\prime }&=-3 x_{1}+4 x_{2}-2 x_{3}+{\mathrm e}^{t} \\ x_{2}^{\prime }&=x_{1}+x_{2} \\ x_{3}^{\prime }&=6 x_{1}-6 x_{2}+5 x_{3} \\ \end{align*}

system_of_ODEs

546.063

4582

\begin{align*} x_{1}^{\prime }&=x_{1}-x_{2}-x_{3}+4 \,{\mathrm e}^{t} \\ x_{2}^{\prime }&=x_{1}+x_{2} \\ x_{3}^{\prime }&=3 x_{1}+x_{3} \\ \end{align*}

system_of_ODEs

1.431

4583

\begin{align*} x_{1}^{\prime }&=2 x_{1}-x_{2}+2 x_{3} \\ x_{2}^{\prime }&=x_{1}+2 x_{3} \\ x_{3}^{\prime }&=-2 x_{1}+x_{2}-x_{3}+4 \sin \left (t \right ) \\ \end{align*}

system_of_ODEs

1.642

4584

\begin{align*} x_{1}^{\prime }&=4 x_{1}-x_{2}-x_{3}+{\mathrm e}^{3 t} \\ x_{2}^{\prime }&=x_{1}+2 x_{2}-x_{3} \\ x_{3}^{\prime }&=x_{1}+x_{2}+2 x_{3} \\ \end{align*}

system_of_ODEs

3.378

4585

\begin{align*} x_{1}^{\prime }&=2 x_{1}-x_{2}-x_{3}+2 \,{\mathrm e}^{2 t} \\ x_{2}^{\prime }&=3 x_{1}-2 x_{2}-3 x_{3} \\ x_{3}^{\prime }&=-x_{1}+x_{2}+2 x_{3} \\ \end{align*}

system_of_ODEs

1.019

4586

\begin{align*} x_{1}^{\prime }&=2 x_{1}-x_{3}+24 t \\ x_{2}^{\prime }&=x_{1}-x_{2} \\ x_{3}^{\prime }&=3 x_{1}-x_{2}-x_{3} \\ \end{align*}

system_of_ODEs

0.985

4587

\begin{align*} y^{\prime \prime }-y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.341

4588

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.500

4589

\begin{align*} y^{\prime \prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.292

4590

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Gegenbauer]

0.440

4591

\begin{align*} y^{\prime \prime }-2 x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.331

4592

\begin{align*} y^{\prime \prime }-2 x^{2} y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.415

4593

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+\left (4 x -1\right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.625

4594

\begin{align*} y^{\prime \prime }+\left (\cos \left (x \right )+1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.513

4595

\begin{align*} y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+\cos \left (x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.698

4596

\begin{align*} y^{\prime \prime } x +y^{\prime }-y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.559

4597

\begin{align*} y^{\prime \prime } x +\left (1-x \right ) y^{\prime }+k y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Laguerre]

0.975

4598

\begin{align*} x^{2} y^{\prime \prime }+\left (-2 x^{2}+x \right ) y^{\prime }-y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.804

4599

\begin{align*} x^{2} y^{\prime \prime }-\left (x^{2}+2 x \right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

2.660

4600

\begin{align*} x^{2} y^{\prime \prime }+\left (\frac {1}{2} x +x^{2}\right ) y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.842