2.2.53 Problems 5201 to 5300

Table 2.107: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

5201

\[ {}16 y^{2} {y^{\prime }}^{3}+2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries]]

226.235

5202

\[ {}x y^{2} {y^{\prime }}^{3}-y^{3} {y^{\prime }}^{2}+x \left (x^{2}+1\right ) y^{\prime }-x^{2} y = 0 \]

[‘y=_G(x,y’)‘]

182.710

5203

\[ {}y^{3} {y^{\prime }}^{3}-\left (1-3 x \right ) y^{2} {y^{\prime }}^{2}+3 x^{2} y y^{\prime }+x^{3}-y^{2} = 0 \]

[‘y=_G(x,y’)‘]

246.753

5204

\[ {}y^{4} {y^{\prime }}^{3}-6 y^{\prime } x +2 y = 0 \]

[[_1st_order, _with_linear_symmetries]]

272.186

5205

\[ {}{y^{\prime }}^{4} = \left (y-a \right )^{3} \left (y-b \right )^{2} \]

[_quadrature]

1.303

5206

\[ {}{y^{\prime }}^{4}+f \left (x \right ) \left (y-a \right )^{3} \left (y-b \right )^{2} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

3.240

5207

\[ {}{y^{\prime }}^{4}+f \left (x \right ) \left (y-a \right )^{3} \left (y-b \right )^{3} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9.604

5208

\[ {}{y^{\prime }}^{4}+f \left (x \right ) \left (y-a \right )^{3} \left (y-b \right )^{3} \left (y-c \right )^{2} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5.122

5209

\[ {}{y^{\prime }}^{4}+y^{\prime } x -3 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

4.003

5210

\[ {}{y^{\prime }}^{4}-4 x^{2} y {y^{\prime }}^{2}+16 x y^{2} y^{\prime }-16 y^{3} = 0 \]

[[_homogeneous, ‘class G‘]]

0.771

5211

\[ {}{y^{\prime }}^{4}+4 y {y^{\prime }}^{3}+6 y^{2} {y^{\prime }}^{2}-\left (1-4 y^{3}\right ) y^{\prime }-\left (3-y^{3}\right ) y = 0 \]

[_quadrature]

10.135

5212

\[ {}2 {y^{\prime }}^{4}-y y^{\prime }-2 = 0 \]

[_quadrature]

1.604

5213

\[ {}x {y^{\prime }}^{4}-2 y {y^{\prime }}^{3}+12 x^{3} = 0 \]

[[_1st_order, _with_linear_symmetries]]

4.153

5214

\[ {}3 {y^{\prime }}^{5}-y y^{\prime }+1 = 0 \]

[_quadrature]

0.663

5215

\[ {}{y^{\prime }}^{6} = \left (y-a \right )^{4} \left (y-b \right )^{3} \]

[_quadrature]

2.369

5216

\[ {}{y^{\prime }}^{6}+f \left (x \right ) \left (y-a \right )^{4} \left (y-b \right )^{3} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

13.669

5217

\[ {}{y^{\prime }}^{6}+f \left (x \right ) \left (y-a \right )^{5} \left (y-b \right )^{3} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

13.793

5218

\[ {}{y^{\prime }}^{6}+f \left (x \right ) \left (y-a \right )^{5} \left (y-b \right )^{4} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

14.531

5219

\[ {}x^{2} \left ({y^{\prime }}^{6}+3 y^{4}+3 y^{2}+1\right ) = a^{2} \]

[_rational]

10.259

5220

\[ {}2 \sqrt {a y^{\prime }}+y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class G‘], _Clairaut]

9.809

5221

\[ {}\left (x -y\right ) \sqrt {y^{\prime }} = a \left (1+y^{\prime }\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

7.194

5222

\[ {}2 \left (1+y\right )^{{3}/{2}}+3 y^{\prime } x -3 y = 0 \]

[_separable]

15.422

5223

\[ {}\sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } = x \]

[_quadrature]

1.413

5224

\[ {}\sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } = y \]

[_quadrature]

4.508

5225

\[ {}\sqrt {1+{y^{\prime }}^{2}} = y^{\prime } x \]

[_quadrature]

1.397

5226

\[ {}\sqrt {a^{2}+b^{2} {y^{\prime }}^{2}}+y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

37.617

5227

\[ {}a \sqrt {1+{y^{\prime }}^{2}}+y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

33.736

5228

\[ {}a x \sqrt {1+{y^{\prime }}^{2}}+y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

347.544

5229

\[ {}\sqrt {\left (a \,x^{2}+y^{2}\right ) \left (1+{y^{\prime }}^{2}\right )}-y y^{\prime }-a x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

110.648

5230

\[ {}a \left (1+{y^{\prime }}^{3}\right )^{{1}/{3}}+y^{\prime } x -y = 0 \]

[_Clairaut]

154.488

5231

\[ {}\cos \left (y^{\prime }\right )+y^{\prime } x = y \]

[_Clairaut]

1.273

5232

\[ {}a \cos \left (y^{\prime }\right )+b y^{\prime }+x = 0 \]

[_quadrature]

0.538

5233

\[ {}\sin \left (y^{\prime }\right )+y^{\prime } = x \]

[_quadrature]

0.553

5234

\[ {}y^{\prime } \sin \left (y^{\prime }\right )+\cos \left (y^{\prime }\right ) = y \]

[_quadrature]

146.988

5235

\[ {}{y^{\prime }}^{2} \left (x +\sin \left (y^{\prime }\right )\right ) = y \]

[_dAlembert]

2.205

5236

\[ {}\left (1+{y^{\prime }}^{2}\right ) \sin \left (-y+y^{\prime } x \right )^{2} = 1 \]

[_Clairaut]

36.615

5237

\[ {}\left (1+{y^{\prime }}^{2}\right ) \left (\arctan \left (y^{\prime }\right )+a x \right )+y^{\prime } = 0 \]

[_quadrature]

1.559

5238

\[ {}{\mathrm e}^{y^{\prime }-y}-{y^{\prime }}^{2}+1 = 0 \]

[_quadrature]

0.464

5239

\[ {}\ln \left (y^{\prime }\right )+y^{\prime } x +a = 0 \]

[_quadrature]

7.513

5240

\[ {}\ln \left (y^{\prime }\right )+y^{\prime } x +a = y \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

3.872

5241

\[ {}\ln \left (y^{\prime }\right )+y^{\prime } x +a +b y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

18.619

5242

\[ {}\ln \left (y^{\prime }\right )+4 y^{\prime } x -2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

11.400

5243

\[ {}\ln \left (y^{\prime }\right )+a \left (-y+y^{\prime } x \right ) = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

3.994

5244

\[ {}a \left (\ln \left (y^{\prime }\right )-y^{\prime }\right )-x +y = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

14.013

5245

\[ {}y \ln \left (y^{\prime }\right )+y^{\prime }-y \ln \left (y\right )-y x = 0 \]

[_separable]

19.402

5246

\[ {}y^{\prime } \ln \left (y^{\prime }\right )-\left (x +1\right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

9.639

5247

\[ {}y^{\prime } \ln \left (y^{\prime }+\sqrt {a +{y^{\prime }}^{2}}\right )-\sqrt {1+{y^{\prime }}^{2}}-y^{\prime } x +y = 0 \]

[_Clairaut]

38.781

5248

\[ {}\ln \left (\cos \left (y^{\prime }\right )\right )+y^{\prime } \tan \left (y^{\prime }\right ) = y \]

[_dAlembert]

0.362

5249

\[ {}y^{\prime } = \frac {x y}{x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

22.459

5250

\[ {}y^{\prime } = \frac {x +y-3}{x -y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16.319

5251

\[ {}y^{\prime } = \frac {2 x +y-1}{4 x +2 y+5} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.877

5252

\[ {}y^{\prime }-\frac {2 y}{x +1} = \left (x +1\right )^{2} \]

[_linear]

3.132

5253

\[ {}y^{\prime }+y x = x^{3} y^{3} \]

[_Bernoulli]

13.860

5254

\[ {}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

31.360

5255

\[ {}y+x y^{2}-y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

18.710

5256

\[ {}y^{2} \left (1+{y^{\prime }}^{2}\right ) = R^{2} \]

[_quadrature]

21.341

5257

\[ {}y = y^{\prime } x +\frac {a y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}} \]

[_Clairaut]

343.872

5258

\[ {}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2} \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

110.058

5259

\[ {}\left (x +1\right ) y+\left (1-y\right ) x y^{\prime } = 0 \]

[_separable]

49.588

5260

\[ {}y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

53.114

5261

\[ {}x y \left (x^{2}+1\right ) y^{\prime }-1-y^{2} = 0 \]

[_separable]

98.201

5262

\[ {}1+y^{2}-\left (y+\sqrt {1+y^{2}}\right ) \left (x^{2}+1\right )^{{3}/{2}} y^{\prime } = 0 \]

[_separable]

293.333

5263

\[ {}\sin \left (x \right ) \cos \left (y\right )-\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

[_separable]

101.372

5264

\[ {}\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime } = 0 \]

[_separable]

256.403

5265

\[ {}\left (-x +y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

11.572

5266

\[ {}\left (2 \sqrt {y x}-x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

467.590

5267

\[ {}y^{\prime } x -y-\sqrt {x^{2}+y^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

374.535

5268

\[ {}x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

243.765

5269

\[ {}8 y+10 x +\left (5 y+7 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

82.801

5270

\[ {}2 x -y+1+\left (2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.090

5271

\[ {}\left (7 y-3 x +3\right ) y^{\prime }+7-7 x +3 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.495

5272

\[ {}y^{\prime }+\frac {x y}{x^{2}+1} = \frac {1}{2 x \left (x^{2}+1\right )} \]

[_linear]

1.188

5273

\[ {}x \left (-x^{2}+1\right ) y^{\prime }+\left (2 x^{2}-1\right ) y = a \,x^{3} \]

[_linear]

1.160

5274

\[ {}y^{\prime }+\frac {y}{\left (-x^{2}+1\right )^{{3}/{2}}} = \frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \]

[_linear]

3.988

5275

\[ {}y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2} \]

[_linear]

2.545

5276

\[ {}\left (x^{2}+1\right ) y^{\prime }+y = \arctan \left (x \right ) \]

[_linear]

1.728

5277

\[ {}\left (-x^{2}+1\right ) z^{\prime }-x z = a x z^{2} \]

[_separable]

2.383

5278

\[ {}3 z^{2} z^{\prime }-a z^{3} = x +1 \]

[_rational, _Bernoulli]

1.638

5279

\[ {}z^{\prime }+2 x z = 2 a \,x^{3} z^{3} \]

[_Bernoulli]

1.296

5280

\[ {}z^{\prime }+z \cos \left (x \right ) = z^{n} \sin \left (2 x \right ) \]

[_Bernoulli]

4.595

5281

\[ {}y^{\prime } x +y = y^{2} \ln \left (x \right ) \]

[_Bernoulli]

2.336

5282

\[ {}x^{3}+3 x y^{2}+\left (y^{3}+3 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

0.546

5283

\[ {}1+\frac {y^{2}}{x^{2}}-\frac {2 y y^{\prime }}{x} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

0.293

5284

\[ {}\frac {3 x}{y^{3}}+\left (\frac {1}{y^{2}}-\frac {3 x^{2}}{y^{4}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.380

5285

\[ {}x +y y^{\prime }+\frac {x y^{\prime }}{x^{2}+y^{2}}-\frac {y}{x^{2}+y^{2}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

0.353

5286

\[ {}1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

0.301

5287

\[ {}{\mathrm e}^{x} \left (x^{2}+y^{2}+2 x \right )+2 y \,{\mathrm e}^{x} y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _exact, _rational, _Bernoulli]

0.346

5288

\[ {}n \cos \left (n x +m y\right )-m \sin \left (m x +n y\right )+\left (m \cos \left (n x +m y\right )-n \sin \left (m x +n y\right )\right ) y^{\prime } = 0 \]

[_exact]

0.262

5289

\[ {}\frac {x}{\sqrt {1+x^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {1+x^{2}+y^{2}}}+\frac {y}{x^{2}+y^{2}}-\frac {x y^{\prime }}{x^{2}+y^{2}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact]

0.611

5290

\[ {}\frac {x^{n} y^{\prime }}{b y^{2}-c \,x^{2 a}}-\frac {a y x^{a -1}}{b y^{2}-c \,x^{2 a}}+x^{a -1} = 0 \]

[_Riccati]

4.788

5291

\[ {}2 y x +\left (y^{2}-2 x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.344

5292

\[ {}\frac {1}{x}+\frac {y^{\prime }}{y}+\frac {2}{y}-\frac {2 y^{\prime }}{x} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.306

5293

\[ {}-y+y^{\prime } x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.803

5294

\[ {}8 y+10 x +\left (5 y+7 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.888

5295

\[ {}x^{2}+2 y x -y^{2}+\left (y^{2}+2 y x -x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.564

5296

\[ {}y^{2}+\left (y x +x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6.035

5297

\[ {}\left (x \cos \left (\frac {y}{x}\right )+y \sin \left (\frac {y}{x}\right )\right ) y+\left (x \cos \left (\frac {y}{x}\right )-y \sin \left (\frac {y}{x}\right )\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

0.408

5298

\[ {}\left (x^{2} y^{2}+y x \right ) y+\left (x^{2} y^{2}-1\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.348

5299

\[ {}\left (x^{3} y^{3}+x^{2} y^{2}+y x +1\right ) y+\left (x^{3} y^{3}-x^{2} y^{2}-y x +1\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1.783

5300

\[ {}x^{2}+y^{2}+2 x +2 y y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

0.342