| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 25401 |
\begin{align*}
y y^{\prime }-y&=\frac {3 x}{8}+\frac {3 \sqrt {a^{2}+x^{2}}}{8}-\frac {a^{2}}{16 \sqrt {a^{2}+x^{2}}} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
111.288 |
|
| 25402 |
\begin{align*}
a \left (1+{y^{\prime }}^{3}\right )^{{1}/{3}}+y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
111.440 |
|
| 25403 |
\begin{align*}
t \left (t -4\right ) y^{\prime \prime }+3 y^{\prime } t +4 y&=2 \\
y \left (3\right ) &= 0 \\
y^{\prime }\left (3\right ) &= -1 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
111.697 |
|
| 25404 |
\begin{align*}
\left (y \sqrt {x^{2}+y^{2}}+\left (y^{2}-x^{2}\right ) \sin \left (\alpha \right )-2 x y \cos \left (\alpha \right )\right ) y^{\prime }+x \sqrt {x^{2}+y^{2}}+2 x y \sin \left (\alpha \right )+\left (y^{2}-x^{2}\right ) \cos \left (\alpha \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
111.801 |
|
| 25405 |
\begin{align*}
\left (a_{2} x^{2}+b_{2} x +c_{2} \right ) y^{\prime }&=y^{2}+\left (a_{1} x +b_{1} \right ) y-\lambda \left (\lambda +a_{1} -a_{2} \right ) x^{2}+\lambda \left (b_{2} -b_{1} \right ) x +\lambda c_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
112.030 |
|
| 25406 |
\begin{align*}
\operatorname {a2} y+\left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+x \left (\operatorname {a0} +x \right ) y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
112.040 |
|
| 25407 |
\begin{align*}
2 y x -2 \left (x^{2}+1\right ) y^{\prime }+x \left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
112.088 |
|
| 25408 |
\begin{align*}
x^{\prime \prime }+3 x^{\prime }+5 x&=-4 \cos \left (5 t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
112.112 |
|
| 25409 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +\alpha \left (\alpha +1\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
112.118 |
|
| 25410 |
\begin{align*}
x^{\prime \prime }+4 x^{\prime }+13 x&=\left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 1-t & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
112.476 |
|
| 25411 |
\begin{align*}
2 y^{\prime \prime }&=\sin \left (2 y\right ) \\
y \left (0\right ) &= -\frac {\pi }{2} \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✗ |
✓ |
✗ |
112.694 |
|
| 25412 |
\begin{align*}
y y^{\prime }&=x^{n -1} \left (\left (2 n +1\right ) x +a n \right ) y-n \,x^{2 n} \left (a +x \right ) \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
112.969 |
|
| 25413 |
\begin{align*}
3 y-7 x +7-\left (3 x -7 y-3\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
112.996 |
|
| 25414 |
\begin{align*}
y^{\prime }&=a \tan \left (\lambda x +\mu \right )^{k} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
113.246 |
|
| 25415 |
\begin{align*}
\left (b x +a \right ) y+2 \left (1-2 x \right ) y^{\prime }+4 \left (1-x \right ) x y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
113.355 |
|
| 25416 |
\begin{align*}
y^{\prime }&={\mathrm e}^{\lambda x} y^{2}+a \,x^{n} y+a \lambda \,x^{n} {\mathrm e}^{-\lambda x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
113.371 |
|
| 25417 |
\begin{align*}
3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
113.740 |
|
| 25418 |
\begin{align*}
4 y x -\left (x^{2}+7\right ) y^{\prime }+x \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
113.748 |
|
| 25419 |
\begin{align*}
y y^{\prime }-y&=2 x +2 A \left (10 \sqrt {x}+31 A +\frac {30 A^{2}}{\sqrt {x}}\right ) \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
114.001 |
|
| 25420 |
\begin{align*}
y^{\prime }&=f \left (x \right ) y^{2}-a \tan \left (\lambda x \right )^{2} \left (a f \left (x \right )-\lambda \right )+a \lambda \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
114.484 |
|
| 25421 |
\begin{align*}
y y^{\prime }-y&=A \sqrt {x}+2 A^{2}+\frac {B}{\sqrt {x}} \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
114.529 |
|
| 25422 |
\begin{align*}
2 y^{\prime \prime }&=\sin \left (2 y\right ) \\
y \left (0\right ) &= \frac {\pi }{2} \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✗ |
✓ |
✗ |
114.703 |
|
| 25423 |
\begin{align*}
y^{\prime \prime }&=-\frac {y^{\prime }}{x^{4}}+\frac {y}{x^{5}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
114.759 |
|
| 25424 |
\begin{align*}
y y^{\prime }-y&=2 x +2 A \left (-10 \sqrt {x}+19 A +\frac {30 A^{2}}{\sqrt {x}}\right ) \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
115.034 |
|
| 25425 |
\begin{align*}
3 \cos \left (x \right ) y+4 x \,{\mathrm e}^{x}+2 x^{3} y+\left (3 \sin \left (x \right )+3\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
115.123 |
|
| 25426 |
\begin{align*}
y^{\prime }&=f \left (x \right ) y^{2}-a \cot \left (\lambda x \right )^{2} \left (a f \left (x \right )-\lambda \right )+a \lambda \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
115.431 |
|
| 25427 |
\begin{align*}
x \left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime }+y a \,x^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
115.626 |
|
| 25428 |
\begin{align*}
y^{\prime \prime }-4 y&=x \,{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
116.268 |
|
| 25429 |
\begin{align*}
\left (x^{2}-1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}-1\right ) y^{\prime }-\left (\nu \left (\nu +1\right ) \left (x^{2}-1\right )+n^{2}\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
116.730 |
|
| 25430 |
\begin{align*}
\left (-x^{2}+1\right ) \eta ^{\prime \prime }-\left (x +1\right ) \eta ^{\prime }+\left (1+k \right ) \eta &=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
116.844 |
|
| 25431 |
\begin{align*}
x^{2} \left (a x +b \right ) y^{\prime \prime }-2 x \left (a x +2 b \right ) y^{\prime }+2 \left (a x +3 b \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
116.981 |
|
| 25432 |
\begin{align*}
y^{\prime \prime } x&=y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
117.114 |
|
| 25433 |
\begin{align*}
y^{2} y^{\prime \prime }&=a \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
117.398 |
|
| 25434 |
\begin{align*}
\left (1-x^{2} y\right ) y^{\prime }-1+x y^{2}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
117.400 |
|
| 25435 |
\begin{align*}
\left (1+{y^{\prime }}^{2}\right )^{3}&=a^{2} {y^{\prime \prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
117.827 |
|
| 25436 |
\begin{align*}
b y+a x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
117.868 |
|
| 25437 |
\begin{align*}
y^{\prime }&=f \left (x \right ) y^{2}-a \tanh \left (\lambda x \right )^{2} \left (a f \left (x \right )+\lambda \right )+a \lambda \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
118.092 |
|
| 25438 |
\begin{align*}
-y+2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime }&=\left (x +1\right ) \sec \left (x \right ) \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
118.095 |
|
| 25439 |
\begin{align*}
\operatorname {a2} y+x \left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+x^{3} y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
118.694 |
|
| 25440 |
\begin{align*}
{y^{\prime }}^{2}-3 x y^{{2}/{3}} y^{\prime }+9 y^{{5}/{3}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
118.855 |
|
| 25441 |
\begin{align*}
t^{3}+y^{2} \sqrt {t^{2}+y^{2}}-t y \sqrt {t^{2}+y^{2}}\, y^{\prime }&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
119.017 |
|
| 25442 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }+2 a x y^{\prime }+a \left (-1+a \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
119.185 |
|
| 25443 |
\begin{align*}
y y^{\prime }-y&=-\frac {10 x}{49}+\frac {2 A \left (4 \sqrt {x}+61 A +\frac {12 A^{2}}{\sqrt {x}}\right )}{49} \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
119.269 |
|
| 25444 |
\begin{align*}
\left (x^{2}-1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}-1\right ) y^{\prime }+\left (\left (x^{2}-1\right ) \left (a^{2} x^{2}-\lambda \right )-m^{2}\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
119.495 |
|
| 25445 |
\begin{align*}
y^{\prime } y^{\prime \prime }&=a^{2} x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
120.297 |
|
| 25446 |
\begin{align*}
2 x +y+\left (4 x -2 y+1\right ) y^{\prime }&=0 \\
y \left (\frac {1}{2}\right ) &= 0 \\
\end{align*} |
✓ |
✗ |
✓ |
✗ |
120.351 |
|
| 25447 |
\begin{align*}
9 x^{2} y^{\prime \prime }+27 y^{\prime } x +10 y&=\frac {1}{x} \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
120.427 |
|
| 25448 |
\begin{align*}
2 y^{\prime \prime }&=1+12 y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
120.730 |
|
| 25449 |
\begin{align*}
y^{\prime } \cos \left (y\right ) \left (\cos \left (y\right )-\sin \left (A \right ) \sin \left (x \right )\right )+\cos \left (x \right ) \left (\cos \left (x \right )-\sin \left (A \right ) \sin \left (y\right )\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
120.809 |
|
| 25450 |
\begin{align*}
y+x \left (x +1\right ) y^{\prime }+x \left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
121.057 |
|
| 25451 |
\begin{align*}
\left (1+3 x \right ) y-4 x^{2} y^{\prime }+4 x^{2} \left (x +1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
121.097 |
|
| 25452 |
\begin{align*}
x \left (x +1\right ) y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
121.159 |
|
| 25453 |
\begin{align*}
y^{\prime }&=f \left (x \right ) y^{2}-a \coth \left (\lambda x \right )^{2} \left (a f \left (x \right )+\lambda \right )+a \lambda \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
121.240 |
|
| 25454 |
\begin{align*}
x \left (a +x \right ) y^{\prime \prime }+\left (b x +c \right ) y^{\prime }+d y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
121.563 |
|
| 25455 |
\begin{align*}
y^{\prime \prime }&=-\frac {2 x y^{\prime }}{x^{2}-1}-\frac {\left (-a^{2} \left (x^{2}-1\right )^{2}-n \left (n +1\right ) \left (x^{2}-1\right )-m^{2}\right ) y}{\left (x^{2}-1\right )^{2}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
121.627 |
|
| 25456 |
\begin{align*}
\left (2 x +1\right ) y-x \left (2 x +1\right ) y^{\prime }+x^{2} \left (x +1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
121.881 |
|
| 25457 |
\begin{align*}
y^{\prime \prime }&=-\frac {2 x y^{\prime }}{x^{2}-1}-\frac {\left (\left (x^{2}-1\right ) \left (a \,x^{2}+b x +c \right )-k^{2}\right ) y}{\left (x^{2}-1\right )^{2}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
122.072 |
|
| 25458 |
\begin{align*}
\operatorname {A2} \left (a x +b \right )^{2} y^{\prime \prime }+\operatorname {A1} \left (a x +b \right ) y^{\prime }+\operatorname {A0} \left (a x +b \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
122.146 |
|
| 25459 |
\begin{align*}
n \left (n +2\right ) y-3 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
122.240 |
|
| 25460 |
\begin{align*}
n \left (n +1\right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
122.267 |
|
| 25461 |
\begin{align*}
3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
122.964 |
|
| 25462 |
\begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +5 y&=x^{2} \sin \left (\ln \left (x \right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
122.997 |
|
| 25463 |
\begin{align*}
\left (3 x -1\right )^{2} y^{\prime \prime }+3 \left (3 x -1\right ) y^{\prime }-9 y-\ln \left (3 x -1\right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
123.151 |
|
| 25464 |
\begin{align*}
y-y^{\prime } x +\left (-x \cot \left (x \right )+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
123.517 |
|
| 25465 |
\begin{align*}
y y^{\prime }-y&=-\frac {3 x}{16}+\frac {A}{x^{{1}/{3}}}+\frac {B}{x^{{5}/{3}}} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
124.393 |
|
| 25466 |
\begin{align*}
y^{\prime }-y y^{\prime \prime }&=n \sqrt {{y^{\prime }}^{2}+a^{2} y^{\prime \prime }} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
125.630 |
|
| 25467 |
\begin{align*}
x^{\prime \prime }+4 x&=5 \sin \left (3 t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
125.829 |
|
| 25468 |
\begin{align*}
y y^{\prime }-y&=-\frac {30 x}{121}+\frac {3 A \left (21 \sqrt {x}+35 A +\frac {6 A^{2}}{\sqrt {x}}\right )}{242} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
125.942 |
|
| 25469 |
\begin{align*}
3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
125.964 |
|
| 25470 |
\begin{align*}
m x^{\prime \prime }+k x&=F_{0} \cos \left (\omega t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
126.010 |
|
| 25471 |
\begin{align*}
\left (\operatorname {b2} x +\operatorname {a2} \right ) y+x \left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+x^{3} y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
126.292 |
|
| 25472 |
\begin{align*}
y^{\prime }&=a \cot \left (\lambda x +\mu \right )^{k} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
127.190 |
|
| 25473 |
\begin{align*}
y y^{\prime }-y&=-\frac {x}{4}+\frac {A \left (\sqrt {x}+5 A +\frac {3 A^{2}}{\sqrt {x}}\right )}{4} \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
127.716 |
|
| 25474 |
\begin{align*}
\left (-y+y^{\prime } x \right ) \left (y y^{\prime }+x \right )&=h^{2} y^{\prime } \\
\end{align*} |
✓ |
✗ |
✓ |
✗ |
127.787 |
|
| 25475 |
\begin{align*}
\left (b x +a \right ) y+2 \left (1-3 x \right ) \left (1-x \right ) y^{\prime }+4 \left (1-x \right ) x y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
127.792 |
|
| 25476 |
\begin{align*}
y^{\prime }&=\frac {2 x \ln \left (\frac {1}{x -1}\right )-\coth \left (\frac {x +1}{x -1}\right )+\coth \left (\frac {x +1}{x -1}\right ) y^{2}-2 \coth \left (\frac {x +1}{x -1}\right ) x^{2} y+\coth \left (\frac {x +1}{x -1}\right ) x^{4}}{\ln \left (\frac {1}{x -1}\right )} \\
\end{align*} |
✓ |
✗ |
✓ |
✗ |
127.948 |
|
| 25477 |
\begin{align*}
\left (x^{2}+y x +a y^{2}\right ) y^{\prime }&=a \,x^{2}+y x +y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
128.161 |
|
| 25478 |
\begin{align*}
z^{\prime \prime }+z+z^{5}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
128.317 |
|
| 25479 |
\begin{align*}
y y^{\prime }&={\mathrm e}^{a x} \left (2 a \,x^{2}+b +2 x \right ) y+{\mathrm e}^{2 a x} \left (-a \,x^{4}-b \,x^{2}+c \right ) \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
128.497 |
|
| 25480 |
\begin{align*}
x^{3} y^{\prime \prime }+\left (a \,x^{3}+a b x -x^{2}+b \right ) y^{\prime }+a^{2} b x y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
128.622 |
|
| 25481 |
\begin{align*}
3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
128.743 |
|
| 25482 |
\begin{align*}
\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+\left (\left (x^{2}+1\right ) \left (a^{2} x^{2}-\lambda \right )+m^{2}\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
128.777 |
|
| 25483 |
\begin{align*}
2 t y y^{\prime }&=3 y^{2}-t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
129.258 |
|
| 25484 |
\begin{align*}
\left (a y^{2}+2 b x y+c \,x^{2}\right ) y^{\prime }+b y^{2}+2 c x y+d \,x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
129.281 |
|
| 25485 |
\begin{align*}
x^{3} y^{\prime }&=x^{2} y-y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
129.730 |
|
| 25486 |
\begin{align*}
x^{3} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime } x -\left (a \,x^{n}-a b \,x^{n -1}+b \right ) y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
130.665 |
|
| 25487 |
\begin{align*}
y y^{\prime }+\frac {a \left (39 x -4\right ) y}{42 x^{{9}/{7}}}&=-\frac {a^{2} \left (x -1\right ) \left (9 x -1\right )}{42 x^{{11}/{7}}} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
130.854 |
|
| 25488 |
\begin{align*}
{y^{\prime }}^{3}-2 y y^{\prime }+y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
131.030 |
|
| 25489 |
\begin{align*}
x^{\prime \prime }+100 x&=225 \cos \left (5 t \right )+300 \sin \left (5 t \right ) \\
x \left (0\right ) &= 375 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
131.331 |
|
| 25490 |
\begin{align*}
\left (x +y\right )^{2} y^{\prime }&=\left (x +y+2\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
131.588 |
|
| 25491 |
\begin{align*}
y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=2 x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
132.480 |
|
| 25492 |
\begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{2}+\frac {y}{8}&=\frac {\sin \left (x \right )}{8}-\frac {\cos \left (x \right )}{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
132.594 |
|
| 25493 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }&=1+y^{2}-2 x y \left (1+y^{2}\right ) \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
132.893 |
|
| 25494 |
\begin{align*}
2 t y y^{\prime }&=3 y^{2}-t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
133.092 |
|
| 25495 |
\begin{align*}
y^{\prime }&=y^{2}+\cos \left (t \right )^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
133.378 |
|
| 25496 |
\begin{align*}
\left (x -y\right ) \left (4 x +y\right )+x \left (5 x -y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
133.682 |
|
| 25497 |
\begin{align*}
\left (c \,x^{2}+b x +a \right ) y+2 \left (1-2 x \right ) y^{\prime }+4 \left (1-x \right ) x y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
133.726 |
|
| 25498 |
\begin{align*}
y y^{\prime }-y&=-\frac {12 x}{49}+\frac {2 A \left (5 \sqrt {x}+34 A +\frac {15 A^{2}}{\sqrt {x}}\right )}{49} \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
133.770 |
|
| 25499 |
\begin{align*}
y y^{\prime }-y&=-\frac {12 x}{49}+\frac {6 A \left (-3 \sqrt {x}+23 A +\frac {12 A^{2}}{\sqrt {x}}\right )}{49} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
133.897 |
|
| 25500 |
\begin{align*}
y^{\prime }&=\frac {3 y^{2}-x^{2}}{2 y x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
133.943 |
|