2.2.54 Problems 5301 to 5400

Table 2.109: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

5301

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

0.319

5302

\[ {}2 y x +\left (y^{2}-3 x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.302

5303

\[ {}y+\left (2 y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.307

5304

\[ {}y^{\prime } x -a y+y^{2} = x^{-2 a} \]

[_rational, _Riccati]

0.537

5305

\[ {}y^{\prime } x -a y+y^{2} = x^{-\frac {2 a}{3}} \]

[_rational, _Riccati]

1.744

5306

\[ {}u^{\prime }+u^{2} = \frac {c}{x^{{4}/{3}}} \]

[_rational, [_Riccati, _special]]

0.298

5307

\[ {}u^{\prime }+b u^{2} = \frac {c}{x^{4}} \]

[_rational, [_Riccati, _special]]

0.274

5308

\[ {}u^{\prime }-u^{2} = \frac {2}{x^{{8}/{3}}} \]

[_rational, [_Riccati, _special]]

0.386

5309

\[ {}\frac {\sqrt {f \,x^{4}+c \,x^{3}+c \,x^{2}+b x +a}\, y^{\prime }}{\sqrt {a +b y+c y^{2}+c y^{3}+f y^{4}}} = -1 \]

[_separable]

10.602

5310

\[ {}{y^{\prime }}^{2}-5 y^{\prime }+6 = 0 \]

[_quadrature]

0.724

5311

\[ {}{y^{\prime }}^{2}-\frac {a^{2}}{x^{2}} = 0 \]

[_quadrature]

0.346

5312

\[ {}{y^{\prime }}^{2} = \frac {1-x}{x} \]

[_quadrature]

0.256

5313

\[ {}{y^{\prime }}^{2}+\frac {2 x y^{\prime }}{y}-1 = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.018

5314

\[ {}y = a y^{\prime }+b {y^{\prime }}^{2} \]

[_quadrature]

0.567

5315

\[ {}x = a y^{\prime }+b {y^{\prime }}^{2} \]

[_quadrature]

0.196

5316

\[ {}y = \sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } \]

[_quadrature]

1.573

5317

\[ {}x = \sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } \]

[_quadrature]

1.033

5318

\[ {}y^{\prime }-\frac {\sqrt {1+{y^{\prime }}^{2}}}{x} = 0 \]

[_quadrature]

1.095

5319

\[ {}x^{2} \left (1+{y^{\prime }}^{2}\right )^{3}-a^{2} = 0 \]

[_quadrature]

1.993

5320

\[ {}1+{y^{\prime }}^{2} = \frac {\left (x +a \right )^{2}}{2 a x +x^{2}} \]

[_quadrature]

0.562

5321

\[ {}y = y^{\prime } x +y^{\prime }-{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.335

5322

\[ {}y = y^{\prime } x +\sqrt {b^{2}-a^{2} {y^{\prime }}^{2}} \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

3.244

5323

\[ {}y = y^{\prime } x +x \sqrt {1+{y^{\prime }}^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

34.504

5324

\[ {}y = y^{\prime } x +a x \sqrt {1+{y^{\prime }}^{2}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

350.635

5325

\[ {}x -y y^{\prime } = a {y^{\prime }}^{2} \]

unknown

428.598

5326

\[ {}x +y y^{\prime } = a \sqrt {1+{y^{\prime }}^{2}} \]

unknown

477.262

5327

\[ {}y y^{\prime } = x +y^{2}-y^{2} {y^{\prime }}^{2} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

4.875

5328

\[ {}y-\frac {1}{\sqrt {1+{y^{\prime }}^{2}}} = x +\frac {y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}} \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.536

5329

\[ {}y-2 y^{\prime } x = x {y^{\prime }}^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.145

5330

\[ {}\frac {y-y^{\prime } x}{y^{2}+y^{\prime }} = \frac {y-y^{\prime } x}{1+x^{2} y^{\prime }} \]

[_separable]

0.492

5331

\[ {}2 y x +\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

3.458

5332

\[ {}\left (x +\sqrt {y^{2}-y x}\right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.767

5333

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.451

5334

\[ {}y^{\prime } x -y-x \sin \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.008

5335

\[ {}2 x^{2} y+y^{3}+\left (x y^{2}-2 x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

24.788

5336

\[ {}y^{2}+\left (x \sqrt {y^{2}-x^{2}}-y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _dAlembert]

10.177

5337

\[ {}\frac {y \cos \left (\frac {y}{x}\right )}{x}-\left (\frac {x \sin \left (\frac {y}{x}\right )}{y}+\cos \left (\frac {y}{x}\right )\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4.919

5338

\[ {}y+x \ln \left (\frac {y}{x}\right ) y^{\prime }-2 y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5.496

5339

\[ {}2 y \,{\mathrm e}^{\frac {x}{y}}+\left (y-2 x \,{\mathrm e}^{\frac {x}{y}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.267

5340

\[ {}x \,{\mathrm e}^{\frac {y}{x}}-y \sin \left (\frac {y}{x}\right )+x \sin \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5.119

5341

\[ {}x^{2}+y^{2} = 2 x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

9.752

5342

\[ {}x \,{\mathrm e}^{\frac {y}{x}}+y = y^{\prime } x \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

4.754

5343

\[ {}y^{\prime }-\frac {y}{x}+\csc \left (\frac {y}{x}\right ) = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

4.331

5344

\[ {}y x -y^{2}-x^{2} y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.686

5345

\[ {}x +2 y-4-\left (2 x -4 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.754

5346

\[ {}3 x +2 y+1-\left (3 x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.310

5347

\[ {}x +y+1+\left (2 x +2 y+2\right ) y^{\prime } = 0 \]

[_quadrature]

0.451

5348

\[ {}x +y-1+\left (2 x +2 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.206

5349

\[ {}x +y-1-\left (x -y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.736

5350

\[ {}x +y+\left (2 x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.167

5351

\[ {}7 y-3+\left (2 x +1\right ) y^{\prime } = 0 \]

[_separable]

1.501

5352

\[ {}x +2 y+\left (3 x +6 y+3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.269

5353

\[ {}x +2 y+\left (-1+y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.616

5354

\[ {}3 x -2 y+4-\left (2 x +7 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

46.129

5355

\[ {}x +y+\left (3 x +3 y-4\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.495

5356

\[ {}3 x +2 y+3-\left (x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.847

5357

\[ {}y+7+\left (2 x +y+3\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19.178

5358

\[ {}x +y+2-\left (x -y-4\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.750

5359

\[ {}3 x^{2} y+8 x y^{2}+\left (x^{3}+8 x^{2} y+12 y^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational]

0.267

5360

\[ {}\frac {2 y x +1}{y}+\frac {\left (-x +y\right ) y^{\prime }}{y^{2}} = 0 \]

[[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.319

5361

\[ {}2 y x +\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

0.211

5362

\[ {}{\mathrm e}^{x} \sin \left (y\right )+{\mathrm e}^{-y}-\left (x \,{\mathrm e}^{-y}-{\mathrm e}^{x} \cos \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

0.270

5363

\[ {}\cos \left (y\right )-\left (x \sin \left (y\right )-y^{2}\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

0.227

5364

\[ {}x -2 y x +{\mathrm e}^{y}+\left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact]

1.640

5365

\[ {}x^{2}-x +y^{2}-\left ({\mathrm e}^{y}-2 y x \right ) y^{\prime } = 0 \]

[_exact]

1.418

5366

\[ {}2 x +y \cos \left (x \right )+\left (2 y+\sin \left (x \right )-\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

0.253

5367

\[ {}x \sqrt {x^{2}+y^{2}}-\frac {x^{2} y y^{\prime }}{y-\sqrt {x^{2}+y^{2}}} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

0.274

5368

\[ {}4 x^{3}-\sin \left (x \right )+y^{3}-\left (y^{2}+1-3 x y^{2}\right ) y^{\prime } = 0 \]

[_exact]

0.389

5369

\[ {}{\mathrm e}^{x} \left (y^{3}+x y^{3}+1\right )+3 y^{2} \left (x \,{\mathrm e}^{x}-6\right ) y^{\prime } = 0 \]
i.c.

[_exact, _Bernoulli]

0.410

5370

\[ {}\sin \left (x \right ) \cos \left (y\right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

0.329

5371

\[ {}y^{2} {\mathrm e}^{x y^{2}}+4 x^{3}+\left (2 x y \,{\mathrm e}^{x y^{2}}-3 y^{2}\right ) y^{\prime } = 0 \]
i.c.

[_exact]

0.319

5372

\[ {}y^{2}+y-y^{\prime } x = 0 \]

[_separable]

0.190

5373

\[ {}y \sec \left (x \right )+\sin \left (x \right ) y^{\prime } = 0 \]

[_separable]

0.242

5374

\[ {}{\mathrm e}^{x}-\sin \left (y\right )+\cos \left (y\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

0.254

5375

\[ {}y x +\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

0.263

5376

\[ {}y^{3}+x y^{2}+y+\left (x^{3}+x^{2} y+x \right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

0.526

5377

\[ {}3 y-y^{\prime } x = 0 \]

[_separable]

0.174

5378

\[ {}y-3 y^{\prime } x = 0 \]

[_separable]

0.208

5379

\[ {}y \left (2 x^{2} y^{3}+3\right )+x \left (x^{2} y^{3}-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.786

5380

\[ {}2 y x +x^{2}+\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

0.228

5381

\[ {}x^{2}+y \cos \left (x \right )+\left (y^{3}+\sin \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

0.223

5382

\[ {}x^{2}+y^{2}+x +x y y^{\prime } = 0 \]

[_rational, _Bernoulli]

0.310

5383

\[ {}x -2 y x +{\mathrm e}^{y}+\left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact]

0.243

5384

\[ {}{\mathrm e}^{x} \sin \left (y\right )+{\mathrm e}^{-y}-\left (x \,{\mathrm e}^{-y}-{\mathrm e}^{x} \cos \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

0.282

5385

\[ {}x^{2}-y^{2}-y-\left (x^{2}-y^{2}-x \right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

1.421

5386

\[ {}x^{4} y^{2}-y+\left (x^{2} y^{4}-x \right ) y^{\prime } = 0 \]

[_rational]

0.296

5387

\[ {}y \left (2 x +y^{3}\right )-x \left (2 x -y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

0.280

5388

\[ {}\arctan \left (y x \right )+\frac {y x -2 x y^{2}}{1+x^{2} y^{2}}+\frac {\left (x^{2}-2 x^{2} y\right ) y^{\prime }}{1+x^{2} y^{2}} = 0 \]

[_exact]

0.378

5389

\[ {}{\mathrm e}^{x} \left (x +1\right )+\left (y \,{\mathrm e}^{y}-x \,{\mathrm e}^{x}\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

0.300

5390

\[ {}\frac {y x +1}{y}+\frac {\left (2 y-x \right ) y^{\prime }}{y^{2}} = 0 \]

[[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.329

5391

\[ {}y^{2}-3 y x -2 x^{2}+\left (y x -x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.466

5392

\[ {}y \left (y+2 x +1\right )-x \left (x +2 y-1\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.346

5393

\[ {}y \left (2 x -y-1\right )+x \left (2 y-x -1\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.348

5394

\[ {}y^{2}+12 x^{2} y+\left (2 y x +4 x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.378

5395

\[ {}3 \left (x +y\right )^{2}+x \left (2 x +3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.491

5396

\[ {}y-\left (y^{2}+x^{2}+x \right ) y^{\prime } = 0 \]

[_rational]

1.086

5397

\[ {}2 y x +\left (a +x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

0.180

5398

\[ {}2 y x +x^{2}+b +\left (a +x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational]

0.207

5399

\[ {}y^{\prime } x +y = x^{3} \]

[_linear]

1.128

5400

\[ {}y^{\prime }+a y = b \]

[_quadrature]

0.349