2.2.55 Problems 5401 to 5500

Table 2.111: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

5401

\[ {}y^{\prime } x +y = y^{2} \ln \left (x \right ) \]

[_Bernoulli]

2.106

5402

\[ {}x^{\prime }+2 x y = {\mathrm e}^{-y^{2}} \]

[_linear]

1.263

5403

\[ {}r^{\prime } = \left (r+{\mathrm e}^{-\theta }\right ) \tan \left (\theta \right ) \]

[_linear]

1.652

5404

\[ {}y^{\prime }-\frac {2 x y}{x^{2}+1} = 1 \]

[_linear]

1.333

5405

\[ {}y^{\prime }+y = x y^{3} \]

[_Bernoulli]

0.373

5406

\[ {}\left (-x^{3}+1\right ) y^{\prime }-2 \left (x +1\right ) y = y^{{5}/{2}} \]

[_rational, _Bernoulli]

4.762

5407

\[ {}\tan \left (\theta \right ) r^{\prime }-r = \tan \left (\theta \right )^{2} \]

[_linear]

1.463

5408

\[ {}y^{\prime }+2 y = 3 \,{\mathrm e}^{-2 x} \]

[[_linear, ‘class A‘]]

0.898

5409

\[ {}y^{\prime }+2 y = \frac {3 \,{\mathrm e}^{-2 x}}{4} \]

[[_linear, ‘class A‘]]

0.940

5410

\[ {}y^{\prime }+2 y = \sin \left (x \right ) \]

[[_linear, ‘class A‘]]

1.124

5411

\[ {}y^{\prime }+y \cos \left (x \right ) = {\mathrm e}^{2 x} \]

[_linear]

1.877

5412

\[ {}y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2} \]

[_linear]

2.390

5413

\[ {}y^{\prime } x +y = x \sin \left (x \right ) \]

[_linear]

1.157

5414

\[ {}-y+y^{\prime } x = x^{2} \sin \left (x \right ) \]

[_linear]

1.173

5415

\[ {}y^{\prime } x +x y^{2}-y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

1.707

5416

\[ {}y^{\prime } x -y \left (2 y \ln \left (x \right )-1\right ) = 0 \]

[_Bernoulli]

2.202

5417

\[ {}x^{2} \left (x -1\right ) y^{\prime }-y^{2}-x \left (x -2\right ) y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2.050

5418

\[ {}y^{\prime }-y = {\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

1.058

5419

\[ {}y^{\prime }+\frac {y}{x} = \frac {y^{2}}{x} \]
i.c.

[_separable]

3.168

5420

\[ {}2 \cos \left (x \right ) y^{\prime } = y \sin \left (x \right )-y^{3} \]
i.c.

[_Bernoulli]

7.331

5421

\[ {}\left (x -\cos \left (y\right )\right ) y^{\prime }+\tan \left (y\right ) = 0 \]
i.c.

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

4.931

5422

\[ {}y^{\prime } = x^{3}+\frac {2 y}{x}-\frac {y^{2}}{x} \]

[_rational, _Riccati]

1.386

5423

\[ {}y^{\prime } = 2 \tan \left (x \right ) \sec \left (x \right )-y^{2} \sin \left (x \right ) \]

[_Riccati]

3.979

5424

\[ {}y^{\prime } = \frac {1}{x^{2}}-\frac {y}{x}-y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

1.616

5425

\[ {}y^{\prime } = 1+\frac {y}{x}-\frac {y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

2.071

5426

\[ {}2 x y y^{\prime }+\left (x +1\right ) y^{2} = {\mathrm e}^{x} \]

[_Bernoulli]

1.662

5427

\[ {}\cos \left (y\right ) y^{\prime }+\sin \left (y\right ) = x^{2} \]

[‘y=_G(x,y’)‘]

1.965

5428

\[ {}\left (x +1\right ) y^{\prime }-1-y = \left (x +1\right ) \sqrt {1+y} \]

[[_1st_order, _with_linear_symmetries]]

3.682

5429

\[ {}{\mathrm e}^{y} \left (1+y^{\prime }\right ) = {\mathrm e}^{x} \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.311

5430

\[ {}y^{\prime } \sin \left (y\right )+\sin \left (x \right ) \cos \left (y\right ) = \sin \left (x \right ) \]

[_separable]

75.284

5431

\[ {}\left (x -y\right )^{2} y^{\prime } = 4 \]

[[_homogeneous, ‘class C‘], _dAlembert]

2.257

5432

\[ {}-y+y^{\prime } x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.762

5433

\[ {}\left (3 x +2 y+1\right ) y^{\prime }+4 x +3 y+2 = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.444

5434

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 y x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.082

5435

\[ {}y+\left (1+y^{2} {\mathrm e}^{2 x}\right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries]]

1.157

5436

\[ {}x^{2} y+y^{2}+x^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.692

5437

\[ {}y^{2} {\mathrm e}^{x y^{2}}+4 x^{3}+\left (2 x y \,{\mathrm e}^{x y^{2}}-3 y^{2}\right ) y^{\prime } = 0 \]

[_exact]

68.445

5438

\[ {}y^{\prime } = \left (x^{2}+2 y-1\right )^{{2}/{3}}-x \]

[[_1st_order, _with_linear_symmetries]]

1.263

5439

\[ {}y^{\prime } x +y = x^{2} \left (1+{\mathrm e}^{x}\right ) y^{2} \]

[_Bernoulli]

2.797

5440

\[ {}2 y-x y \ln \left (x \right )-2 y^{\prime } x \ln \left (x \right ) = 0 \]

[_separable]

1.597

5441

\[ {}y^{\prime }+a y = k \,{\mathrm e}^{b x} \]

[[_linear, ‘class A‘]]

0.894

5442

\[ {}y^{\prime } = \left (x +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

1.363

5443

\[ {}y^{\prime }+8 x^{3} y^{3}+2 y x = 0 \]

[_Bernoulli]

1.095

5444

\[ {}\left (x y \sqrt {x^{2}-y^{2}}+x \right ) y^{\prime } = y-x^{2} \sqrt {x^{2}-y^{2}} \]

[NONE]

2.787

5445

\[ {}y^{\prime }+a y = b \sin \left (k x \right ) \]

[[_linear, ‘class A‘]]

1.165

5446

\[ {}y^{\prime } x -y^{2}+1 = 0 \]

[_separable]

1.288

5447

\[ {}\left (y^{2}+a \sin \left (x \right )\right ) y^{\prime } = \cos \left (x \right ) \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.857

5448

\[ {}y^{\prime } x = x \,{\mathrm e}^{\frac {y}{x}}+x +y \]

[[_homogeneous, ‘class A‘], _dAlembert]

9.315

5449

\[ {}y^{\prime }+y \cos \left (x \right ) = {\mathrm e}^{-\sin \left (x \right )} \]

[_linear]

1.452

5450

\[ {}y^{\prime } x -y \left (\ln \left (y x \right )-1\right ) = 0 \]

[[_homogeneous, ‘class G‘]]

1.669

5451

\[ {}x^{3} y^{\prime }-y^{2}-x^{2} y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

1.762

5452

\[ {}y^{\prime } x +a y+b \,x^{n} = 0 \]

[_linear]

1.000

5453

\[ {}y^{\prime } x -y-x \sin \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2.977

5454

\[ {}y^{2}-3 y x -2 x^{2}+\left (y x -x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.214

5455

\[ {}\left (6 y x +x^{2}+3\right ) y^{\prime }+3 y^{2}+2 y x +2 x = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.328

5456

\[ {}x^{2} y^{\prime }+y^{2}+y x +x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1.570

5457

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 y x -\cos \left (x \right ) = 0 \]

[_linear]

2.597

5458

\[ {}\left (x^{2} y-1\right ) y^{\prime }+x y^{2}-1 = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.206

5459

\[ {}\left (x^{2}-1\right ) y^{\prime }+y x -3 x y^{2} = 0 \]

[_separable]

2.546

5460

\[ {}\left (x^{2}-1\right ) y^{\prime }-2 x y \ln \left (y\right ) = 0 \]

[_separable]

2.368

5461

\[ {}\left (1+x^{2}+y^{2}\right ) y^{\prime }+2 y x +x^{2}+3 = 0 \]

[_exact, _rational]

1.216

5462

\[ {}\cos \left (x \right ) y^{\prime }+y+\left (1+\sin \left (x \right )\right ) \cos \left (x \right ) = 0 \]

[_linear]

2.825

5463

\[ {}y^{2}+12 x^{2} y+\left (2 y x +4 x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.647

5464

\[ {}\left (x^{2}-y\right ) y^{\prime }+x = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

0.865

5465

\[ {}\left (x^{2}-y\right ) y^{\prime }-4 y x = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.876

5466

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4.325

5467

\[ {}2 x y y^{\prime }+3 x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

59.954

5468

\[ {}\left (2 x y^{3}-x^{4}\right ) y^{\prime }+2 x^{3} y-y^{4} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.802

5469

\[ {}\left (y x -1\right )^{2} x y^{\prime }+\left (1+x^{2} y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1.753

5470

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (y+2 x \right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4.056

5471

\[ {}3 x y^{2} y^{\prime }+y^{3}-2 x = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

2.096

5472

\[ {}2 y^{3} y^{\prime }+x y^{2}-x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

15.948

5473

\[ {}\left (2 x y^{3}+y x +x^{2}\right ) y^{\prime }-y x +y^{2} = 0 \]

[_rational]

1.511

5474

\[ {}\left (2 y^{3}+y\right ) y^{\prime }-2 x^{3}-x = 0 \]

[_separable]

1.805

5475

\[ {}y^{\prime }-{\mathrm e}^{x -y}+{\mathrm e}^{x} = 0 \]

[_separable]

1.310

5476

\[ {}y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

1.428

5477

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

0.766

5478

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

1.839

5479

\[ {}6 y^{\prime \prime }-11 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

0.782

5480

\[ {}y^{\prime \prime }+2 y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

0.990

5481

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-10 y^{\prime }-6 y = 0 \]

[[_3rd_order, _missing_x]]

0.069

5482

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-4 y^{\prime \prime }+4 y^{\prime } = 0 \]

[[_high_order, _missing_x]]

0.066

5483

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-2 y = 0 \]

[[_high_order, _missing_x]]

0.072

5484

\[ {}y^{\prime \prime \prime \prime }-a^{2} y = 0 \]

[[_high_order, _missing_x]]

0.089

5485

\[ {}y^{\prime \prime }-2 k y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

0.974

5486

\[ {}y^{\prime \prime }+4 k y^{\prime }-12 k^{2} y = 0 \]

[[_2nd_order, _missing_x]]

0.827

5487

\[ {}y^{\prime \prime \prime \prime } = 0 \]

[[_high_order, _quadrature]]

0.037

5488

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

0.774

5489

\[ {}3 y^{\prime \prime \prime }+5 y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

0.065

5490

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

[[_3rd_order, _missing_x]]

0.067

5491

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0 \]

[[_2nd_order, _missing_x]]

0.622

5492

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.062

5493

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.069

5494

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-11 y^{\prime \prime }-12 y^{\prime }+36 y = 0 \]

[[_high_order, _missing_x]]

0.076

5495

\[ {}36 y^{\prime \prime \prime \prime }-37 y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

[[_high_order, _missing_x]]

0.069

5496

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+36 y = 0 \]

[[_high_order, _missing_x]]

0.127

5497

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

1.421

5498

\[ {}y^{\prime \prime }-y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.576

5499

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+6 y = 0 \]

[[_high_order, _missing_x]]

0.077

5500

\[ {}y^{\prime \prime }-4 y^{\prime }+20 y = 0 \]

[[_2nd_order, _missing_x]]

1.463