# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}{y^{\prime }}^{2}-a y y^{\prime }-a x = 0
\] |
[_dAlembert] |
✓ |
113.993 |
|
\[
{}{y^{\prime }}^{2}+\left (a x +b y\right ) y^{\prime }+a b x y = 0
\] |
[_quadrature] |
✓ |
0.889 |
|
\[
{}{y^{\prime }}^{2}-x y y^{\prime }+y^{2} \ln \left (a y\right ) = 0
\] |
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]] |
✓ |
4.669 |
|
\[
{}{y^{\prime }}^{2}-\left (1+2 x y\right ) y^{\prime }+2 x y = 0
\] |
[_quadrature] |
✓ |
2.281 |
|
\[
{}{y^{\prime }}^{2}-\left (4+y^{2}\right ) y^{\prime }+4+y^{2} = 0
\] |
[_quadrature] |
✓ |
3.372 |
|
\[
{}{y^{\prime }}^{2}-\left (x -y\right ) y y^{\prime }-x y^{3} = 0
\] |
[_separable] |
✓ |
2.801 |
|
\[
{}{y^{\prime }}^{2}+x y^{2} y^{\prime }+y^{3} = 0
\] |
[[_homogeneous, ‘class G‘]] |
✓ |
3.484 |
|
\[
{}{y^{\prime }}^{2}-2 x^{3} y^{2} y^{\prime }-4 x^{2} y^{3} = 0
\] |
[[_1st_order, _with_linear_symmetries]] |
✓ |
2.980 |
|
\[
{}{y^{\prime }}^{2}-x y \left (x^{2}+y^{2}\right ) y^{\prime }+x^{4} y^{4} = 0
\] |
[_separable] |
✓ |
4.047 |
|
\[
{}{y^{\prime }}^{2}+2 x y^{3} y^{\prime }+y^{4} = 0
\] |
[[_homogeneous, ‘class G‘]] |
✓ |
3.122 |
|
\[
{}{y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right )-y^{2} = 0
\] |
[_separable] |
✓ |
1.214 |
|
\[
{}{y^{\prime }}^{2}-3 x y^{{2}/{3}} y^{\prime }+9 y^{{5}/{3}} = 0
\] |
[[_1st_order, _with_linear_symmetries]] |
✓ |
4.608 |
|
\[
{}{y^{\prime }}^{2} = {\mathrm e}^{4 x -2 y} \left (y^{\prime }-1\right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
0.841 |
|
\[
{}2 {y^{\prime }}^{2}+y^{\prime } x -2 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
0.537 |
|
\[
{}2 {y^{\prime }}^{2}-\left (1-x \right ) y^{\prime }-y = 0
\] |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
0.417 |
|
\[
{}2 {y^{\prime }}^{2}-2 x^{2} y^{\prime }+3 x y = 0
\] |
[[_homogeneous, ‘class G‘]] |
✓ |
2.691 |
|
\[
{}2 {y^{\prime }}^{2}+2 \left (6 y-1\right ) y^{\prime }+3 y \left (6 y-1\right ) = 0
\] |
[_quadrature] |
✓ |
2.899 |
|
\[
{}3 {y^{\prime }}^{2}-2 y^{\prime } x +y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
0.376 |
|
\[
{}3 {y^{\prime }}^{2}+4 y^{\prime } x +x^{2}-y = 0
\] |
[[_homogeneous, ‘class G‘]] |
✓ |
2.507 |
|
\[
{}4 {y^{\prime }}^{2} = 9 x
\] |
[_quadrature] |
✓ |
0.286 |
|
\[
{}4 {y^{\prime }}^{2}+2 x \,{\mathrm e}^{-2 y} y^{\prime }-{\mathrm e}^{-2 y} = 0
\] |
[[_1st_order, _with_linear_symmetries]] |
✓ |
9.516 |
|
\[
{}4 {y^{\prime }}^{2}+2 \,{\mathrm e}^{2 x -2 y} y^{\prime }-{\mathrm e}^{2 x -2 y} = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
0.892 |
|
\[
{}5 {y^{\prime }}^{2}+3 y^{\prime } x -y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
0.454 |
|
\[
{}5 {y^{\prime }}^{2}+6 y^{\prime } x -2 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
0.472 |
|
\[
{}9 {y^{\prime }}^{2}+3 x y^{4} y^{\prime }+y^{5} = 0
\] |
[[_1st_order, _with_linear_symmetries]] |
✓ |
80.434 |
|
\[
{}x {y^{\prime }}^{2} = a
\] |
[_quadrature] |
✓ |
0.250 |
|
\[
{}x {y^{\prime }}^{2} = -x^{2}+a
\] |
[_quadrature] |
✓ |
0.509 |
|
\[
{}x {y^{\prime }}^{2} = y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
1.398 |
|
\[
{}x {y^{\prime }}^{2}+x -2 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
1.873 |
|
\[
{}x {y^{\prime }}^{2}+y^{\prime } = y
\] |
[_rational, _dAlembert] |
✓ |
0.906 |
|
\[
{}x {y^{\prime }}^{2}+2 y^{\prime }-y = 0
\] |
[_rational, _dAlembert] |
✓ |
0.932 |
|
\[
{}x {y^{\prime }}^{2}-2 y^{\prime }-y = 0
\] |
[_rational, _dAlembert] |
✓ |
0.943 |
|
\[
{}x {y^{\prime }}^{2}+4 y^{\prime }-2 y = 0
\] |
[_rational, _dAlembert] |
✓ |
1.106 |
|
\[
{}x {y^{\prime }}^{2}+y^{\prime } x -y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
1.805 |
|
\[
{}x {y^{\prime }}^{2}-\left (x^{2}+1\right ) y^{\prime }+x = 0
\] |
[_quadrature] |
✓ |
0.888 |
|
\[
{}x {y^{\prime }}^{2}+y y^{\prime }+a = 0
\] |
[[_homogeneous, ‘class G‘], _dAlembert] |
✓ |
0.497 |
|
\[
{}x {y^{\prime }}^{2}-y y^{\prime }+a = 0
\] |
[[_homogeneous, ‘class G‘], _rational, _Clairaut] |
✓ |
0.437 |
|
\[
{}x {y^{\prime }}^{2}-y y^{\prime }+a x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
2.970 |
|
\[
{}x {y^{\prime }}^{2}+y y^{\prime }+x^{3} = 0
\] |
[[_homogeneous, ‘class G‘]] |
✓ |
3.671 |
|
\[
{}x {y^{\prime }}^{2}-y y^{\prime }+a y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
4.823 |
|
\[
{}x {y^{\prime }}^{2}+y y^{\prime }-y^{4} = 0
\] |
[[_homogeneous, ‘class G‘]] |
✓ |
16.603 |
|
\[
{}x {y^{\prime }}^{2}+\left (-y+a \right ) y^{\prime }+b = 0
\] |
[[_1st_order, _with_linear_symmetries], _rational, _Clairaut] |
✓ |
0.541 |
|
\[
{}x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }+1-y = 0
\] |
[[_1st_order, _with_linear_symmetries], _rational, _dAlembert] |
✓ |
0.536 |
|
\[
{}x {y^{\prime }}^{2}+\left (a +x -y\right ) y^{\prime }-y = 0
\] |
[[_1st_order, _with_linear_symmetries], _rational, _dAlembert] |
✓ |
0.598 |
|
\[
{}x {y^{\prime }}^{2}-\left (3 x -y\right ) y^{\prime }+y = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
3.887 |
|
\[
{}x {y^{\prime }}^{2}+a +b x -y-b y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
1.150 |
|
\[
{}x {y^{\prime }}^{2}-2 y y^{\prime }+a = 0
\] |
[[_homogeneous, ‘class G‘], _rational, _dAlembert] |
✓ |
0.520 |
|
\[
{}x {y^{\prime }}^{2}-2 y y^{\prime }+a x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
1.580 |
|
\[
{}x {y^{\prime }}^{2}-2 y y^{\prime }+x +2 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
1.724 |
|
\[
{}x {y^{\prime }}^{2}-3 y y^{\prime }+9 x^{2} = 0
\] |
[[_homogeneous, ‘class G‘]] |
✓ |
6.426 |
|
\[
{}x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0
\] |
[_quadrature] |
✓ |
2.859 |
|
\[
{}x {y^{\prime }}^{2}-a y y^{\prime }+b = 0
\] |
[[_homogeneous, ‘class G‘], _rational, _dAlembert] |
✓ |
0.650 |
|
\[
{}x {y^{\prime }}^{2}+a y y^{\prime }+b x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
2.168 |
|
\[
{}x {y^{\prime }}^{2}-\left (1+x y\right ) y^{\prime }+y = 0
\] |
[_quadrature] |
✓ |
1.743 |
|
\[
{}x {y^{\prime }}^{2}+\left (1-x \right ) y y^{\prime }-y^{2} = 0
\] |
[_quadrature] |
✓ |
3.289 |
|
\[
{}x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-x y = 0
\] |
[_quadrature] |
✓ |
2.049 |
|
\[
{}\left (x +1\right ) {y^{\prime }}^{2} = y
\] |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
0.714 |
|
\[
{}\left (x +1\right ) {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0
\] |
[[_1st_order, _with_linear_symmetries], _rational, _dAlembert] |
✓ |
0.581 |
|
\[
{}\left (a -x \right ) {y^{\prime }}^{2}+y y^{\prime }-b = 0
\] |
[[_1st_order, _with_linear_symmetries], _rational, _Clairaut] |
✓ |
0.514 |
|
\[
{}2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y = 0
\] |
[_rational, _dAlembert] |
✓ |
1.190 |
|
\[
{}3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
2.232 |
|
\[
{}\left (1+3 x \right ) {y^{\prime }}^{2}-3 \left (2+y\right ) y^{\prime }+9 = 0
\] |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
0.562 |
|
\[
{}\left (5+3 x \right ) {y^{\prime }}^{2}-\left (3+3 y\right ) y^{\prime }+y = 0
\] |
[_rational, _dAlembert] |
✓ |
2.254 |
|
\[
{}4 x {y^{\prime }}^{2} = \left (a -3 x \right )^{2}
\] |
[_quadrature] |
✓ |
0.294 |
|
\[
{}4 x {y^{\prime }}^{2}+2 y^{\prime } x -y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
2.075 |
|
\[
{}4 x {y^{\prime }}^{2}-3 y y^{\prime }+3 = 0
\] |
[[_homogeneous, ‘class G‘], _rational, _dAlembert] |
✓ |
0.502 |
|
\[
{}4 x {y^{\prime }}^{2}+4 y y^{\prime } = 1
\] |
[[_homogeneous, ‘class G‘], _rational, _dAlembert] |
✓ |
0.495 |
|
\[
{}4 x {y^{\prime }}^{2}+4 y y^{\prime }-y^{4} = 0
\] |
[[_homogeneous, ‘class G‘]] |
✓ |
14.660 |
|
\[
{}4 \left (2-x \right ) {y^{\prime }}^{2}+1 = 0
\] |
[_quadrature] |
✓ |
0.230 |
|
\[
{}16 x {y^{\prime }}^{2}+8 y y^{\prime }+y^{6} = 0
\] |
[[_homogeneous, ‘class G‘]] |
✓ |
3.501 |
|
\[
{}x^{2} {y^{\prime }}^{2} = a^{2}
\] |
[_quadrature] |
✓ |
0.392 |
|
\[
{}x^{2} {y^{\prime }}^{2} = y^{2}
\] |
[_separable] |
✓ |
3.655 |
|
\[
{}x^{2} {y^{\prime }}^{2}+x^{2}-y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
5.679 |
|
\[
{}x^{2} {y^{\prime }}^{2} = \left (x -y\right )^{2}
\] |
[_linear] |
✓ |
3.860 |
|
\[
{}x^{2} {y^{\prime }}^{2}+y^{2}-y^{4} = 0
\] |
[_separable] |
✓ |
2.324 |
|
\[
{}x^{2} {y^{\prime }}^{2}-y^{\prime } x +y \left (1-y\right ) = 0
\] |
[_separable] |
✓ |
3.536 |
|
\[
{}x^{2} {y^{\prime }}^{2}+2 a x y^{\prime }+a^{2}+x^{2}-2 a y = 0
\] |
[_rational] |
✓ |
80.200 |
|
\[
{}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }-x +y \left (1+y\right ) = 0
\] |
[[_1st_order, _with_linear_symmetries], _rational] |
✓ |
3.536 |
|
\[
{}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }-x^{4}+\left (-x^{2}+1\right ) y^{2} = 0
\] |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
✓ |
10.117 |
|
\[
{}x^{2} {y^{\prime }}^{2}-\left (1+2 x y\right ) y^{\prime }+1+y^{2} = 0
\] |
[[_1st_order, _with_linear_symmetries], _rational, _Clairaut] |
✓ |
0.646 |
|
\[
{}x^{2} {y^{\prime }}^{2}-\left (a +2 x y\right ) y^{\prime }+y^{2} = 0
\] |
[[_homogeneous, ‘class G‘], _rational, _Clairaut] |
✓ |
0.670 |
|
\[
{}x^{2} {y^{\prime }}^{2}-x \left (x -2 y\right ) y^{\prime }+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
1.747 |
|
\[
{}x^{2} {y^{\prime }}^{2}+2 x \left (y+2 x \right ) y^{\prime }-4 a +y^{2} = 0
\] |
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]] |
✓ |
4.444 |
|
\[
{}x^{2} {y^{\prime }}^{2}+x \left (x^{3}-2 y\right ) y^{\prime }-\left (2 x^{3}-y\right ) y = 0
\] |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
4.277 |
|
\[
{}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0
\] |
[_separable] |
✓ |
4.205 |
|
\[
{}x^{2} {y^{\prime }}^{2}-3 x y y^{\prime }+x^{3}+2 y^{2} = 0
\] |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
73.332 |
|
\[
{}x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }-5 y^{2} = 0
\] |
[_separable] |
✓ |
3.810 |
|
\[
{}x^{2} {y^{\prime }}^{2}-4 x \left (2+y\right ) y^{\prime }+4 \left (2+y\right ) y = 0
\] |
[_separable] |
✓ |
0.820 |
|
\[
{}x^{2} {y^{\prime }}^{2}-5 x y y^{\prime }+6 y^{2} = 0
\] |
[_separable] |
✓ |
4.260 |
|
\[
{}x^{2} {y^{\prime }}^{2}+x \left (x^{2}+x y-2 y\right ) y^{\prime }+\left (1-x \right ) \left (x^{2}-y\right ) y = 0
\] |
[_rational] |
✓ |
83.331 |
|
\[
{}x^{2} {y^{\prime }}^{2}+\left (y+2 x \right ) y y^{\prime }+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
74.939 |
|
\[
{}x^{2} {y^{\prime }}^{2}+\left (2 x -y\right ) y y^{\prime }+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
5.872 |
|
\[
{}x^{2} {y^{\prime }}^{2}+\left (a +b \,x^{2} y^{3}\right ) y^{\prime }+a b y^{3} = 0
\] |
[_quadrature] |
✓ |
1.001 |
|
\[
{}\left (-x^{2}+1\right ) {y^{\prime }}^{2} = 1-y^{2}
\] |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
✓ |
1.009 |
|
\[
{}\left (-x^{2}+1\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+4 x^{2} = 0
\] |
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]] |
✓ |
44.154 |
|
\[
{}\left (a^{2}+x^{2}\right ) {y^{\prime }}^{2} = b^{2}
\] |
[_quadrature] |
✓ |
0.567 |
|
\[
{}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}+b^{2} = 0
\] |
[_quadrature] |
✓ |
0.342 |
|
\[
{}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2} = b^{2}
\] |
[_quadrature] |
✓ |
0.381 |
|
\[
{}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2} = x^{2}
\] |
[_quadrature] |
✓ |
0.289 |
|
\[
{}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+x^{2} = 0
\] |
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]] |
✓ |
28.038 |
|