2.2.56 Problems 5501 to 5600

Table 2.113: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

5501

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

0.082

5502

\[ {}y^{\prime \prime \prime }+8 y = 0 \]

[[_3rd_order, _missing_x]]

0.069

5503

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.063

5504

\[ {}y^{\left (5\right )}+2 y^{\prime \prime \prime }+y^{\prime } = 0 \]

[[_high_order, _missing_x]]

0.080

5505

\[ {}y^{\prime \prime } = 0 \]
i.c.

[[_2nd_order, _quadrature]]

5.401

5506

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.060

5507

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.859

5508

\[ {}y^{\prime \prime }-4 y^{\prime }+20 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.977

5509

\[ {}3 y^{\prime \prime \prime }+5 y^{\prime \prime }+y^{\prime }-y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.128

5510

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 4 \]

[[_2nd_order, _missing_x]]

0.853

5511

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 12 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

0.899

5512

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{i x} \]

[[_2nd_order, _with_linear_symmetries]]

1.007

5513

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.269

5514

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.251

5515

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 8+6 \,{\mathrm e}^{x}+2 \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.608

5516

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

11.643

5517

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 9 x \,{\mathrm e}^{x}+10 \,{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.628

5518

\[ {}y^{\prime \prime }-3 y^{\prime } = 2 \,{\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

2.013

5519

\[ {}y^{\prime \prime }+y^{\prime } = x^{2}+2 x \]

[[_2nd_order, _missing_y]]

1.378

5520

\[ {}y^{\prime \prime }+y^{\prime } = x +\sin \left (2 x \right ) \]

[[_2nd_order, _missing_y]]

2.293

5521

\[ {}y^{\prime \prime }+y = 4 x \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.763

5522

\[ {}y^{\prime \prime }+4 y = x \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.992

5523

\[ {}y^{\prime \prime }+2 y^{\prime }+y = x^{2} {\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.084

5524

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{-2 x}+x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.182

5525

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = x \,{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.082

5526

\[ {}y^{\prime \prime }+y^{\prime }-6 y = x +{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.721

5527

\[ {}y^{\prime \prime }+y = \sin \left (x \right )+{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.801

5528

\[ {}y^{\prime \prime }+y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.717

5529

\[ {}y^{\prime \prime }+y = \sin \left (2 x \right ) \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.714

5530

\[ {}y^{\prime \prime }-5 y^{\prime }-6 y = {\mathrm e}^{3 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.525

5531

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 5 \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.613

5532

\[ {}y^{\prime \prime }+9 y = 8 \cos \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.903

5533

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{x} \left (2 x -3\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.269

5534

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{-x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.145

5535

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.285

5536

\[ {}y^{\prime \prime }+y = \cot \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.131

5537

\[ {}y^{\prime \prime }+y = \sec \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.995

5538

\[ {}y^{\prime \prime }-y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.776

5539

\[ {}y^{\prime \prime }+y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.768

5540

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 12 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

0.969

5541

\[ {}y^{\prime \prime }+2 y^{\prime }+y = x^{2} {\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.056

5542

\[ {}y^{\prime \prime }+y = 4 x \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.641

5543

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-x} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.059

5544

\[ {}y^{\prime \prime }+y = \csc \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.075

5545

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.143

5546

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \frac {{\mathrm e}^{-x}}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.014

5547

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.140

5548

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.040

5549

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \cos \left ({\mathrm e}^{-x}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.747

5550

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = x \]

[[_2nd_order, _with_linear_symmetries]]

1.606

5551

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}} = x \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.090

5552

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

1.251

5553

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{2} {\mathrm e}^{-x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.131

5554

\[ {}2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y = \frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.659

5555

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.571

5556

\[ {}y^{3} y^{\prime \prime } = k \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.103

5557

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2}-1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.079

5558

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x = 1 \]

[[_2nd_order, _missing_y]]

0.859

5559

\[ {}x y^{\prime \prime }-y^{\prime } = x^{2} \]

[[_2nd_order, _missing_y]]

1.030

5560

\[ {}\left (1+y\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.423

5561

\[ {}r^{\prime \prime } = -\frac {k}{r^{2}} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

70.945

5562

\[ {}y^{\prime \prime } = \frac {3 k y^{2}}{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.976

5563

\[ {}y^{\prime \prime } = 2 k y^{3} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.803

5564

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}-y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.542

5565

\[ {}r^{\prime \prime } = \frac {h^{2}}{r^{3}}-\frac {k}{r^{2}} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.184

5566

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3}-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.589

5567

\[ {}y y^{\prime \prime }-3 {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.325

5568

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.681

5569

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (1+y^{\prime }\right ) = 0 \]

[[_2nd_order, _missing_y]]

1.312

5570

\[ {}\left (1+y\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.588

5571

\[ {}y^{\prime \prime } = y^{\prime } {\mathrm e}^{y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

0.829

5572

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.921

5573

\[ {}2 y^{\prime \prime } = {\mathrm e}^{y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

17.669

5574

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x = 1 \]
i.c.

[[_2nd_order, _missing_y]]

1.142

5575

\[ {}x y^{\prime \prime }-y^{\prime } = x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

1.299

5576

\[ {}x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+y y^{\prime } = 0 \]

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.192

5577

\[ {}x y y^{\prime \prime }+x {y^{\prime }}^{2}-y y^{\prime } = 0 \]

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.706

5578

\[ {}x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+\left (1+y\right ) y^{\prime } = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.087

5579

\[ {}-a y^{3}-\frac {b}{x^{{3}/{2}}}+y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Abel]

9.163

5580

\[ {}a x y^{3}+b y^{2}+y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _Abel]

2.039

5581

\[ {}y^{\prime }-x^{a} y^{3}+3 y^{2}-x^{-a} y-x^{-2 a}+a \,x^{-a -1} = 0 \]

[_Abel]

3.962

5582

\[ {}y^{\prime }-\left (y-f \left (x \right )\right ) \left (y-g \left (x \right )\right ) \left (y-\frac {a f \left (x \right )+b g \left (x \right )}{a +b}\right ) h \left (x \right )-\frac {f^{\prime }\left (x \right ) \left (y-g \left (x \right )\right )}{f \left (x \right )-g \left (x \right )}-\frac {g^{\prime }\left (x \right ) \left (y-f \left (x \right )\right )}{g \left (x \right )-f \left (x \right )} = 0 \]

[_Abel]

4.625

5583

\[ {}x^{2} y^{\prime }+x y^{3}+a y^{2} = 0 \]

[_rational, _Abel]

0.573

5584

\[ {}\left (a x +b \right )^{2} y^{\prime }+\left (a x +b \right ) y^{3}+c y^{2} = 0 \]

[_rational, _Abel]

1.290

5585

\[ {}y^{\prime }+y \tan \left (x \right ) = 0 \]

[_separable]

1.203

5586

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.052

5587

\[ {}y {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.961

5588

\[ {}\left (-x^{2}+1\right ) {y^{\prime }}^{2}+1 = 0 \]

[_quadrature]

0.268

5589

\[ {}y^{\prime } = {\mathrm e}^{a x}+a y \]

[[_linear, ‘class A‘]]

0.647

5590

\[ {}\left (1+{y^{\prime }}^{2}\right )^{3} = a^{2} {y^{\prime \prime }}^{2} \]

[[_2nd_order, _missing_x]]

5.617

5591

\[ {}\left (x +1\right ) y+\left (1-y\right ) x y^{\prime } = 0 \]

[_separable]

1.197

5592

\[ {}y^{\prime } = a y^{2} x \]

[_separable]

1.368

5593

\[ {}y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

1.632

5594

\[ {}x y \left (x^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

2.800

5595

\[ {}\frac {x}{1+y} = \frac {y y^{\prime }}{x +1} \]

[_separable]

1.474

5596

\[ {}y^{\prime }+b^{2} y^{2} = a^{2} \]

[_quadrature]

0.802

5597

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

1.629

5598

\[ {}\sin \left (x \right ) \cos \left (y\right ) = \cos \left (x \right ) \sin \left (y\right ) y^{\prime } \]

[_separable]

2.956

5599

\[ {}a x y^{\prime }+2 y = x y y^{\prime } \]

[_separable]

1.381

5600

\[ {}x y^{\prime \prime }+\left (x +n \right ) y^{\prime }+\left (n +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.959