2.2.56 Problems 5501 to 5600

Table 2.113: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

5501

(a2x2)y22xyyy2=0

[_separable]

0.917

5502

(a2+x2)y22xyy+b+y2=0

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.855

5503

4x2y24xyy=8x3y2

[_linear]

0.531

5504

ax2y22axyy+a(1a)x2+y2=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.658

5505

(a2+1)x2y22xyya2x2+y2=0

[[_homogeneous, ‘class A‘], _dAlembert]

71.651

5506

x3y2=a

[_quadrature]

0.335

5507

x3y2+xyy=0

[[_homogeneous, ‘class G‘], _rational]

1.229

5508

x3y2+x2yy+a=0

[[_homogeneous, ‘class G‘], _rational]

3.262

5509

x(x2+1)y22(x2+1)yy+x(1y2)=0

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

12.957

5510

4x(x+a)(bx)y2=(ab2x(a+b)+2x2)2

[_quadrature]

1.055

5511

x4y2xyy=0

[[_homogeneous, ‘class G‘], _rational]

1.912

5512

x4y2+2x3yy4=0

[[_homogeneous, ‘class G‘], _rational]

1.254

5513

x4y2+xy2yy3=0

[[_homogeneous, ‘class G‘]]

2.961

5514

x2(a2x2)y2+1=0

[_quadrature]

0.681

5515

3x4y2xyy=0

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.028

5516

4x5y2+12x4yy+9=0

[[_homogeneous, ‘class G‘]]

4.053

5517

x6y22xy4y=0

[[_homogeneous, ‘class G‘], _rational]

1.846

5518

x8y2+3xy+9y=0

[[_homogeneous, ‘class G‘]]

1.959

5519

yy2=a

[_quadrature]

0.389

5520

yy2=a2x

[[_homogeneous, ‘class A‘], _dAlembert]

1.536

5521

yy2=e2x

[[_1st_order, _with_linear_symmetries]]

1.169

5522

yy2+2axyay=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.865

5523

yy24a2xy+a2y=0

[[_homogeneous, ‘class A‘], _dAlembert]

1.943

5524

yy2+axy+by=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.574

5525

yy2(2bx+a)yby=0

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

1.461

5526

yy2+x3yx2y=0

[[_1st_order, _with_linear_symmetries]]

2.905

5527

yy2+(xy)yx=0

[_quadrature]

0.549

5528

yy2(x+y)y+y=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.900

5529

yy2(1+xy)y+x=0

[_quadrature]

0.436

5530

yy2+(xy2)yxy=0

[_quadrature]

0.630

5531

yy2+y=a

[_quadrature]

0.689

5532

(x+y)y2+2xyy=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.790

5533

(2xy)y22(1x)y+2y=0

[[_homogeneous, ‘class C‘], _dAlembert]

0.804

5534

2yy2+(54x)y+2y=0

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

0.764

5535

9yy2+4x3y4x2y=0

[[_1st_order, _with_linear_symmetries]]

3.119

5536

(1ay)y2=ay

[_quadrature]

0.586

5537

(x2ay)y22xyy=0

[_quadrature]

0.834

5538

xyy2+(x+y)y+1=0

[_quadrature]

0.494

5539

xyy2+(x2+y2)y+xy=0

[_separable]

1.467

5540

xyy2+(x2y2)yxy=0

[_separable]

1.208

5541

xyy2(x2y2)yxy=0

[_separable]

1.342

5542

xyy2+(a+x2y2)yxy=0

[_rational]

141.127

5543

xyy2(abx2+y2)ybxy=0

[_rational]

101.730

5544

xyy2+(3x22y2)y6xy=0

[_separable]

1.424

5545

x(x2y)y22xyy2xy+y2=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

150.813

5546

x(x2y)y2+6xyy2xy+y2=0

[[_homogeneous, ‘class A‘], _dAlembert]

72.950

5547

y2y2=a2

[_quadrature]

0.651

5548

y2y2a2+y2=0

[_quadrature]

0.546

5549

y2y23xy+y=0

[[_1st_order, _with_linear_symmetries], _rational]

3.476

5550

y2y26x3y+4x2y=0

[[_1st_order, _with_linear_symmetries]]

2.993

5551

y2y24ayy+4a24ax+y2=0

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

72.300

5552

y2y2(x+1)yy+x=0

[_quadrature]

0.616

5553

y2y2+2xyy+x2=0

[_separable]

0.720

5554

y2y2+2xyy+ay2=0

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

31.248

5555

y2y22xyyx2+2y2=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

13.391

5556

y2y22xyy+ax2+2y2=0

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

80.392

5557

y2y2+2axyy+(a1)b+ax2+(1a)y2=0

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

10.843

5558

(1y2)y2=1

[_quadrature]

30.265

5559

(a2y2)y2=y2

[_quadrature]

0.681

5560

(a22yax+y2)y2+2ayy+y2=0

[‘y=_G(x,y’)‘]

84.885

5561

((1a)x2+y2)y2+2axyy+x2+(1a)y2=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

305.651

5562

((4a2+1)x2+y2)y28a2xyy+x2+(4a2+1)y2=0

[[_homogeneous, ‘class A‘], _dAlembert]

340.019

5563

((a2+1)x2+y2)y2+2a2xyy+x2+(a2+1)y2=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

191.463

5564

(x+y)2y2=y2

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.783

5565

(x+y)2y2(x2xy2y2)y(xy)y=0

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.844

5566

(a2(xy)2)y2+2a2y+a2(xy)2=0

[[_homogeneous, ‘class C‘], _dAlembert]

7.540

5567

2y2y2+2xyy1+x2+y2=0

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

143.572

5568

3y2y22xyyx2+4y2=0

[[_homogeneous, ‘class A‘], _dAlembert]

3.462

5569

4y2y2+2(1+3x)xyy+3x3=0

[_separable]

0.887

5570

(x24y2)y2+6xyy4x2+y2=0

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10.924

5571

9y2y23xy+y=0

[[_1st_order, _with_linear_symmetries], _rational]

3.488

5572

(23y)2y2=44y

[_quadrature]

0.398

5573

(a2+1)y2y23a2xyya2x2+y2=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

327.426

5574

(ab)y2y22bxyyabbx2+ay2=0

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

11.929

5575

a2(b2(cxay)2)y2+2ab2cy+c2(b2(cxay)2)=0

[[_homogeneous, ‘class C‘], _dAlembert]

8.647

5576

xy2y2y3y+a2x=0

[[_homogeneous, ‘class G‘], _rational]

2.966

5577

xy2y2+(ax3y3)y+x2y=0

[_rational]

18.773

5578

2xy2y2y3ya=0

[[_homogeneous, ‘class G‘], _rational]

3.247

5579

4x2y2y2=(x2+y2)2

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

150.332

5580

4y3y24xy+y=0

[[_1st_order, _with_linear_symmetries], _rational]

3.559

5581

3xy4y2y5y+1=0

[[_homogeneous, ‘class G‘], _rational]

3.509

5582

9xy4y23y5ya=0

[[_homogeneous, ‘class G‘], _rational]

3.444

5583

9(x2+1)y4y2+6xy5y+4x2=0

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

16.871

5584

y3=bx+a

[_quadrature]

0.406

5585

y3=axn

[_quadrature]

0.529

5586

y3+xy=0

[[_homogeneous, ‘class C‘], _dAlembert]

0.473

5587

y3=(a+by+cy2)f(x)

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.311

5588

y3=(ya)2(yb)2

[_quadrature]

6.161

5589

y3+f(x)(ya)2(yb)2=0

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.569

5590

y3+f(x)(ya)2(yb)2(yc)2=0

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

3.332

5591

y3+y+abx=0

[_quadrature]

0.809

5592

y3+yy=0

[_quadrature]

0.453

5593

y3+y=ey

[_quadrature]

0.687

5594

y37y+6=0

[_quadrature]

0.705

5595

y3xy+ay=0

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.685

5596

y3+2xyy=0

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.469

5597

y32xyy=0

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.441

5598

y3axy+x3=0

[_quadrature]

0.779

5599

y3+axyay=0

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.503

5600

y3(bx+a)y+by=0

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.511