2.2.57 Problems 5601 to 5700

Table 2.115: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

5601

\[ {}y^{\prime \prime }+y x = 0 \]

[[_Emden, _Fowler]]

0.435

5602

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.865

5603

\[ {}x y^{\prime \prime }+2 y^{\prime }+a^{3} x^{2} y = 2 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.843

5604

\[ {}y^{\prime \prime }+a \,x^{2} y = x +1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.554

5605

\[ {}x^{4} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.164

5606

\[ {}x^{2} y^{\prime \prime }+\left (2 x^{2}+x \right ) y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.921

5607

\[ {}\left (-x^{2}+x \right ) y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.875

5608

\[ {}\left (4 x^{3}-14 x^{2}-2 x \right ) y^{\prime \prime }-\left (6 x^{2}-7 x +1\right ) y^{\prime }+\left (6 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.937

5609

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+\left (x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.933

5610

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.858

5611

\[ {}x^{2} \left (1-4 x \right ) y^{\prime \prime }+\left (\left (-n +1\right ) x -\left (6-4 n \right ) x^{2}\right ) y^{\prime }+n \left (-n +1\right ) x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.099

5612

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+\left (x -9\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.074

5613

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime \prime }+y^{\prime } x -n^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.645

5614

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +a^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.633

5615

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

0.702

5616

\[ {}x y^{\prime \prime }+y^{\prime }+p x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.668

5617

\[ {}x y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

1.067

5618

\[ {}x^{3} y^{\prime \prime }-\left (2 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.106

5619

\[ {}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }+\left (3 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.235

5620

\[ {}\left (-x^{2}+x \right ) y^{\prime \prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.177

5621

\[ {}x \left (-x^{2}+1\right ) y^{\prime \prime }+\left (-3 x^{2}+1\right ) y^{\prime }-y x = 0 \]

[[_elliptic, _class_I]]

0.703

5622

\[ {}y^{\prime \prime }+\frac {a y}{x^{{3}/{2}}} = 0 \]

[[_Emden, _Fowler]]

0.161

5623

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+4 x \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.312

5624

\[ {}x \left (-x^{2}+1\right ) y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }+y x = 0 \]

[[_elliptic, _class_II]]

0.710

5625

\[ {}4 x \left (1-x \right ) y^{\prime \prime }-4 y^{\prime }-y = 0 \]

[_Jacobi]

1.309

5626

\[ {}x^{3} y^{\prime \prime }+y = x^{{3}/{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.120

5627

\[ {}2 x^{2} y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }+\frac {\left (2 x -1\right ) y}{x} = \sqrt {x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.140

5628

\[ {}\left (-x^{2}+x \right ) y^{\prime \prime }+3 y^{\prime }+2 y = 3 x^{2} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.000

5629

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }-\frac {y}{4} = 0 \]

[_Jacobi]

0.853

5630

\[ {}2 x \left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.221

5631

\[ {}2 x \left (1-x \right ) y^{\prime \prime }+\left (1-11 x \right ) y^{\prime }-10 y = 0 \]

[_Jacobi]

0.838

5632

\[ {}x \left (1-x \right ) y^{\prime \prime }+\frac {\left (1-2 x \right ) y^{\prime }}{3}+\frac {20 y}{9} = 0 \]

[_Jacobi]

0.874

5633

\[ {}2 x \left (1-x \right ) y^{\prime \prime }+y^{\prime }+4 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.826

5634

\[ {}4 y^{\prime \prime }+\frac {3 \left (-x^{2}+2\right ) y}{\left (-x^{2}+1\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.626

5635

\[ {}y^{2}+y^{\prime } = \frac {a^{2}}{x^{4}} \]

[_rational, _Riccati]

1.436

5636

\[ {}u^{\prime \prime }-\frac {a^{2} u}{x^{{2}/{3}}} = 0 \]

[[_Emden, _Fowler]]

0.772

5637

\[ {}u^{\prime \prime }-\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.137

5638

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.277

5639

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}+a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.265

5640

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}-a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3.480

5641

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}+a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.331

5642

\[ {}y^{\prime \prime }-a^{2} y = \frac {6 y}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

4.204

5643

\[ {}y^{\prime \prime }+n^{2} y = \frac {6 y}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

3.047

5644

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -\left (x^{2}+\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.212

5645

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\frac {\left (-9 a^{2}+4 x^{2}\right ) y}{4 a^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.532

5646

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {25}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.014

5647

\[ {}y^{\prime \prime }+q y^{\prime } = \frac {2 y}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

1.062

5648

\[ {}y^{\prime \prime }+{\mathrm e}^{2 x} y = n^{2} y \]

[[_2nd_order, _with_linear_symmetries]]

0.659

5649

\[ {}y^{\prime \prime }+\frac {y}{4 x} = 0 \]

[[_Emden, _Fowler]]

0.649

5650

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

0.686

5651

\[ {}x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler]]

1.857

5652

\[ {}y^{\prime } = y \]

[_quadrature]

0.433

5653

\[ {}y^{\prime } x = y \]
i.c.

[_separable]

1.324

5654

\[ {}x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime } = 0 \]
i.c.

[_separable]

2.241

5655

\[ {}\sin \left (x \right ) y^{\prime } = y \ln \left (y\right ) \]
i.c.

[_separable]

2.610

5656

\[ {}1+y^{2}+x y y^{\prime } = 0 \]
i.c.

[_separable]

2.320

5657

\[ {}x y y^{\prime }-y x = y \]
i.c.

[_quadrature]

0.458

5658

\[ {}y^{\prime } = \frac {2 x y^{2}+x}{x^{2} y-y} \]
i.c.

[_separable]

1.760

5659

\[ {}y y^{\prime }+x y^{2}-8 x = 0 \]
i.c.

[_separable]

1.574

5660

\[ {}y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

1.708

5661

\[ {}\left (1+y\right ) y^{\prime } = y \]
i.c.

[_quadrature]

0.628

5662

\[ {}y^{\prime }-y x = x \]
i.c.

[_separable]

1.230

5663

\[ {}2 y^{\prime } = 3 \left (y-2\right )^{{1}/{3}} \]
i.c.

[_quadrature]

0.571

5664

\[ {}\left (x +y x \right ) y^{\prime }+y = 0 \]
i.c.

[_separable]

1.598

5665

\[ {}y^{\prime }+y = {\mathrm e}^{x} \]

[[_linear, ‘class A‘]]

0.145

5666

\[ {}x^{2} y^{\prime }+3 y x = 1 \]

[_linear]

0.128

5667

\[ {}y^{\prime }+2 y x -x \,{\mathrm e}^{-x^{2}} = 0 \]

[_linear]

0.158

5668

\[ {}2 y^{\prime } x +y = 2 x^{{5}/{2}} \]

[_linear]

0.138

5669

\[ {}\cos \left (x \right ) y^{\prime }+y = \cos \left (x \right )^{2} \]

[_linear]

0.282

5670

\[ {}y^{\prime }+\frac {y}{\sqrt {x^{2}+1}} = \frac {1}{x +\sqrt {x^{2}+1}} \]

[_linear]

0.169

5671

\[ {}\left (1+{\mathrm e}^{x}\right ) y^{\prime }+2 y \,{\mathrm e}^{x} = \left (1+{\mathrm e}^{x}\right ) {\mathrm e}^{x} \]

[_linear]

0.175

5672

\[ {}y^{\prime } x \ln \left (x \right )+y = \ln \left (x \right ) \]

[_linear]

0.153

5673

\[ {}\left (-x^{2}+1\right ) y^{\prime } = y x +2 x \sqrt {-x^{2}+1} \]

[_linear]

0.174

5674

\[ {}y^{\prime }+y \tanh \left (x \right ) = 2 \,{\mathrm e}^{x} \]

[_linear]

0.194

5675

\[ {}y^{\prime }+y \cos \left (x \right ) = \sin \left (2 x \right ) \]

[_linear]

0.212

5676

\[ {}x^{\prime } = \cos \left (y \right )-x \tan \left (y \right ) \]

[_linear]

0.178

5677

\[ {}x^{\prime }+x-{\mathrm e}^{y} = 0 \]

[[_linear, ‘class A‘]]

0.144

5678

\[ {}x^{\prime } = \frac {3 y^{{2}/{3}}-x}{3 y} \]

[_linear]

0.123

5679

\[ {}y^{\prime }+y = x y^{{2}/{3}} \]

[_Bernoulli]

1.228

5680

\[ {}y^{\prime }+\frac {y}{x} = 2 x^{{3}/{2}} \sqrt {y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

9.130

5681

\[ {}3 x y^{2} y^{\prime }+3 y^{3} = 1 \]

[_separable]

2.382

5682

\[ {}2 x \,{\mathrm e}^{3 y}+{\mathrm e}^{x}+\left (3 x^{2} {\mathrm e}^{3 y}-y^{2}\right ) y^{\prime } = 0 \]

[_exact]

1.642

5683

\[ {}\left (x -y\right ) y^{\prime }+x +y+1 = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.372

5684

\[ {}\cos \left (x \right ) \cos \left (y\right )+\sin \left (x \right )^{2}-\left (\sin \left (x \right ) \sin \left (y\right )+\cos \left (y\right )^{2}\right ) y^{\prime } = 0 \]

unknown

77.923

5685

\[ {}x^{2} y^{\prime }+y^{2}-y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1.846

5686

\[ {}y y^{\prime } = -x +\sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.146

5687

\[ {}y x +\left (y^{2}-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.728

5688

\[ {}y^{2}-y x +\left (y x +x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.808

5689

\[ {}y^{\prime } = \cos \left (x +y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

2.061

5690

\[ {}y^{\prime } = \frac {y}{x}-\tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.255

5691

\[ {}\left (x -1\right ) y^{\prime }+y-\frac {1}{x^{2}}+\frac {2}{x^{3}} = 0 \]

[_linear]

2.449

5692

\[ {}y^{\prime } = x y^{2}-\frac {2 y}{x}-\frac {1}{x^{3}} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

1.582

5693

\[ {}y^{\prime } = \frac {2 y^{2}}{x}+\frac {y}{x}-2 x \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

2.063

5694

\[ {}y^{\prime } = {\mathrm e}^{-x} y^{2}+y-{\mathrm e}^{x} \]

[[_1st_order, _with_linear_symmetries], _Riccati]

1.168

5695

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

0.734

5696

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

0.758

5697

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

1.257

5698

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

1.161

5699

\[ {}y^{\prime \prime }-2 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

1.621

5700

\[ {}y^{\prime \prime }+16 y = 0 \]

[[_2nd_order, _missing_x]]

1.731